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Eliminación de los efectos de humo en cirugía laparoscópica 
usando redes antagónicas generativas y el principio del canal 
oscuro
Removal of smoke effects in laparoscopic surgery via adversarial neural network and the 
dark channel prior
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Resumen

Antecedentes: Durante la cirugía laparoscópica, la calidad de la imagen puede verse gravemente degradada por el humo 
quirúrgico causado por el uso de herramientas de disección de tejidos que reducen la visibilidad de los órganos y tejidos. 
Objetivo: Mejorar la visibilidad en cirugía laparoscópica mediante la combinación de técnicas de procesamiento de imágenes 
basadas en técnicas clásicas e inteligencia artificial. Método: Desarrollo de un enfoque híbrido para la eliminación de los efectos 
del humo quirúrgico, basado en la combinación del método del principio del canal oscuro (DCP, dark channel prior) y una arqui-
tectura de red neuronal píxel a píxel conocida como red antagónica generativa (GAN, generative adversial network). Resultados: Los 
resultados experimentales han demostrado que el método propuesto logra un mejor rendimiento que los resultados individuales 
de DCP y GAN en cuanto a calidad de la restauración, obteniendo (según las métricas de la proporción máxima de señal a 
ruido [PSNR, Peak Signal-to-Noise Ratio] y el índice de similitud estructural [SSIM, Structural Similarity Index]) mejores resulta-
dos que otros métodos relacionados. Conclusiones: El enfoque propuesto disminuye los riesgos y el tiempo de la cirugía lapa-
roscópica, ya que una vez que la red está correctamente entrenada, el sistema puede mejorar la visibilidad en tiempo real.

Palabras clave: Laparoscopia. Mejoramiento de imágenes. Eliminación de humo. Procesamiento de imágenes. Red anta-
gónica generative.

Abstract

Background: In laparoscopic surgery, image quality can be severely degraded by surgical smoke caused by the use of tissue 
dissection tools that reduce the visibility of the observed organs and tissues. Objective: Improve visibility in laparoscopic 
surgery by combining image processing techniques based on classical methods and artificial intelligence. Method: Develop-
ment of a hybrid approach to eliminating the effects of surgical smoke, based on the combination of the dark channel prior 
(DCP) method and a pixel-to-pixel neural network architecture known as a generative adversarial network (GAN). 
Results: Experimental results have shown that the proposed method achieves better performance than individual DCP and 
GAN results in terms of restoration quality, obtaining (according to PSNR and SSIM index metrics) better results than some 

ARTÍCULO ORIGINAL

CIRUGIA Y CIRUJANOS

Cir Cir. 2022;90(1):74-83 

Contents available at PubMed 

www.cirugiaycirujanos.com

Correspondencia: 
*Gerardo Flores 

Lomas del Bosque 115 

Lomas del Campestre 

C.P. 37150, León, Guanajuato, México  

E-mail: gflores@cio.mx

Fecha de recepción: 31-08-2020

Fecha de aceptación: 06-12-2020

DOI: 10.24875/CIRU.20000951
0009-7411/© 2020 Academia Mexicana de Cirugía. Publicado por Permanyer. Este es un artículo open access bajo la licencia CC BY-NC-ND  
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.24875/CIRU.20000951&domain=pdf
mailto:gflores%40cio.mx?subject=
http://dx.doi.org/10.24875/CIRU.20000951


S. Salazar-Colores et al.: Eliminación de humo en cirugía laparoscópica

75

Introducción

La cirugía laparoscópica consiste en la inserción de 
una cámara y dispositivos quirúrgicos a través de pe-
queñas incisiones. Ha reemplazado en gran medida a 
la cirugía tradicional en diversos campos quirúrgicos, 
como la cirugía abdominal, ginecología, torácica, etc., 
debido a que presenta una menor incidencia de infec-
ciones y una recuperación más rápida, y generalmente 
deja menos secuelas que la cirugía tradicional. En este 
tipo de procedimientos se realizan cauterizaciones en 
los tejidos, lo cual origina vapor de agua y monóxido 
de carbono que disminuyen la visibilidad de las cáma-
ras usadas. Esta falta de visibilidad aumenta el tiempo 
de la cirugía e incluso la probabilidad de errores come-
tidos por el cirujano, lo que puede derivar en conse-
cuencias negativas para la salud del paciente1. 
Comúnmente, el proceso de eliminación de humo se 
realiza con instrumentos médicos, pero esta manera 
resulta costosa y poco práctica, por lo que se requiere 
otra opción para resolver el problema. Lo anteriormente 
mencionado ha motivado el desarrollo de investigación 
en procesamiento digital de imágenes, la cual se ha 
enfocado en la búsqueda de métodos para reducir los 
efectos del humo y, por tanto, aumentar la visibilidad.

Una de las técnicas clásicas más usadas para este 
propósito parte del modelo de dispersión atmosférica, 
en el que se estima el mapa de transmisión (el cual 
contiene información acerca de la densidad de humo) 
y las componentes de la luz en una imagen determi-
nada2. Por ejemplo, Wang, et al.1 proponen una técnica 
basada en el modelo físico de la dispersión del humo, 
similar al modelo usado en el procesamiento de imá-
genes para eliminar los efectos de niebla (dehazing), 
en el que se determina el nivel de humo considerando 
el hecho de que en los píxeles que lo contienen se 
presenta un bajo contraste, así como bajas diferencias 
entre canales. Basándose en esta observación, se de-
fine una función de costo y se resuelve utilizando un 
método de Lagrange. Kotwal, et al.3 formulan la cues-
tión de la niebla y la eliminación de humo en las imá-
genes laparoscópicas como un problema de inferencia 
bayesiana, en el cual se usa un sistema probabilístico 
con modelos de las imágenes sin niebla, así como un 
mapa de transmisión que indica la atenuación del color 

en presencia de humo. Gu, et al.4 implementan un sis-
tema digital basado en el principio del canal oscuro 
(DCP, Dark Channel Prior), en donde se observa que 
estadísticamente las imágenes libres de niebla en ex-
teriores contienen algunos píxeles con muy baja inten-
sidad al menos en uno de los canales de color.

Muchos problemas en el procesamiento de imáge-
nes, gráficos y visión requieren la conversión de una 
imagen de entrada a una imagen de salida determina-
da. Hasta hace un par de años, como se ha comenta-
do, la mayor parte de la investigación se realizaba 
mediante métodos diseñados «ingenierilmente», es 
decir, el investigador analizaba y buscaba patrones 
sobre los que diseñaba un algoritmo explícito. En la 
actualidad, con los nuevos avances del aprendizaje 
automático (machine learning), el cual es una parte de 
la inteligencia artificial y trata sobre modelos que me-
joran con la experiencia, la situación ha cambiado 
radicalmente. Ahora, gracias sobre todo al aprendizaje 
profundo (deep learning) basado en redes neuronales 
convolucionales (CNN, Convolutional Neural Network) 
que son capaces de encontrar patrones y abstraccio-
nes autónomamente, la tarea del investigador se en-
foca en adaptar o desarrollar y ajustar un modelo de 
aprendizaje automático. Las redes generativas anta-
gónicas (GAN, Generative Adversial Network) pro-
puestas en 2014 están formadas por dos redes 
neuronales y son una solución de propósito general 
que ha obtenido buenos resultados en una amplia va-
riedad de aplicaciones que requieren un mapeo de 
imagen a imagen, siendo actualmente la tecnología 
puntera en muchas de ellas5-9. Las GAN constan de 
dos partes principales: una red neuronal que actúa 
como una función generadora, en la cual a partir de 
una imagen de entrada se genera una imagen de sa-
lida con determinados cambios, y una función discri-
minadora que evalúa la imagen generada con una 
imagen real con el fin de clasificarla como real o falsa. 
La idea básica de las GAN es lograr la generación de 
imágenes tan fieles a las originales que el discrimina-
dor no logre encontrar diferencia alguna. Isola, et al.5 
demuestran que este enfoque es efectivo para sinteti-
zar imágenes a partir de mapas de etiquetas, recons-
truir objetos a partir de mapas de bordes y colorear 
imágenes originalmente en escala de grises. En 

related state-of-the-art methods. Conclusions: The proposed approach decreases the risks and time of laparoscopic surgery 
because once the network is trained, the system can improve real-time visibility.

Keywords: Laparoscopy. Haze removal. Image processing. Generative adversarial network.
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trabajos recientes se han propuesto arquitecturas de 
aprendizaje profundo para reducir el efecto del humo 
en las imágenes laparoscópicas10,11. Chen, et al.12 pro-
ponen el uso de las GAN para el aprendizaje no su-
pervisado y la eliminación del humo en las imágenes. 
En este trabajo presentamos los resultados de aplicar 
una GAN y además proponemos un método híbrido 
que combina una técnica de procesamiento de imáge-
nes con una GAN. En la figura 1 se muestra un ejem-
plo de la arquitectura aquí propuesta, en donde se usa 
el DCP como etapa de preprocesamiento bajo la hipó-
tesis de la reducción en la complejidad de los patrones 
presentes en las imágenes que posteriormente ingre-
san a una arquitectura GAN.

Los experimentos fueron realizados sobre un conjun-
to de datos con imágenes de laparoscopia a las cuales 
se les generó artificialmente el efecto del humo me-
diante un software de edición de vídeo. De acuerdo 
con las métricas usadas para evaluar los métodos pro-
puestos, el uso de GAN para reducir el efecto del humo 
mejora la reconstrucción de la imagen frente al enfoque 
basado en el DCP y el modelo de dispersión.

El presente trabajo está estructurado de la siguiente 
forma: en el apartado «II» (marco teórico) se presentan 
los fundamentos teóricos y conceptuales usados para 
la implementación de la red, así como las métricas para 
la evaluación de los resultados; en el apartado «III» 
(método propuesto) se explican las configuraciones 
usadas en el diseño del experimento; en el apartado 
«IV» (resultados) se presentan los resultados obteni-
dos, así como las tablas comparativas respecto a tra-
bajos relacionados; y finalmente se incluyen una 

discusión, unas conclusiones y una perspectiva de fu-
turas investigaciones.

Marco teórico

En este apartado se presentan los fundamentos 
teóricos necesarios para la implementación de la me-
todología propuesta.

Modelo de dispersión atmosférica

La degradación atmosférica es un fenómeno físico 
causado por partículas en el medio atmosférico que 
absorben y dispersan la luz13. Esta degradación puede 
ser expresada, utilizando el modelo dicromático14, como:

I(x,y)=J(x,y)t(x,y)+A(1-t(x,y))
donde I(x,y) es la intensidad de la imagen de color 

en cada pixel (x,y) con presencia de niebla, J(x,y) es 
la intensidad de la imagen RGB en cada píxel (x,y) 
sin degradación, A es la matriz normalizada de la 
componente de la luz atmosférica en cada canal de 
la imagen y t(x,y) representa el mapa de transmisión 
en un atmósfera homogénea, modelado por:

t(x,y)=e-iβd(x,y),0<t(x,y)<1,
donde β es el coeficiente de dispersión, que depen-

de principalmente del tamaño de la partícula de dis-
persión14 y d(x,y) representa la distancia de la cámara 
a la escena en la posición del píxel (x,y).

Utilizando el modelo dicromático es posible obtener 
la imagen sin los efectos de neblina J(x,y) siempre y 
cuando se pueda obtener una estimación precisa de 
t(x,y) y A13.

Figura 1. Funcionamiento del modelo DCP + GAN en una imagen quirúrgica laparoscópica.
A: imágenes de entrada con humo de CO2 sintético. B: nuestro resultado con DCP + GAN. C: ground-truth.

A B C
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Canal oscuro

El canal oscuro Idark para cada píxel se define como:

( )  
= ∈ ∈Ω  

( ),  { }   { , }  
c

dark
c

I zI x y min c RGB min z x y
A

donde Ω{x,y} es un kernel generalmente cuadrado 
centrado en la posición (x,y) (utilizar un kernel cua-
drado no tiene mayor motivación que reducir al máxi-
mo el tiempo requerido para el procesamiento), Ic(z) 
son los elementos de la imagen en las posiciones 
z∈Ω{x,y}, representa cada imagen en los respectivos 
canales RGB y es el valor de en cada una de las 
componentes c.

El DCP se basa en la observación de que, en imá-
genes sin neblina, al menos un canal de color tiene 
una intensidad muy baja en algunos píxeles. En otras 
palabras, la intensidad en una sección Ω de la imagen 
debería tener un valor muy bajo en algún canal si no 
hay neblina entre la cámara y el objeto capturado. Esto 
se encuentra definido como la relación estadística 
entre el canal oscuro y las regiones sin neblina, donde 
se cumple:

Idark (x,y)→0
La relación existente entre Idark y t se expresa como:

t(x,y)=1-ωIdark (x,y)
donde 0<ω<1 representa el nivel de restauración. 

De acuerdo con He, et al.15, ω=0.95, argumentando 
que este valor produce un mejor aspecto en las imá-
genes restauradas. Por otra parte, la luz atmosférica 
puede ser estimada mediante la ecuación:

( )
( )

3

1

  , 0 .1%

( , ) ( , )
c

c dark
c

argarg max x y
A max I

h I x y=

 ∈
=  

  
∑

donde h es la altura y ω es el ancho de la 
imagen.

Redes antagónicas generativas

Las GAN, presentadas en 2014 por Goodfellow, 
et al.16, son una clase de métodos de inteligencia artifi-
cial de aprendizaje no supervisado, implementados por 
un sistema de dos redes neuronales que compiten mu-
tuamente, y un generador (G) que se encarga de gene-
rar una imagen falsa a partir del entrenamiento de 
muchas imágenes originales, que aprende las caracte-
rísticas fundamentales de un tipo de imagen en particu-
lar; por ejemplo, si esta etapa es entrenada con muchos 
rostros diferentes, tendrá la capacidad de generar 

rostros falsos con características reales. En una segun-
da etapa se conecta un discriminador (D) que tiene 
como objetivo identificar si una imagen es real o falsa. 
Al estar conectadas las dos etapas en un proceso ite-
rativo, el trabajo G es generar imágenes falsas con 
características tan reales que logre «engañar» a la eta-
pa D, momento en que se considera que la GAN está 
entrenada y en la aplicación se usa solo la etapa G. 
Tanto la etapa G como la etapa D se implementan usan-
do capas convolucionales. En el caso de G, se realizan 
operaciones convolucionales para hacer una reducción 
de dimensionalidad en las imágenes y posteriormente 
una operación inversa o deconvolucional, hasta generar 
una imagen de iguales dimensiones a la imagen de 
entrada. La etapa D, por su parte, usa operaciones 
convolucionales hasta el punto de tener un clasificador 
binario que decida si la imagen generada es real (se 
asigna un valor de 1) o falsa (se asigna un valor de 0).

Capas convolucionales

Las operaciones convolucionales en imágenes están 
inspiradas en el córtex visual del ojo humano, en donde 
algunas células se especializan en detectar formas par-
ticulares, como líneas y bordes. A  lo largo de la jerar-
quía de la corteza, la complejidad de los estímulos se 
va incrementando. De manera análoga, las capas con-
volucionales conectadas en una jerarquía permiten que 
las primeras capas detecten características simples de 
la imagen y, a medida que se incrementan las capas, 
se van logrando niveles mayores de abstracción. Esta 
cualidad confiere a las redes neuronales convoluciona-
les la capacidad de «ver» e identificar objetos. Especí-
ficamente, cada neurona de un mapa de características 
está conectada a una región de neuronas vecinas en 
la capa anterior. El nuevo mapa de características se 
puede obtener haciendo una convolución de la entrada 
y luego aplicando una función de activación.

Unidad lineal rectificada

La unidad lineal rectificada (ReLU, Rectified Linear 
Unit) es una de las funciones de activación no satu-
rada más notable, la cual se define como:

, , , ,( , 0 )i j k i j ka max z=

donde z(i,j,k) es la entrada de la función de activación 
en la ubicación (i,j) en el canal k - th. ReLU es una 
función lineal por partes que poda la parte negativa a 
cero y retiene la parte positiva. La simple operación 
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max(∙) de ReLU le permite computar mucho más rápido 
que las funciones de activación sigmoide o tanh(∙), y 
también induce la dispersión en las unidades ocultas 
y permite a la red obtener fácilmente representaciones 
dispersas. Se ha demostrado que las redes profundas 
pueden ser entrenadas eficientemente usando ReLU17.

Redes condicionales generativas antagónicas

Las GAN son modelos generativos que aprenden 
un mapeo a partir de un vector de ruido aleatorio z 
para una imagen de salida y, G:z→y. Por su parte, las 
redes condicionales generativas antagónicas (cGAN) 
aprenden a partir de la imagen de entrada x y el vec-
tor de ruido aleatorio z5, es decir, G:x,z→y. Este tipo 
de red es muy utilizado en métodos que requieren 
una traslación de imagen a imagen.

Método

En este apartado se describe la metodología usada 
para la obtención de los datos y la implementación 
del algoritmo propuesto.

Obtención de la base de datos

Las imágenes utilizadas en este trabajo se obtuvie-
ron de vídeos de distintos repositorios públicos, así 
como de vídeos proporcionados por un grupo de mé-
dicos especialistas en cirugía laparoscópica. Puede 
verse un vídeo comparativo de los resultados de los 
métodos propuestos en un vídeo quirúrgico real en 
https://www.youtube.com/watch?v=QvUKcHonCHw&-
feature=youtu.be. De los vídeos disponibles se obtu-
vieron 6000 imágenes representativas de diferentes 
niveles de afectaciones por humo. Para generar los 
datos de entrada se simuló artificialmente el humo, 
usando el software de procesamiento gráfico de có-
digo abierto Blender, formando imágenes de entrada 
con dimensiones de 512 × 512 píxeles.

Métricas

Para tener una visión del desempeño del método 
propuesto en este trabajo se evalúan los resultados 
empleando métricas ampliamente utilizadas en la li-
teratura: la proporción máxima de señal a ruido 
(PSNR, Peak Signal-to-Noise Ratio) y el índice de 
similitud estructural (SSIM, Structural Similarity 

Index). A continuación se explican brevemente estos 
conceptos:

–	 La PSNR es una medida cuantitativa de la cali-
dad de una reconstrucción18. Se utiliza amplia-
mente en imágenes. Para definir la métrica PSNR 
es necesario definir el error cuadrático medio 
(MSE, Mean Squared Error), el cual, para dos 
imágenes monocromas I y J de tamaño m × n, 
se define como:

( )
1 1

2

0 0

1 , ( , )
m n

i j

MSE I i j J i j
mn

− −

= =

= −∑∑‖ ‖

Y la PSNR se obtiene mediante una relación loga-
rítmica de base 10 dada por:

2
10 20I IMAX MAXPSNR log log

MSE MSE

   = =     

donde MAX = 2B − 1 y B es el número de bits utili-
zados en la imagen. Valores altos de PSNR indican 
mejores restauraciones.

–	 El SSIM es una métrica de similitud de imagen 
perceptiva que fue propuesta como alternativa al 
MSE y la PSNR para aumentar la correlación con 
la evaluación subjetiva. Para las imágenes origi-
nales y reconstruidas I y J, el SSIM se define 
como:

( ) ( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
, I J IJ

I J I J

C C
SSIM I J

C C

  

   

+ +
=

+ + + +

donde μ, σ y σIJ son la media, la varianza y la co-
varianza de las imágenes, respectivamente.

Método propuesto

El método propuesto se basa en el supuesto de que 
una red neuronal cGAN tiene un mejor rendimiento 
en tanto su entrada sea más parecida a su salida 
esperada. Se espera entonces que al aplicar el canal 
oscuro antes de entrenar la red neuronal, el rendi-
miento de esta se vea incrementado. Para realizar un 
análisis del rendimiento del enfoque propuesto se 
propusieron tres experimentos:

1)	Técnica basada en el canal oscuro:
El canal oscuro ha dado excelentes resultados en 

tareas de dehazing; no obstante, el problema abor-
dado es distinto, ya que la atmósfera no es homogé-
nea, por lo que ya no existe una relación entre el 
canal oscuro y la distancia de los objetos. Sin em-
bargo, la distancia d(x) de la cámara al cuerpo hu-
mano es despreciable, por lo cual el canal oscuro 
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tiene una correspondencia directa con el coeficiente 
de dispersión β. Por esta razón, el canal oscuro tiene 
también validez para esta condición. La relación en-
tre el canal oscuro y la transmisión se puede expre-
sar como:

( ) ( ), 1 ,darkt x y I x y= −

Sustituyendo (1) en (5) y considerando además que 
la atmósfera no es homogénea, se obtienen diferentes 
coeficientes de dispersión para cada elemento (x,y):

( ) ( ) ( )x,y d x,y da rke 1 I x, y − = −

Por tanto:

( )
( ) ( )x,y d x,y

da rk 1 eI x, y
−β−=
ω

Suponiendo la distancia del cuerpo constante y ω=1:

( ) ( )d x,ydarkI x, y 1 e − β= −

Podemos decir que la relación del canal oscuro con 
la transmisión está en función ahora del coeficiente 
y la densidad de partículas β en cada uno de los 
píxeles, resultando útil para la eliminación de los 
efectos.

En la figura 2 se muestra el método basado en el 
DCP implementado.

2)	Utilizando la cGAN propuesta:
En la figura 3 se muestra un diagrama de la red neu-

ronal utilizada. En las tablas 1 y 2 se muestran la arqui-
tectura y los hiperparámetros del generador y del 
discriminador empleados. Como función de optimiza-
ción en la red neuronal se empleó la estimación del 
momento adaptativo (ADAM, Adaptive Moment Estima-
tion). Este algoritmo es una extensión del descenso de 
gradiente estocástico para actualizar los pesos de red 
de forma iterativa en función de los datos de entrena-
miento; recientemente ha visto una adopción más am-
plia para aplicaciones de aprendizaje profundo en visión 
por computadora y procesamiento de lenguaje natural. 
Como métrica de pérdida se utiliza el MSE, el cual se 
usa como la función de pérdida para la regresión.

3)	Usando una combinación de los enfoques 
mencionados:

Las imágenes de entrada en la figura 3 son las 
imágenes de salida J de la figura 2. La evaluación del 
desempeño para cada caso se representa en la 
figura 4, en la que se muestra la metodología 

Figura 2. Método basado en DCP.

Figura 3. Método basado en DCP. Diagrama de la arquitectura cGAN. 
La imagen de entrada pasa a través de varias capas convolucionales 
hasta lograr una reducción de dimensionalidad en la capa intermedia 
de la estructura generadora (G). Seguidamente se realiza un proceso 
inverso con capas convolucionales transpuestas, hasta llegar a una 
imagen con igual dimensionalidad a la imagen de entrada, la cual será 
la predicción de la imagen sin ruido (humo de CO2). Por otra parte, un 
discriminador (D) basado en operaciones convolucionales compara la 
predicción de la imagen con la imagen objetivo.

Figura 4. Metodología propuesta para la evaluación de desempeño.



Cirugía y Cirujanos. 2022;90(1)

80

Tabla 1. Arquitectura de la red generadora utilizada

Capa Conv Kernel Salto Definición Tamaño

1 64 4 2 Conv->Batchnorm-
>Leaky ReLU

(256, 256, 4)

2 128 4 2 Conv->Batchnorm-
>Leaky ReLU

(128, 128, 128)

3 256 4 2 Conv->Batchnorm-
>Leaky ReLU

(64, 64, 256)

4 512 4 2 Conv->Batchnorm-
>Leaky ReLU

(32, 32, 512)

5 512 4 2 Conv->Batchnorm-
>Leaky ReLU

(16, 16, 512)

6 512 4 2 Conv->Batchnorm-
>Leaky ReLU

(8, 8, 512)

7 512 4 2 Conv->Batchnorm-
>Leaky ReLU

(4, 4, 512)

8 512 4 2 Conv->Batchnorm-
>Leaky ReLU

(1, 1, 512)

9 512 4 2 Deconv->Batchnorm-
>ReLU->Dp(0.5)

(2, 2, 1024)

10 512 4 2 Deconv->Batchnorm-
>ReLU->Dp(0.5)

(4, 4, 1024)

11 512 4 2 Deconv->Batchnorm-
>ReLU->Dp(0.5)

(8, 8, 1024)

12 512 4 2 Deconv->Batchnorm-
>ReLU->Dp(0.5)

(16, 16, 1024)

13 512 4 2 Deconv->Batchnorm-
>ReLU

(32, 32, 1024)

14 256 4 2 Deconv->Batchnorm-
>ReLU

(64, 64, 512)

15 128 4 2 Deconv->Batchnorm-
>ReLU

(128, 128, 256)

16 64 4 2 Deconv->Batchnorm-
>ReLU

(256, 256, 128)

17 3 4 2 Tanh (512, 512, 3)

Figura 5. Comparación del desempeño de los métodos propuestos de 
acuerdo con el SSIM. 

Figura 6. Comparación del desempeño de los métodos propuestos de 
acuerdo con la PSNR.

propuesta para evaluar el desempeño de las tres con-
figuraciones mencionadas.

Configuración de los experimentos

Los experimentos fueron realizados con una com-
putadora con un procesador Ryzen Threadriper 1900, 
128 Gb de memoria RAM y una tarjeta gráfica Nvidia 
RTX 2080 Ti, usando Linux Ubuntu 18.10, Python 3.5, 
Librerías OpenCV 3.3 y Keras 2.1.0.

Resultados

En las figuras 5 y 6 se muestra la comparación de las 
métricas SSIM y PSNR para los métodos DCP, cGAN y 
DCP-cGAN. La primera observación importante en es-
tas figuras es la mejora significativa de los métodos 
cGAN y DCP-cGAN frente a la reconstrucción basada 
únicamente en DCP, el cual alcanzó valores de SSIM = 

0.75 y PSNR = 20.71, mientras cGAN alcanzó valores 
de SSIM = 0.88 y PSNR = 24.79. En cuanto al desem-
peño entre cGAN y DCP-cGAN, se observa que la mé-
trica de PSNR fue ligeramente superior para DCP-cGAN, 
con un valor PSNR = 25.00, frente a PSNR = 24.79 
logrado por cGAN. En el caso de la métrica SSIM, 
cGAN obtuvo un valor medio de SSIM = 0.88, frente a 
SSIM = 0.87 con DCP-cGAN. El hecho de agregar una 
etapa previa DCP antes de la cGAN abre un camino a 
una arquitectura de deep learning que enfoque el apren-
dizaje en las regiones de mayor incidencia de humo. 
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Los resultados actuales pueden ser mejorados ajustan-
do los parámetros del canal oscuro, así como hiperpa-
rámetros como el número de capas ocultas, el número 
de convoluciones por capa y tamaño de los filtros en la 
convolución, entre otros.

Discusión

La figura 7 muestra una comparación que permite 
observar cualitativamente el desempeño de los distin-
tos métodos implementados. Si bien la técnica basada 

Figura 7. Comparación de los resultados con los métodos utilizados. A: imágenes de entrada con humo de CO2 sintético. B: DCP. C: GAN.  
D: DCP + GAN. E: ground-truth.

A B C D E
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Tabla 2. Arquitectura de la red neuronal discriminadora utilizada

Capa Conv Kernel Salto Definición Tamaño

1 64 4 2 Conv->Batchnorm-
>Leaky ReLU

(256, 256, 4)

2 128 4 2 Conv->Batchnorm-
>Leaky ReLU

(128, 128, 128)

3 256 4 2 Conv->Batchnorm-
>Leaky ReLU

(64, 64, 256)

4 0 0 0 ZeroPadding2D (32, 32, 512)

5 512 4 1 Conv (16, 16, 512)

6 0 0 0 BatchNorm->Leaky 
ReLU->ZeroPadding

(8, 8, 512)

7 1 4 1 Conv (4, 4, 512)

únicamente en DCP logra reducir de manera significa-
tiva la presencia de humo en las imágenes, se puede 
apreciar también una alteración en los colores origina-
les. Por su parte, la técnica basada solo en GAN con-
serva mejor los colores originales de la imagen y logra 
una buena reducción del humo, pero algunos detalles 
finos, principalmente los bordes y los reflejos de luz, 
se ven alterados con respecto al ground-truth. Final-
mente, el método propuesto DCP + GAN logra una 
reducción del humo conservando también los colores 
originales, así como una mejor recuperación de zonas 
con altos niveles de brillo y de bordes, en comparación 
con cada una de las técnicas por sí solas.

Los resultados cuantitativos y cualitativos  indican 
que la combinación de cGAN con una etapa previa en 
la que se calcule el canal oscuro ayuda a la identifica-
ción de las regiones con presencia de humo, haciendo 
que la generación de imágenes sintéticas por parte de 
cGAN se enfoque más en dichas regiones que en el 
resto de la imagen. Algo muy importante que se debe 
mencionar es que, aunque se visualiza un mejor ren-
dimiento con el método propuesto DCP + cGAN, la 
ventaja no es significativa en términos estadísticos, ya 
que como se puede ver en las figuras 5 y 6 existe un 
solapamiento en los boxplots; sin embargo, los resul-
tados son un buen punto de inicio para la experimen-
tación de una mezcla de conceptos más refinada.

Conclusiones

En este artículo se propone un método para mejorar 
la reducida visibilidad en imágenes laparoscópicas 
causada por la obstrucción visual debida al humo ge-
nerado por la combustión de los tejidos durante la 

cirugía. El método propuesto se basa en la combina-
ción de un método clásico de procesamiento, el DCP, 
y un método de inteligencia artificial, la cGAN. Este 
método es capaz de reducir la influencia del humo en 
la imagen de salida y recuperar la gama de colores 
similar a la imagen original, mostrando que un método 
híbrido puede incrementar el desempeño de otros mé-
todos. Esta combinación de técnicas ha mostrado tener 
un alto desempeño en la reconstrucción de las imáge-
nes objetivo, de acuerdo con las métricas PSNR e 
SSIM usadas en el presente trabajo.

Este artículo abre un nuevo panorama en la investi-
gación relacionada al mostrar que la mezcla de un 
método clásico con uno de inteligencia artificial puede 
superar los resultados de ambos aislados. Como tra-
bajo futuro, se espera mejorar el comportamiento de la 
cGAN al agregar una función de pérdida especialmente 
diseñada para la resolución del problema expuesto. 
Por otra parte, se plantea hacer una búsqueda exhaus-
tiva de los parámetros en el modelo de dispersión con 
el fin de ajustar la etapa de preprocesamiento en la 
entrada de la cGAN.
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