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Resumen

El descubrimiento y la sintesis de la insulina ha sido vitales en el estudio y el tratamiento de la diabetes mellitus. Desde los estu-
dios realizados por el Dr. Nicolae C. Paulescu en 1921 y sus descripciones de la pancreina, antes de los publicados por Banting
y Macleod, galardonados con el Premio Nobel en 1923, se han descubierto cada vez mds acciones metabdlicas y no metabdlicas
fundamentales para la vida, el crecimiento y el desarrollo de diferentes drganos y sistemas. En la actualidad, el estudio de esta
hormona se nutre con mds evidencia cientifica de su utilidad en blancos terapéuticos no metabdlicos. Diversos estudios en mo-
delos animales han demostrado su participacion en el desarrollo del sistema nervioso central, la regeneracion, la apoptosis neu-
ronal y la transmision sinaptica, asi como los efectos de su disregulacion en la fisiopatologia de enfermedades como la demencia.
En la actualidad, diferentes investigadores han demostrado la sintesis de insulina en el cerebro, los mecanismos por los cuales
atraviesa la barrera hematoencefdlica y como regula sistemas no metabdlicos ligados con la nueromodulacion. Este documento
trata de integrar estos hallazgos en un sistema insulinérgico cerebral y su posible traduccion en la prdctica clinica.
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Abstract

The discovery and synthesis of insulin has been vital in the study and treatment of diabetes mellitus. From the studies carried by
Dr. Nicolae C. Paulescu in 1921 and descriptions of the pancrein, before those published by Banting and Macleod, the Nobel Prize
winners in 1923, more metabolic and non-metabolic actions have been discovered and that are fundamental for life, growth and
development of different organs and systems. Diverse studies in animal models have shown the participation in the development of
the central nervous system, regeneration, neuronal apoptosis, and synaptic transmission, as well as the effects of its dysregulation
in the pathophysiology of diseases such as dementia. Different researchers have demonstrated the synthesis of insulin at the brain,
the mechanisms through which the blood-brain barrier crosses and how it regulates non-metabolic systems linked with the nuero-
modulation. This document to integrate these findings in the cerebral insulin circuit and the translation in clinical practice.
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M.J. Sdnchez-Zuhiga, et al.: Circuito insulinérgico cerebral

«No se puede entender la evolucion de la vida sin
la insulina.»
Martin de Jesus Sanchez Zuhiga, 2018

|ntroducci6n

Durante muchos afos prevalecié el concepto de
que la insulina no atravesaba la barrera hematoence-
falica, ni se sintetizaba en el tejido cerebral. Los pri-
meros reportes de Margolis y Altzuler demostraron en
modelos murinos y caninos la existencia de insulina
en el liquido cefalorraquideo, no obstante sin encon-
trar en ese momento una constante lineal ni alguna
correlaciéon con los niveles de insulina plasmatica.
Investigaciones posteriores de Banks y colaborado-
res, demostraron un mecanismo saturable de trans-
porté de insulina que permite el cruce de la barrera
hematoencefélica y que es independiente de los ni-
veles de glucosa plasmatica (la mayoria de la insulina
cruza la barrera hematoencefalica en condiciones de
normoglucemia)™. Investigaciones posteriores han
permitido demostrar que la insulina no solo cruza la
barrera hematoencefélica, sino que también es sinte-
tizada en regiones especificas de grupos neuronales
y que ademas cumple con funciones de sefalizacion
no metabdlica.

Este documento recopila de manera puntual la evi-
dencia cientifica y propone la existencia de un circuito
insulinérgico cerebral, que es fundamental para el
desarrollo del sistema nervioso central, y que sus
alteraciones pueden ser parte importante de la fisio-
patologia de enfermedades como la de Alzheimer®”.

Insulina cerebral

Los estudios de Dorn, et al.® demostraron la pre-
sencia de péptido C y proinsulina en diferentes zonas
del cerebro, concentrandose principalmente en el hi-
potalamo. Los estudios de Zhao, et al.®, marcando el
RNA mensajero de proinsulina 1, han mostrado que
el predominio de la expresion se encuentra en el hi-
pocampo, el bulbo olfatorio, el cértex piriforme y las
células de Purkinje del cortex cerebral. Otros estudios
han demostrado que solo un subgrupo de neuronas
son las encargadas de la sintesis de insulina, princi-
palmente en el hipocampo'®2,

El receptor de insulina (RI) no tiene una distribucion
uniforme en todo el cerebro. Las primeras investiga-
ciones de la presencia del Rl en el tejido cerebral
hechas con radiomarcadores en diferentes modelos
animales mostraron que la concentracion del Rl esta

limitada solo a algunos sitios especiales, como las
regiones circunventriculares, el hipotdlamo medial,
las regiones paravagales mediales, el plexo coroideo
y algunas regiones del sistema nervioso periférico™.

Estudios posteriores con RNA mensajero del Rl mos-
traron que las zonas con mayor densidad se distribuyen
en regiones del hipotdlamo, el cerebelo, las células
granulares del bulbo olfatorio, el giro dentado, las célu-
las piramidales, el cértex piriforme, el hipocampo, el
plexo coroideo y el nucleo arcuato del hipotalamo. Una
de las caracteristicas principales de la distribucion del
Rl es que no esté relacionado directamente con la den-
sidad celular ni con la mayor cantidad de flujo sangui-
neo, pero si es abundante en las regiones con alta
densidad de dendritas y sinapsis, por lo que es posible
que esta relacién tenga un importante papel en la ac-
tividad neuronal, fendémeno que es apoyado por los
hallazgos del alto contenido de las fracciones IRSp58
e IRSp53 del sustrato del receptor de insulina (SRI), asi
como otros sustratos similares a efectores tipo fosfati-
dilinositol 3 cinasa en las sinapsis del cerebelo, el cor-
tex cerebral y las neuronas del hipocampo'>2!,

El Rl es una proteina de la familia de los receptores
de cinasas, y aunque ambos RI (cerebral y periférico)
se comportan con la misma farmacologia y cinética,
existen diferencias en tamafio molecular, antigenici-
dad y composicion de hidratos de carbono, asi como
en la regulacion mediada por la insulina. Una de las
principales diferencias es el tipo de respuesta a la
cantidad de insulina: mientras que el receptor perifé-
rico responde con regulacion a la baja (con internali-
zacion y degradacion), el receptor cerebral se
mantiene constante.

El desarrollo embrionario del Rl y su distribucion en
sitios especificos del cerebro también estan relacio-
nados con los efectos de crecimiento, modulacion y
desarrollo cerebral. Los hallazgos han mostrado que
la densidad del Rl en la etapa fetal es diferente a la
de la etapa adulta. En estudios post mortem de fetos
humanos, y principalmente en modelos muridos, se
ha visto que la densidad del RI disminuye con la edad,
aunque al parecer esto se limita al bulbo olfatorio;
ademas, se han encontrado modificaciones en el ta-
mafo molecular de las subunidades alfa?2°,

La insulina y otras moléculas, como el factor de
crecimiento similar a la insulina tipo 1, desempefan
un papel importante en la sefializacion y el metabo-
lismo energético de las neuronas y de las células
gliales. La activacion del Rl media procesos molecu-
lares, la via de las MAP cinasas (proteasas activadas
por mitdgeno, MAPK en inglés) y la via del PI3k, que
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Figura 1. Acciones de la insulina en el cerebro.

entre otras acciones inhiben la apoptosis y fomentan
el crecimiento, la supervivencia celular, la expresion
genética, el ensamblaje del citoesqueleto, la forma-
cién de sinapsis, la transmision nerviosa y la plastici-
dad neuronal. La via de MAPK cumple funciones prin-
cipalmente de sefalizacion y activacion de
mecanismos de transcripcién genética, favoreciendo
el crecimiento y la reparacion neuronal. La modula-
cién de la via de PI3k participa, en las neuronas,
regulando la fosforilacién/desfosforilacion de la pro-
teina tau, mecanismo que es dependiente de la regu-
lacién de la actividad de la isoforma beta de la cinasa
de glucogeno sintasa (GSK3-b en inglés)30-33 (Fig. 1).

Tanto las acciones metabdlicas como las no meta-
bélicas de la interaccion de la insulina cerebral con su
receptor son parte fundamental en la regulacion de los
efectos energéticos derivados de la absorcion y el me-
tabolismo de la glucosa en las células neuronales y
gliales. Estos mecanismos dependen principalmente
de la regulacion de la insulina sobre sus transportado-
res GLUTS (transportadores de difusion facilitada por
hexosas), de los cuales los GLUTS 1y 3 son los méas
abundantes en el cerebelo, el hipocampo, el cortex, el
hipotalamo, el bulbo olfatorio, el giro dentado, la amig-
dala y el cértex olfatorio primario, a diferencia de los
GLUTS 4y 8, que se encuentran en menor cantidad y
limitados a algunos grupos neuronales y células glia-
les, particularmente distribuidos en las regiones apica-
les y proximales de los cuerpos celulares®3¢ (Tabla 1).

El GLUT-1 es el transportador de glucosa mas am-
pliamente distribuido en el ser humano; tiene una alta
expresion en tejidos fetales, como eritrocitos, células
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endoteliales, células nerviosas, placenta, linfocitos, ri-
fion, retina y tejido adiposo. Presenta una alta afinidad
por la glucosa, por lo que es capaz de transportar de
manera constante glucosa hacia el interior de la célula
de manera independiente de la cantidad de insulina y
de glucosa plasmatica, y por ello es de suma impor-
tancia en el tejido cerebral, donde su expresion se
mantiene de manera constante. Una de las caracteris-
ticas mas importantes es que GLUT 1 puede ser trans-
portador de otras moléculas, como galactosa, manosa
y glucosamina. Existen dos isoformas de GLUT 1: la
isoforma de 55 kDa se distribuye principalmente en
células endoteliales de la barrera hematoencefalica, la
membrana neuronal y los eritrocitos, y la segunda iso-
forma, de menor peso molecular, es casi exclusiva de
las células gliales. Las enfermedades derivadas de las
alteraciones o de la deficiencia de GLUT 1 se mani-
fiestan por graves alteraciones funcionales del sistema
nervioso central, como el sindrome de deficiencia de
GLUT 1, el cual se caracteriza por convulsiones, retra-
so en el desarrollo, trastorno complejo del movimiento
y cambios electroencefalograficos en el ayuno. Los
estudios de resonancia magnética de estos pacientes
muestran una grave disminucion en la captacion de
glucosa en la corteza cerebral®*-4.

El GLUT 3 también es un transportador de glucosa
de alta afinidad, que fue descubierto principalmente
en tejido cerebral. Su distribucidn se limita en tejido
fetal y adulto al musculo miocérdico y esquelético, al
higado, la placenta y el tejido cerebral. Su principal
caracteristica es que es un coagregado del GLUT 1,
ya que, al igual que este, tiene la funcidn de transporte
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Tabla 1. Transportadores de glucosa en el cerebro

Isoforma de Localizacién Grupo celular Regulacion

GLUTS

GLUT 1 Ubicuo y abundante Células gliales y endotelio Hipoglucemia e insulina

GLUT 2 Limitado a hipotalamo Neuronas, glia, tanicitos

GLUT 3 Abundante en cerebelo, cortex, hipocampo y cuerpo estriado Neuronas, glia y endotelio

GLUT 4 Solo en areas especiales del bulbo olfatorio, hipocampo (giro Neuronas y glia Glucosa e insulina
dentado), cerebelo e hipotdlamo

GLUT 8 Limitado a hipotalamo, cerebelo, giro dentado, amigdala y Neuronas: dendritas proximales Glucosa

cortex olfatorio primario

y cuerpos proximales

GLUTS: transportadores de glucosa.

constante de glucosa de manera independiente de las
concentraciones plasmaticas de glucosa y de insulina.
Se ha demostrado que la alteraciones en la expresion
de este transportador o las mutaciones en su gen
(SLC2A3, localizado en el cromosoma 12) se asocian
con alteraciones metabdlicas graves en la etapa neo-
natal, retraso psicomotriz y restriccién en el crecimien-
to intrauterino. Otros estudios han demostrado muta-
ciones en células tumorales y su mayor capacidad
metastasica, como en lineas celulares de tumores
testiculares. Las alteraciones del gen de este trans-
portador (mayor cantidad de copias) también se aso-
cian con la aparicion mas temprana de los sintomas
de la enfermedad de Huntington*2¢,

El GLUT 8 comparte con el GLUT 3 la alta afinidad
por la glucosa. Se ha encontrado de manera predomi-
nante en células testiculares, blastocitos, cerebelo e
hipocampo, y en menor cantidad en bazo, préstata, hi-
gado, corazén y musculo esquelético. La capacidad de
transporte de la glucosa también es independiente de
la cantidad de glucosa plasmatica y es regulada direc-
tamente por el estimulo insulinérgico. Por el momento
se ha demostrado sobreexpresion del gen que lo codi-
fica (SLC2A8) en la enfermedad de Alzheimer*“¢,

Propuesta del circuito insulinérgico
cerebral

De acuerdo con la descripcion de la evidencia cien-
tifica, puede establecerse, al menos de manera teé-
rica, la existencia de un circuito insulinérgico cerebral.
Este puede describirse, segun su cinética, con los
siguientes puntos importantes (Fig. 2):

— Lainsulina plasmatica atraviesa la barrera hema-
toencefalica a través de un sistema saturable de
poros entre las células endoteliales (espacios de
Virchow-Robin) y los plexos coroideos (modelo
tradicional de efecto paracrino).

La insulina también es sintetizada en grupos ce-
lulares de zonas especificas del cerebro, el cor-
tex frontal, el bulbo olfatorio, el cerebelo, el hipo-
campo y las células de Purkinje, e interactua con
su receptor a través de una via autocrina (modelo
no tradicional de efecto autocrino).

La insulina cerebral, de cualquiera de sus orige-
nes, interactda con su receptor, el cual tiene una
densidad de distribucion en sitios especificos del
cerebro, como las regiones circunventriculares,
el hipotdlamo medial, las regiones paravagales
mediales, el plexo coroideo, el bulbo olfatorio, el
giro dentado, las células piramidales, el nucleo
arcuato del hipotalamo y algunas regiones del
sistema nervioso periférico.

La accidn de la insulina con su receptor, a través
de la fosforilacion de residuos de tirosina, des-
encadena sefalizaciones principalmente en dos
vias: la via de MAPK, que se encarga principal-
mente de sefializacion, traduccion y sefalizacion
genética, y la via de la PKB/Akt (phosphoinositi-
de-3-kinase-protein kinase B/Akt), que se encar-
ga de las acciones metabdlicas y de sefalizacion
secundaria no metabdlicas.

La fosforilacion y la activacion de la via de PKB/
Akt se encarga de la regulacion y el control de
cinasas como la GSK3, que dentro de sus acti-
vidades secundarias regula la fosforilacién/des-
fosforilacion de la proteina tau®.

La sefializacion y regulacion mediada por PKB/
Akt también regula la actividad de AS160 (sus-
trato de Akt de 160 kDa) y Rab (GTPasa mo-
nomérica de la subfamilia Rab de proteinas rela-
cionadas con Ras), encargados de la activacion
y la translocacion de transportadores de glucosa
(GLUTS 1, 3, 4 y 8) que se encuentran distribui-
dos en sitios especificos del cerebro.
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Figura 2. Circuito insulinérgico cerebral (véase el texto para explicacion). AMPA: amino-hidroxi-metil-isoxazol-dcido-propionico; GLUT: trans-
portadores de glucosa; GSKb: cinasa de glucégeno 3b; MEK/MAP: complejo de proteinas cinasas activadas por mitégeno; NMDA: N-metil-D-
aspartato; PI3/AKT: complejo fosfatidilinositol 3 cinasa; Rl: receptor de insulina; Shc: proteina transductora tipo 1; SRI: sustrato del receptor de
insulina.

— Laalta sensibilidad de los GLUTS especificos, como — Las insulinasas endosomales se encargan de la

el 1y el 3, permiten la entrada constante de glucosa
al cerebro (independientemente de las concentra-
ciones plasmaticas de glucosa y de insulina), lo que
mantiene una constante fuente energética para la
funcion mitocondrial, antiinflamatoria, antiapoptosis,
neuromodulacion, crecimiento, proliferacion, sefali-
zacion sinaptica, estrés oxidativo, etcétera.

degradacion de la insulina. El Rl es reciclado
para su nueva translocacion a la membrana plas-
matica. En condiciones de resistencia a la insu-
lina, con sistema saturable e hiperinsulinemia
(diabetes tipo 2 y sindrome metabdlico), el Rl es
transportado a los lisosomas para su degrada-
cién, regulando a la baja su disponibilidad,
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mecanismo que desempefa un papel importante
en la resistencia a la accion de la insulina®.

Integracion fisiopatolégica

El término de diabetes mellitus tipo 3, acufado re-
cientemente por varios investigadores, podria ser ex-
plicado por el mecanismo de desregulacion de la
sefalizacion mediada por la insulina en este circuito
insulinérgico cerebral, que se traduce en la hiperfos-
forilacién de proteinas esenciales en la neurotransmi-
sion sinaptica, que se manifiestan clinicamente como
deterioro cognitivo.

De acuerdo con los hallazgos histopatoldgicos en
modelos animales, cerebros humanos in vivo y cere-
bros post mortem, existen indicios que apoyan que
las alteraciones en la sefalizacion de la insulina en
el cerebro participan en la aparicion de los principales
fendmenos patoldgicos observados en la enfermedad
de Alzheimer, como el depdsito de beta-amiloide (BA),
la hiperfosforilacidn de la proteina tau, la inflamacion
y el aumento de biomarcadores plasmaticos y de li-
quido cefalorraquideo. La resistencia a la insulina es
parte fundamental de estos mecanismos, ya sea por
la misma regulacién a la baja de los Rl o por la so-
bresaturacion de las enzimas degradadoras de insu-
lina (insulinasas), que comparten un mecanismo de
accion secundario en la eliminaciéon de los péptidos
BA que son generados por la accion de las secreta-
sas especificas que degradan a estos péptidos.

El bloqueo del Rl facilita la fosforilacion de residuos
de serina de los sitios de union SRI-1-4 (normalmente
de fosforilacion de residuos de tirosina). Este desequi-
librio bloquea la sefializaciéon de las dos principales
vias de respuesta a la accion de insulina. Por un lado,
la que es mediada por MAPK, que entre otras acciones
regula la actividad de otras cinasas, proteinas y protei-
nasas que se encargan de la regulacion y la elimina-
cién de productos téxicos, incluyendo la depuracion de
los péptidos de BA. Por otro lado, al evitar la activacion
de la PI3k, se pierde la regulacién negativa de cinasas
como GSKB3b y las cinasa tau-tubulina (TauK) y KDc2
y 5 (cinasas similares a las ciclinas 2 y 5), que normal-
mente controlan la fosforilacion de la proteina tau.

Este desequilibrio en la regulacion de la fosforilacién/
desfosforilacion facilita la agregacion de tau en racimos
u ovillos neurofibrilares (formados por proteina tau hiper-
fosforilada), alterando la estructura microtubular y blo-
queando la transmision axonal y sinaptica, lo que limita
la disponibilidad de neurotransmisores, de vesiculas pre-
sinapticas como sinaptofisina, acuimulo de BA vy

regulacion a la baja de los receptores postsinapticos
como NMDA (N-metil-D-aspartato) y AMPA (amino-hi-
droxi-metil-isoxazol-acido propidnico). Ademas, el blo-
queo de la sefializacion de insulina limita la expresion
de los transportadores transmembrana de glucosa
(GLUT), que limitan la entrada de glucosa para el meta-
bolismo y la funcién energética mitocondrial que genera
mayor estrés oxidativo, inflamacion y apoptosis®'.

Conclusiones

Hasta el momento existe evidencia cientifica que de-
muestra que la insulina desempefa un papel preponde-
rante en la neuromodulacién, y no solo desde la embrio-
génesis fomentando el crecimiento y el desarrollo del
sistema nervioso central, sino también como un impor-
tante neuromodulador de respuestas no metabdlicas en
la etapa adulta, principalmente asociadas con la transmi-
sién sinaptica, la apoptosis cerebral, la regeneracion neu-
ronal, la inflamacion, el estrés oxidativo, etcétera. Tam-
bién existe cada vez mas evidencia de que esta hormona
puede ser sintetizada en grupos especificos de células
neuronales, asi como de la capacidad de atravesar la
barrera hematoencefélica, y de que al interactuar con su
receptor, el cual se encuentra distribuido solo en algunas
zonas especiales del cerebro, modula una serie de res-
puestas no metabdlicas que estan involucradas en el
funcionamiento adecuado de la transmision sinaptica.
Probablemente el méas claro ejemplo de esta disfuncion
sea la desregulacion de la via de fosforilacion/desfosfo-
rilacién de la proteina tau y la formacién de ovillos neu-
rofibrilares, como uno de los principales hallazgos fisio-
patoldgicos de la enfermedad de Alzheimerse!,
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