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ENERO-JUNIO 2015 DISEÑO RACIONAL A CORTANTE DE TRABES
ACARTELADAS DE CONCRETO REFORZADO

RESUMEN
A Mörsch (1909) se le atribuye la primera fórmula desarrollada a partir de la teoría de vigas para cuantificar la demanda 
de cortante en trabes acarteladas  de concreto reforzado (TACR). Su ecuación es la base de varios métodos seccionales 
que ignoran la interacción flexión-cortante. Las TACR también se pueden diseñar con campos de esfuerzo y modelos de 
armadura. Estas técnicas permiten diseñar tramos de elemento en los que se toma en cuenta dicha interacción. Dilger 
y Langohr (1997) desarrollaron un método de diseño por secciones para trabes de sección variable sustentado en un 
modelo de armadura. Con base en sus resultados, concluyeron que los métodos afines a la teoría de vigas son insegu-
ros. En este trabajo se presenta un método de diseño a cortante para TACR basado en campos de esfuerzo y modelos 
de armadura, que demuestra que los  métodos  basados  en  la  teoría  de  vigas  también  son  seguros.  La  propuesta  
incorpora definiciones racionales para la sección crítica por cortante, la esbeltez y las regiones B-D.

Palabras  clave:  cortante,  cartelas,  campos  de  esfuerzo,  modelos  de  armadura,  modelo  de puntales y tensores, 
esbeltez, regiones B-D.

 
ABSTRACT
Several equations to estimate the shear force in reinforced concrete haunched beams (RCHB) have been proposed after 
Mörsch (1909). Some of these equations agree with the classical beam theory while others rely on stress fields and truss 
models (strut-and-tie models). In contrast with the shear-design approaches based upon stress fields and truss models, 
the shear design supported on the beam theory is not capable to explain the shear-flexure interaction. Dilger and Langohr 
(1997) proposed a sectional shear method for prestressed RCHB supported on a truss model. They concluded that the 
beam theory is unsafe for nonprismatic elements. A sectional shear design method for RCHB supported on stress fields 
and truss models is proposed in this paper. It is confirmed with the proposed method that shear designs made with the 
sectional beam theory approach are also safe. The proposed design method is based upon rational definitions for the 
shear critical section, the beam slenderness and B-D regions.

Keywords: shear, haunched beams, tapered, stress fields, truss models, strut and tie models, beam slenderness, 
B-D regions.

RESUMO
Atribuímos a Mörsch (1909) a primeira fórmula desenvolvida a partir da teoria de vigas para quantificar a demanda de 
cortes em vigas aquarteladas de concreto armado (TACR). Sua equação é base de vários métodos seccionais que ignoram 
a interação flexão-cortante. As TACR também podem ser projetadas com campos de tensão e modelos de armadura. 
Estas técnicas permitem projetar frações de elementos no qual tomamos em conta essa interação. Dilger e Langohr 
(1997) desenvolveram um método de projeto por seções para vigas de seção variável suportado por um modelo de 
armadura. Com base em seus resultados, concluíram que os métodos relacionados com a teoria de vigas são inseguros. 
Neste trabalho apresentamos um método de projeto de corte para TACR baseado em campos de atuação e modelos 
de armadura, que demonstra que os métodos baseados na teoria de vigas também são seguros. A proposta incorpora 
definições racionais para a seção crítica por cortante, a esbelteza e as regiões B-D.

Palavras chave: cortante, quartelas, campos de atuação, modelos de armadura, modelo de pontais e tensores, es-
belteza, regiões B-D.
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1. INTRODUCCIÓN
Las trabes acarteladas de concreto reforzado (TACR) se distinguen de las prismáticas porque tienen una variación sua-
ve del peralte en toda o parte de su longitud. Aunque esto implica dificultades constructivas, la variación juiciosa del 
peralte proporciona beneficios estructurales. Por  ejemplo, Mörsch (1909) demostró  que al aumentar gradualmente 
el  peralte  de  una  trabe continua en la proximidad de los apoyos, mejora la resistencia a cortante debido a (Fig. 1): i) el 
incremento de la sección transversal y, ii) la capacidad del bloque de concreto inclinado de resistir cortante.

Fig. 1: Análisis del bloque compresión inclinado de la cartela (Mörsch 1952).

En México existen edificios de mediana altura que tienen TACR (Fig. 2a). También hay puentes y viaductos con 
estos elementos (Fig. 2b). A pesar de ello, la normatividad vigente en México no tiene recomendaciones específicas 
para su diseño (NTCC-04), y tampoco existen en el reglamento de construcción extranjero más usado en el país 
(ACI-318-11). En el reglamento canadiense (CSA-04) se proporciona una instrucción general para el diseño a cortante 
de TACR que, a juicio de los autores, no garantiza un diseño racional.

		

		         	a) Edificios	                           b) Puentes y viaductos

Fig. 2: Trabes acarteladas de concreto reforzado en México.

Para el diseño por cortante de TACR, algunos autores recomiendan métodos seccionales desarrollados a partir de 
la teoría de vigas, pero adaptados al criterio del reglamento ACI-318 para trabes de sección constante, según el cual la 
contribución del concreto se incluye en el cálculo de la resistencia (Park y Paulay 1975, Ferguson et al., 1988, MacGregor 
1997, Nilson 1999). Por otra parte, Nielsen (1999) también propone un método seccional, pero obtenido a partir 
de campos de esfuerzo que ignoran la contribución del concreto. Todos estos autores consideran que el agrietamiento 
diagonal de las TACR es similar al de las trabes de sección constante. Sin embargo, la evidencia experimental muestra 
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que el agrietamiento diagonal de las TACR es más extendido que el de las prismáticas (Mörsch 1952, Debaiky y 
El-Niema 1982, Stefanou 1983, El-Niema 1988, MacLeod y Houmsi 1994, Tena-Colunga et al., 2008, Rombach y Nghiep 
2011, Pérez Caldentey et al., 2012, Archundia-Aranda et al., 2013).

Existen otras opciones para el diseño a cortante de TACR. Por ejemplo, en Alemania los reglamentos de construcción 
tradicionalmente incluyen recomendaciones específicas para TACR (Maurial 2007), así como en los reglamentos suizos 
(por ejemplo, Grob y Thürlimann 1976). Esto explica por qué el reglamento de construcción unificado de Europa tiene 
recomendaciones específicas para TACR (Eurocode 2 1992 y 2004). Lo mismo se puede decir del reglamento modelo 
del Comité Euro-Internacional para el Concreto (CEB-FIP 1990), donde se presentó un modelo de armadura cualitativo 
para trabes acarteladas (Fig. 3). Esta situación difiere a la del reglamento ACI-318, pues ni en su apéndice A, ni en la 
literatura donde se difunde el método de puntales y tensores que adoptó desde el año 2002, se dispone de un ejemplo o 
guía de diseño para TACR (Subcommittee 445-1, 2002 y PCA Notes 2008).

Fig. 3: Modelo de armadura para trabes acarteladas recomendado en el CEB-FIP (1990).

2. MODELOS DE ARMADURA Y CONTRIBUCIÓN DEL CONCRETO
La bondad de los modelos de armadura (puntales y tensores) para el diseño de trabes de sección constante está 
bien documentada (Marti 1985/a/b, Schlaich et al., 1987, MacGregor 1997, Alcocer 1998, Nielsen 1999). Los 
primeros modelos de armadura fueron propuestos de manera independiente por Ritter (1899) y Mörsch (1909). 
A estos modelos se les conoce como armadura clásica, y consideran que el agrietamiento diagonal tiene una 
inclinación q = 45˚a cierta distancia de las cargas y reacciones. En general, un diseño por cortante con la arma-
dura clásica no es económico, ya que: i) la inclinación supuesta q = 45˚ es conservadora y, ii) Mörsch privilegió 
la seguridad estructural sobre la economía y desestimó la contribución del concreto, en lo que llamó “seguridad 
total al desgarramiento” (Mörsch 1952).

Con el desarrollo de la teoría de la plasticidad del concreto se generalizó el modelo de armadura, lo que permitió 
justificar ángulos de agrietamiento diferentes a q = 45˚ e incluir la interacción flexión-cortante en el análisis (Nielsen 
et al., 1978, Thürlimann 1979). Con ello se le dio una mejor explicación al mecanismo resistente a cortante, y se obtu-
vieron mejores predicciones al comparar contra resultados experimentales. Este modelo se desarrolló en Europa, y se 
le conoce como armadura plástica de ángulo variable.

Para corregir el conservadurismo de la armadura clásica, el Instituto Americano del Concreto (ACI) adoptó un diseño 
por secciones que desacopla la interacción flexión-cortante. El método utiliza una ecuación desarrollada a partir de la 
armadura clásica (contribución del acero de refuerzo transversal), y se complementa con la resistencia a tensión diagonal 
del concreto (contribución del concreto). Los argumentos que justifican a la contribución del concreto son (Committee 
326, 1962a/b, Committee 426, 1973): i) una viga de concreto reforzado sin refuerzo transversal resiste cierto nivel de 
fuerza cortante antes de fallar y, ii) el refuerzo por cortante sólo es efectivo después del agrietamiento diagonal. Es 
importante señalar que incluir la contribución del concreto en el diseño por cortante es una práctica estadounidense 
que se le puede atribuir a Talbot (1909).

A pesar de que la contribución del concreto se usa sin cuestionamientos, la realidad es que no existe acuerdo sobre 
el mecanismo resistente que la justifica. Por ejemplo, la propuesta original del reglamento ACI-318 para vigas esbeltas 
privilegia la resistencia que aporta el bloque en compresión no agrietado (Committee 326 1962 a/b, Committee 426 
1973). Varios investigadores defienden la importancia del bloque comprimido en la resistencia a cortante (Kotsovos 
1988, Kim y White 1991, Zararis y Papadakis 2001, Tureyen y Frosch 2003).
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Por otra parte, existen investigadores convencidos de que la fricción en la entrecara del agrietamiento diagonal es la 
fuente de la resistencia a cortante (Vecchio y Collins 1986, Reineck 1991, Muttoni y Fernández Ruiz 2008). En general, 
sus propuestas hacen uso de la resistencia a tensión del concreto, aun cuando algunos investigadores sostienen que es 
inseguro usarla (Braestrup 1981, Muttoni et al., 1997). Otros investigadores prefieren dejar al criterio y responsabilidad 
del ingeniero el uso de la contribución del concreto (Schlaich et al., 1987 y Nielsen 1999). Es evidente que existe una 
variedad de opiniones sobre la contribución del concreto, por lo que preferir alguna en especial depende de la formación 
de cada ingeniero, o de la confianza que se tenga en los investigadores que las emiten.

3. CRITERIO DE DISEÑO ADOPTADO
La  primera  fórmula  de  diseño  por  cortante  para  TACR  se  le  atribuye  a  Mörsch  (1909),  y cuantifica la de-
manda de esfuerzo cortante en cualquier sección de la cartela (vTA). Esta fórmula se muestra en la Ecuación 1, donde 
V es el cortante estático en la sección, M el momento flexionante, d el peralte efectivo, b el ancho y a el ángulo de 
acartelamiento. El signo negativo del numerador aplica cuando el diagrama de momento y el peralte de la cartela  
crecen en la misma dirección, que es el trabajo óptimo de la cartela (Fig. 4). El canto  acartelado debe trabajar en 
compresión para aprovechar al máximo las ventajas de la geometría (Mörsch 1952). La Ecuación 1 es representativa 
de la teoría de vigas.

Fig. 4: Interacción peralte-diagrama de momento.

												                      (1)

Tradicionalmente, en las propuestas de diseño para TACR basadas en la teoría de vigas, se ha focalizado  el  efecto  
del  acartelamiento  en  la  contribución  del  concreto  (Regan  y Yu 1973, Debaiky y El-Niema 1982, Stefanou 1983, 
El-Niema 1988, MacLeod y Houmsi 1994, Tena- Colunga et al., 2008, Nghiep 2009). Por otra parte, en las propuestas 
que usan campos de esfuerzo o modelos de armadura plástica, el acero de refuerzo transversal se diseña para resistir 
toda la demanda de cortante (Marti 1985 a, Muttoni et al., 1997).

Ante este panorama, es importante decidir cómo hacer el diseño por cortante en TACR, es decir: optar por uno 
seccional o uno de elemento completo y, además, considerar o no la contribución del concreto. Para la elaboración de 
este trabajo se decidió: i) diseñar el acero de refuerzo transversal con ecuaciones desarrolladas a partir de campos 
de esfuerzo y modelos de armadura y, ii) complementar la resistencia con una contribución de concreto sustentada en 
un modelo de armadura realista. Se optó por modelos de armadura, pues al ser una solución del límite inferior de la teoría 
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de la plasticidad, se obtienen diseños conservadores. También, porque su aceptación como herramienta de diseño está 
creciendo, por lo que serán incorporados en la próxima versión de las Normas Técnicas Complementarias para el Diseño 
y Construcción de Estructuras de Concreto (González 2013).

 Finalmente, el efecto del acartelamiento se involucró explícitamente en la contribución del acero de refuerzo trans-
versal y en la contribución del concreto. Como se demuestra más adelante, el acartelamiento influye tanto en el estado 
no agrietado como en el agrietado.

4. IDENTIFICACIÓN DE REGIONES B-D
De acuerdo con Schlaich et al.,  (1987), el diseño de un elemento de concreto reforzado debe ser función de una clasifi-
cación que depende de la uniformidad de las trayectorias de los esfuerzos principales elásticos (Fig. 5a). En las regiones 
donde las trayectorias son regulares, es válida la teoría de vigas y se llaman regiones B (Bernoulli). Las regiones donde 
las trayectorias son irregulares son regiones D (disturbio/discontinuidad). Las regiones D tienen una extensión de un 
peralte efectivo a cada lado de una irregularidad geométrica (cambio de sección, huecos) o de carga (apoyos, carga 
puntual). Toda región B está delimitada por regiones D, y existen elementos sin regiones B, como lo son las trabes 
peraltadas y muros que trabajan a cortante. Es común que las ecuaciones de diseño para vigas del cuerpo principal de 
los reglamentos de construcción apliquen sólo en regiones B.

	 a) Prismáticas (Schlaich et al., 1987)		                      b) Acarteladas (Beton Kalender 2001) 

Fig. 5: Regiones B-D en trabes de concreto reforzado.

Es importante identificar correctamente las regiones B-D para aplicar métodos de análisis o diseño especializados 
para una u otra región. En el caso de las trabes acartelas, se debe investigar si el peralte variable no impide la formación 
de una región B. En el manual Beton Kalender (2001) se presentó una clasificación de regiones B-D para TACR, donde 
la extensión de las regiones D es igual al peralte efectivo máximo de la cartela (Fig. 5b). Esta propuesta difiere de las 
instrucciones genéricas de Schlaich et al., (1987) mostradas en la Fig. 6.

Fig. 6: Región D en trabes de sección variable según Schlaich et al., (1987). 
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Fig. 7: Geometría de los modelos de elemento finito usados en este estudio.

Para clasificar las cartelas en regiones B-D se hicieron análisis con elementos finitos elásticos en un programa de cómputo 
comercial. En el estudio se incluyeron trabes prismáticas y acarteladas comparables (Fig.7). La geometría de los modelos 
cubre razonablemente: i) las proporciones observadas o recomendadas para trabes acarteladas de puentes y edificios y, ii) el 
Valle de Kani (Fig. 17a). Para facilitar las comparaciones, el peralte de las trabes prismáticas es del mismo tamaño del peralte 
máximo de las cartelas, por lo que sólo se varió la longitud del claro de cortante para cubrir el Valle de Kani ( 2 ≤ a/dmax ≤ 6 ). 
Las cartelas se dispusieron para que  el canto acartelado trabajara en compresión, y que el diagrama de momentos y el peralte 
crecieran en el mismo sentido. Los modelos de elemento finito se calibraron con soluciones conocidas de la Mecánica de 
Materiales, en particular, en las trabes acarteladas se utilizaron las  ecuaciones de Oden y Ripperger (1981).

a) Trabe prismática (según Schlaich et al., 1987).

 

b) Trabe acartelada (según Schlaich et al., 1987).

 

c) Trabe acartelada (según el Beton Kalender 2001).

Fig. 8: Identificación de las regiones B-D en trabes acarteladas (contornos de esfuerzo cortante). 
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Como se comentó con anterioridad, la identificación de las regiones B-D depende de las trayectorias de los esfuerzos 
principales elásticos. Sin embargo, para la condición de carga y apoyo de los modelos estudiados, se observó que los 
contornos de esfuerzo cortante son una mejor herramienta para hacer dicha clasificación (Fig. 8). Al final, los contor-
nos de esfuerzo cortante respaldaron la clasificación de las regiones B-D propuesta en el Beton Kalender (2001). Los 
detalles de esta clasificación se presentan en Archundia (2013).

 
5. LA PROPUESTA DE DILGER Y LANGOHR
Dilger y Langohr (1997) desarrollaron ecuaciones a partir de un modelo de armadura plástica para revisar las trabes 
acarteladas presforzadas del Puente Confederación (Fig. 9a). Su mayor aportación fue demostrar que el agrietamiento 
diagonal disminuye la resistencia a cortante que aporta el bloque de compresión inclinado.

	            a) Modelo de armadura			                                 b) Comparación contra la teoría de vigas

Fig. 9: Solución de Dilger y Langohr (1997). Modificada.

Con base en su trabajo, Dilger y Langohr (1997) concluyeron que el diseño por cortante en TACR que se sustenta en 
la teoría de vigas es inseguro. Su postura fue respaldada con la Ecuación 2, la cual mide el “error” de un diseño seccional 
hecho con la teoría de vigas, respecto a uno  seccional  hecho  con  una  armadura  plástica. En la Ecuación  2, q es el  
ángulo  del agrietamiento diagonal y a el ángulo de acartelamiento. La evaluación de la Ecuación 2 con valores típicos 
se muestra en la Fig. 9b.  La aseveración de Dilger y Langorh (1997) es preocupante; sin embargo, como se demuestra 
en secciones siguientes, algunas consideraciones erróneas los condujeron a ese juicio equivocado.

 

												                       (2)

6. CONTRIBUCIÓN DEL ACERO DE REFUERZO TRANSVERSAL
En la Fig. 10 se presenta un modelo de armadura plástica para una trabe acartelada, donde M y V son, respectivamente, 
las demandas de momento y cortante en una sección de interés. Estas demandas se descomponen en las fuerzas indi-
cadas al otro lado del corte (T, C y Vef). Los elementos de armadura que trabajan en compresión están representados con 
línea discontinua. El modelo se construyó para que la cartela trabaje de manera óptima (Fig. 4), y sólo es válido en un 
campo de compresión diagonal con inclinación constante q, es decir, una región B.  Para satisfacer las hipótesis del 
modelo de armadura plástica, el equilibrio se estudió en la  sección donde el peralte efectivo es dividido, en dos partes 
iguales, por el puntal que cruza diagonalmente cada tablero de armadura. De esta forma, las componentes ortogona-
les del campo de compresión diagonal actúan en d/2 como se muestra en la Fig. 10. En dicha figura se identifican las 
fuerzas longitudinales que resisten la demanda de momento, y las que se generan por cortante: la tensión de la cuerda 
horizontal (T), y la componente horizontal de la cuerda inclinada comprimida (C). El valor de la componente vertical 
de la cuerda inclinada es C tan a , y participa en el mecanismo resistente a cortante.
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El puntal inclinado que cruza el tablero de armadura también se descompone en dos fuerzas ortogonales:

a) Una componente vertical (Vef), que es la demanda de cortante contra la que se debe diseñar el acero de refuerzo 
transversal. En trabes de sección constante esta fuerza tiene el mismo valor del cortante, por lo que suele identificarse 
con la letra “V ”. Sin embargo, en trabes acarteladas esto no sucede, por lo que es común llamarla cortante efectivo 
(Vef). Este término fue usado por Park y Paulay (1975) en su análisis de trabes acarteladas.

b) Una componente horizontal con valor Vef / tan q.
 
Del equilibrio del sistema de fuerzas mostrado en la Fig. 10, se obtienen las Ecuaciones 3 a 5.

Fig. 10: Modelo de armadura plástica para la región B de una trabe acartelada.

												                       (3)

												          

												                       (4)

												                       (5)

Se puede demostrar que la solución de las Ecuaciones 3 a 5 conduce a la demanda de cortante efectivo mostrada 
en la Ecuación 6. Esta solución también se obtiene con la propuesta de Dilger y Langohr (1997) cuando se eliminan 
los términos que incluyen el preesfuerzo y carga axial. De acuerdo con la Ecuación 6, la demanda de cortante efecti-
vo es mayor de la que predice la teoría de vigas (Ec. 7). La solución completa incluye la demanda en las cuerdas de 
tensión y compresión (Ecs. 8 y 9, respectivamente). Dilger y Langohr (1997) presentaron fórmulas parecidas a las 
Ecuaciones 8 y 9 pero, en ausencia de preesfuerzo y carga axial, ambas son idénticas a la Ecuación 9. Finalmente, si 
en las Ecuaciones 6, 8 y 9 el ángulo de acartelamiento es nulo, se obtiene la solución para trabes de sección constante 
(por ejemplo, MacGregor 1997).



IN
V

E
S

T
IG

A
C

IÓ
N

 Y
 D

E
S

A
R

R
O

L
LO

10

C
O

N
C

R
E

T
O

 Y
 C

E
M

E
N

T
O

. 

ENERO-JUNIO 2015 DISEÑO RACIONAL A CORTANTE DE TRABES
ACARTELADAS DE CONCRETO REFORZADO

												                       (6)

												                       (7)

												                       (8)

												                       (9)

En un diseño con modelos de armadura no sólo importa conocer la demanda, sino también cómo se distribuye en 
el elemento. Esto es importante, pues una de las principales discrepancias entre las propuestas de diseño para TACR, 
es la extensión en la que se colocan los estribos. Con base en los campos de esfuerzo que se desarrollan en la región 
B, el agrietamiento diagonal de una trabe con sección constante tiene la proyección horizontal mostrada en la Fig. 11a. 
Dentro de esta longitud se deben distribuir uniformemente los estribos que resisten la demanda de cortante. Si se aplica 
el mismo principio en trabes acarteladas, la proyección horizontal del agrietamiento diagonal es la mostrada en la Fig. 11b. 
Estos campos de esfuerzo explican por qué que el agrietamiento diagonal de las TACR es más extenso que el de las 
prismáticas. La situación ya había sido advertida geométricamente por Regan y Yu (1973). Posteriormente, MacLeod 
y Houmsi (1994) y Tena-Colunga et al., (2008) atendieron esta particularidad de forma diferente a la mostrada en la 
Fig. 11b. Por comparación, en algunas propuestas de diseño para TACR se considera una extensión del agrietamiento 
diagonal similar al de las trabes de sección constante. Por ejemplo, está implícita en los libros de texto mencionados con 
anterioridad, y explícita en algunos trabajos experimentales (Debaiky y El-Niema 1982, El-Niema 1988)  y analíticos 
(Dilger y Langohr 1997).

			  a) Trabe prismática	 b) Trabe acartelada

Fig. 11: Campo de compresión diagonal en la región B.
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												                    (10)

												                     (11)

Con base en el desarrollo presentado, se propone diseñar el acero de refuerzo transversal de la región B de 
las TACR (VsTA) con las Ecuaciones 10 y 11, donde la mayoría de los términos ya han sido descritos, salvo 
Av que es el área de las ramas de los estribos, fyw su esfuerzo de fluencia y s la separación entre ellos. Vale la 
pena enfatizar que: i) un diseño riguroso con modelos de armadura exige que el acero de refuerzo transversal 
(VsTA) resista toda la demanda de cortante que, en este caso, es el cortante efectivo (Vef) y, ii) en la Ecuación 11 
el signo negativo del numerador aplica cuando el peralte y el diagrama de momentos crecen en la misma di-
rección (Fig. 4).

												                     (12)

												                     (13)

Es común comparar el nivel de esfuerzo en el campo de compresión diagonal (fD) contra la resistencia efectiva 
del concreto ( uf´c ). La demanda en el campo de compresión diagonal se conoce al resolver los sistemas mostrados 
en la Fig. 11, al hacerlo se obtienen las Ecuaciones 12 (trabe prismática) y 13 (trabe acartelada), donde b es el ancho 
del elemento. Dilger y Langohr (1997) presentaron una fórmula más compleja que la Ecuación 13, pero tiene un 
error algebraico pues omitieron el peralte efectivo en su desarrollo. El valor del factor de eficiencia (u) depende de 
muchas particularidades; en general, en las recomendaciones de diseño se sitúa en el intervalo 0.6 ≤ u ≤ 0.85 . Sin 
embargo, en Archundia (2013) se demuestra que la falla por cortante puede estar asociada a factores de eficiencia 
menores a u = 0.6 .

7. NIVEL DE SEGURIDAD A CORTANTE DE LA TEORÍA DE VIGAS
Dilger y Langohr (1997) cuestionaron el nivel de seguridad del diseño a cortante que ofrece la teoría de vigas (Ec. 2  y 
Fig. 9b). Sin embargo, su juicio se sustenta en una comparación incompleta, pues el error que cuantificaron sólo aplica 
al cálculo del cortante efectivo. Una comparación justa también debe incluir la extensión del agrietamiento diagonal. 
De esta forma se combinan aspectos de la demanda y de la resistencia. La comparación que se propone en este trabajo 
involucra los tres casos siguientes:

• Caso 1: Cortante efectivo según la teoría de vigas, con una extensión del agrietamiento diagonal igual al de las  
trabes prismáticas (Ec. 14). Este  caso  representa las recomendaciones disponibles en los libros de texto.
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 												                     (14)

 
• Caso 2: Cortante efectivo obtenido de un modelo de armadura, con una extensión  del agrietamiento diagonal igual 

al de las trabes prismáticas (Ec. 15). Este caso representa el método de Dilger y Langohr (1997).

												                     (15)

• Caso 3: Cortante efectivo obtenido de un modelo de armadura, con una extensión  del agrietamiento realista 
(Ec. 16). Este caso representa el método recomendado en este trabajo.

												                     (16)

De los tres casos, el de la teoría de vigas es el de mayor difusión debido a los libros de texto y es el que Dilger y 
Langohr (1997) cuestionaron. Por lo tanto, a un diseño hecho con este criterio se le  asigna  un  factor  de  seguridad  
unitario (F.S. =1). Esta  situación  está  representada  en  la Ecuación 17, la cual se obtiene de una manipulación 
sencilla de la Ecuación 14. Un arreglo conveniente de las Ecuaciones 15 y 16 permite comparar directamente el nivel 
de seguridad que ofrece el diseño por cortante con la teoría de vigas, contra la propuesta de Dilger y Langohr (1997) y 
la de los autores (Ecuaciones 18 y 19, respectivamente).

 

												                      (17)

												                     (18)

 

 

												                     (19)
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Fig. 12: Comparación del nivel de seguridad a cortante en TACR que ofrece 
la teoría de vigas sin incluir la contribución del concreto.

La Ecuación 18 es el recíproco de la Ecuación 2, y es consistente con el juicio equivocado de Dilger y Langohr (1997) 
comentado con anterioridad. En la Fig. 12 se muestran los factores de seguridad que se obtienen con la Ecuación 19 con 
valores típicos de a y  q. Son de interés los que se obtienen con  q = 45˚, pues es el ángulo implícito en los métodos de 
diseño para trabes prismáticas y acarteladas basados en la teoría de vigas, y es la solución menos favorable al comparar 
contra el modelo de armadura plástica. De acuerdo con los resultados obtenidos, el diseño de TACR sustentado en 
la teoría de vigas es seguro (F.S. ≥1), aun cuando omite una extensión realista del agrietamiento diagonal, e ignora 
la interacción flexión-cortante que toma en cuenta un modelo de comportamiento mecánico específico para cortante.

												                     (20)

Las comparaciones mostradas en la Fig. 12 no incluyen la contribución del concreto cuando se toma en cuenta en 
el diseño, por lo que también se debe investigar el nivel de seguridad que ofrece la teoría de vigas en esta situación. Se 
ha observado experimentalmente que el nivel de daño por cortante en las TACR es proporcional al ángulo de acartela-
miento (Tena-Colunga et al., 2008 y Archundia-Aranda et al., 2013), por lo que se puede suponer que la contribución 
del concreto se degrada con esa proporción. Con esta hipótesis, se cuantificó el factor de seguridad de un diseño con 
contribución del concreto multiplicando la Ecuación 19 por el factor de reducción  fFS  mostrado en la Ecuación 20. En 
Archundia (2013) se explica cómo se desarrolló  fFS  a partir de los resultados experimentales reportados en Tena-Colunga 
et al., (2008), y el límite impuesto por el Committee 426 (1973) a la resistencia del concreto en trabes prismáticas. En 
la Fig. 13 se muestran los factores de seguridad obtenidos. Como se esperaba, un diseño basado en la teoría de vigas 
que toma en cuenta la resistencia del concreto también es seguro, aunque en menor medida a la de un diseño donde la 
resistencia se le ha confiado exclusivamente al acero de refuerzo transversal (Fig. 12).

8. DISEÑO BASADO EN LA SECCIÓN CRÍTICA
El concepto de la sección crítica por cortante en trabes prismáticas fue introducido por el Committee 326 (1962 a/b) y 
adoptado por el reglamento ACI-318. Posteriormente, Regan y Yu (1973) lo aplicaron al diseño de TACR. Stefanou 
(1983) retomó el trabajo de Regan y Yu, y propuso diseñar TACR suponiendo que la sección crítica pertenece a una 
trabe prismática. Este enfoque fue mejorado por MacLeod y Houmsi (1994), quienes propusieron el formato mostrado 
en la Ecuación 21, donde VTA es la resistencia a cortante de la cartela, V la demanda de cortante, Vp la resistencia a 
cortante de la sección crítica suponiendo que es parte de una trabe prismática, Mcr  la demanda de momento en la sección 
crítica, dcr el peralte efectivo de la sección crítica, y a el  ángulo de  acartelamiento. El  signo  positivo  aplica  cuando  
el  peralte y el diagrama  de momentos crecen en la misma dirección.
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Fig. 13: Comparación del nivel de seguridad a cortante en TACR que ofrece la teoría 
de vigas cuando se incluye la contribución del concreto.

												                     (21)

												                     (22)
 

												                     (23)

Si las Ecuaciones 10 y 11 se arreglan para satisfacer el formato de la Ecuación 21, se obtienen las Ecuaciones 22 
y 23. En la Ecuación 22, V es la mayor demanda de cortante en la cartela que resulta del análisis estructural o de un 
mecanismo de colapso. Se hace notar que el concepto de cortante efectivo (Vef) ya no aplica en este formato, pues 
el efecto del acartelamiento se ha pasado a la resistencia. En efecto, la aplicación de las Ecuaciones 22 y 23 requiere 
conocer el valor y ubicación de la sección crítica de la cartela.

Fig. 14: Ubicación de la sección crítica en una TACR con refuerzo transversal.
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Existen propuestas para calcular el peralte crítico en TACR; sin embargo, pertenecen a métodos semiempíricos en 
los que el efecto del acartelamiento se focaliza en la contribución del concreto. Puesto que un peralte crítico con estas 
características es incompatible con la propuesta de este trabajo, se optó por desarrollar una definición que fuera consis-
tente con la mecánica del concreto: primero  se  analizó  el  caso  de  las  trabes  prismáticas  con  refuerzo  transversal,  
y  después  la solución se implantó en trabes acarteladas. La definición que se obtuvo se sustenta en campos de esfuerzo, 
modelos de armadura, esbeltez y regiones B-D.

El peralte crítico (dcr) está ubicado a una distancia crítica (xcr) medida desde el peralte menor de la cartela (Fig. 14). Esta 
distancia es la extensión de la región D plástica, generada por el campo de esfuerzo en forma de abanico que produce una 
carga concentrada, real o equivalente, en esta zona de discontinuidad geométrica. El valor de ambos parámetros se obtiene 
con las Ecuaciones 24 y 25. La sección crítica está referenciada al peralte menor, pues en su cercanía se inicia el agrieta-
miento diagonal (Tena-Colunga et al. 2008 y Archundia-Aranda et al., 2013). Se introdujo el término “región D plástica”, 
para hacer una distinción con la región D definida por Schlaich et al., (1987) que, rigurosamente, es una región elástica.

 

												                     (24)

												                     (25)

												                     (26)

Archundia et al., (2005) acotaron el valor del peralte crítico semiempírico para evitar valores irreales; por ejemplo, 
a los que conduce la recomendación de MacLeod y Houmsi (1994). En este trabajo se limita el valor del peralte crítico 
para garantizar que pertenezca a la región B plástica. Para ello, es condición suficiente que su valor no exceda el 
del peralte donde está la frontera de las regiones B y D en el otro extremo de la cartela (dcr-max, Fig. 15). Esta cota se 
obtiene por geometría, y su valor se muestra en la Ecuación 26.

Fig. 15: Cota superior para el peralte crítico.
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												                     (27)

												                     (28)

Fig. 16: Comparación del peralte crítico. 
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La Fig. 15 permite identificar el requisito geométrico que garantiza la esbeltez de una cartela con refuerzo transver-
sal. Para que una cartela con estribos sea esbelta, debe alojar una región B plástica, lo que sucede sólo si su longitud es 
mayor o igual a la suma de la proyección horizontal de los abanicos de compresión de cada extremo. Este requisito está 
expresado en la Ecuación 27, y tiene implicaciones de importancia. Por ejemplo, cuando tan a = 0 se tiene una trabe 
prismática pues  dmax  = dmin  = d , y se justifica el cambio de variable lc  = a . En esta situación, la Ecuación 27 se reduce 
a la Ecuación 28, demostrando que la esbeltez de las trabes prismáticas con refuerzo transversal, no sólo depende de la 
relación  a/d (por ejemplo: Committee, 445 1998), sino también de la inclinación del campo de compresión diagonal 
que se desarrolla en el claro de cortante. Estrictamente, la relación a/d debe limitarse a trabes prismáticas sin estribos 
(Kani 1964), por lo que las Ecuaciones 27 y 28 proporcionan un punto de vista diferente para entender la resistencia a 
cortante de las trabes de concreto reforzado, que puede servir para elaborar guías de análisis y diseño más apegadas a 
la mecánica del concreto (Archundia 2013).

			  a) Kani (1964)					    b) Collins et al; (2007)

Fig. 17: Comportamiento de vigas prismáticas sin estribos en función de a/d.

En la Fig. 16 se compara el peralte crítico calculado con la Ecuación 26 contra propuestas previas. En el ejercicio 
se utilizó la geometría de los modelos con los que se identificó la región B elástica (Fig.7). Para facilitar las compa-
raciones, el peralte crítico (dcr) se normalizó con el peralte máximo de la cartela (dmax), y se graficó contra el cociente  
lc / dmax , que es equivalente al cociente a/d  de las trabes prismáticas. Esta normalización es sólo geométrica, y no 
clasifica a las trabes en cortas o esbeltas. En el ejercicio se omitió el elemento con la relación  lc /  dmax =1, pues  
no permite el desarrollo de una región B.

La sección crítica propuesta depende de la inclinación del campo de compresión diagonal. Para fines de diseño, se 
puede utilizar cualquier ángulo que satisfaga el intervalo  26.6˚ ≤ q ≤ 45˚. Para efectos de revisión, son de interés los 
ángulos  q = 45˚,  q = 30˚  y  q = 45˚ – a . Los  dos primeros son típicos en el diseño de trabes con modelos de armadura; 
de hecho,  q = 45˚ está implícito  en  el  reglamento  ACI-318.  El  último  es  una  recomendación  sustentada  en  datos 
experimentales en TACR con y sin estribos (Tena-Colunga et al., 2008). Las comparaciones mostradas en la figura 16 
respaldan la sección crítica que se propone, y permiten recomendar los ángulos q = 45˚y  q = 45˚ – a para favorecer la 
formación de la región B plástica en la cartela.
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9. CONTRIBUCIÓN DEL CONCRETO
La contribución del concreto también se justificó con un modelo de armadura. Para ello, se investigó el origen de esta 
resistencia, sus ventajas y limitantes, las interpretaciones que se le han dado, los modelos mecánicos y semiempíricos 
que la explican, así como su correlación con las regiones B-D y la sección crítica. Por restricción de espacio sólo se 
presentan los resultados esenciales de esta investigación (Archundia 2013).

Kani (1964) estudió la  resistencia a cortante en trabes  prismáticas  sin  refuerzo  transversal, simplemente apoyadas, 
y sometidas a cargas puntuales. Identificó dos mecanismos resistentes que llamó de “arco” y de “viga”, y demostró que 
su influencia depende de la relación a/d. La gráfica mostrada en la Fig. 17a fue construida a partir de resultados experi-
mentales, y con ella Kani determinó que en  a/d  = 2.5 está la frontera que divide el predominio de los mecanismos de 
arco  y  de  viga.  En  el  intervalo 1≤ a/d ≤ 2.5 el  mecanismo  dominante  es  el  de  arco,  en 2.5 < a/d  < 5.6  gobierna el de 
viga, y cuando a/d  ≥5.6 la falla no es por cortante, sino por flexión.

La Fig. 17b es de Collins et al., (2007), y en ella se comparan los resultados de Kani (1964) contra la resistencia 
que predice el modelo de armadura de puntal directo y los métodos seccionales. Las predicciones se hicieron usando 
las recomendaciones de los reglamentos de Estados Unidos, Europa  y Canadá (ACI,  EC2  y CSA, respectivamente).  
Se observa que la frontera que separa la aplicación de ambos métodos de diseño yace en el intervalo  2 ≤ a/d  ≤ 2.5 , y 
usualmente  a/d  = 2 . Esto confirma los resultados de Kani (1964), pues el modelo de puntal directo está relacionado 
con el mecanismo de arco (región D), y los métodos seccionales con el de viga (región B).

 A partir de la Fig. 17, se puede correlacionar el mecanismo de viga con las restricciones originales del método de 
diseño a cortante del reglamento ACI-318 (Committe 326, 1962b):

1.	 En trabes en las que a > 2d , el método no es válido dentro de una distancia d medida desde cualquier extremo 
del claro de cortante.

2.	 Si 0.75d  ≤ a ≤ 2d , el método solamente es válido en la sección ubicada a la mitad del claro de cortante.

3.	 Cuando a ≤ 0.75d , el método no se puede aplicar.

Estas limitantes restringen la contribución del concreto a secciones alejadas por lo menos una distancia de un peralte 
efectivo de los apoyos, o cargas concentradas, y la hace exclusiva de las regiones B definidas por Schlaich et al., (1987). 
Con esta base se analizaron varios modelos de armadura para trabes prismáticas sin refuerzo transversal. El modelo 
seleccionado es el propuesto por Schlaich et al., (1987). Los otros modelos estudiados tienen inconsistencias, o son más 
complejos (Reineck 1991, Al-Nahlawi y Wight 1992, Nielsen 1999, Muttoni y Fernández Ruiz 2008).

a) Armadura con tensores de concreto.

 

b) Fuerzas en la entrecara del agrietamiento diagonal.

Fig. 18: Explicación de Schlaich et al., (1987) para la contribución del concreto. 
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En la Fig. 18a se muestra el modelo de armadura de Schlaich et al., (1987). El modelo representa la región B de 
una trabe con estribos agrietada diagonalmente, donde el ángulo de inclinación inicial de las grietas ( a ) es mayor al 
del mecanismo de armadura plástica ( q ). Con el aumento  de  la  carga,  las  grietas  iniciales  se  extienden  con  una  
inclinación  que  disminuye gradualmente,  hasta  alcanzar  el  ángulo  q que activa  la armadura plástica.  De  acuerdo 
con Schlaich et al., (1987), durante este proceso la resistencia a cortante es aportada exclusivamente por la trabazón del 
agregado en la entrecara de la grieta (Fig. 18b). Este mecanismo está representado con una fuerza tangencial a la grieta 
(R) que, por conveniencia, Schlaich y colaboradores descompusieron en una de compresión (Cc) con inclinación q, y en otra 
de tensión (Tc) perpendicular. Estas fuerzas son las que justifican la armadura con tensores de  concreto mostrada en la 
Fig. 18a. Con esto, Schlaich et al., (1987) explicaron por qué los estribos son efectivos sólo después del agrietamiento 
por tensión diagonal.

Conceptualmente, la contribución del concreto no es la resistencia última de una trabe esbelta sin estribos, aunque en 
algunos casos pueden coincidir. Por lo tanto, lo que sucede entre el agrietamiento por tensión diagonal y: i) el colapso 
de una trabe sin estribos o, ii) la formación de la armadura plástica en una trabe con refuerzo transversal, no afecta el 
cálculo y explicación de la contribución del concreto. Esto conduce a la idea de que, los mecanismos de armadura que 
explican la contribución del concreto y la contribución del acero de refuerzo, son independientes, secuenciales, y unidos 
por un mecanismo de transición que se comenta más adelante.

La armadura con tensores de concreto de Schlaich et al., (1987), limitada al intervalo elástico, representa razonable-
mente el estado de esfuerzos de una trabe esbelta antes del agrietamiento por tensión diagonal. Por lo tanto, la solución 
de esta armadura elástica se puede relacionar con la contribución del concreto. En la Fig. 19 se muestra una armadura 
elástica para la región B de una trabe acartelada. Las demandas en la sección de análisis son el momento (Magr) y el 
cortante (Vagr) justo antes del agrietamiento por tensión diagonal, y se descomponen en las fuerzas mostradas en 
el lado opuesto del corte (Tagr, Cagr y Vcef). Al cortante efectivo (Vcef) se le agregó el subíndice “c” para relacionarlo con 
la resistencia del concreto. El ángulo de inclinación de los elementos que representan los campos de esfuerzo elástico 
es qE , y no necesariamente tiene el valor de  q . La sección de análisis corresponde a la ruptura completa del tensor de  
concreto debido al agrietamiento por tensión diagonal. Este agrietamiento inicia donde el tensor divide en dos  partes  
iguales  el  peralte  efectivo  de  la  trabe,  que  corresponde  al  primer  agrietamiento diagonal. Finalmente, las demandas 
en el modelo de armadura elástica son las indicadas en las ecuaciones 29 a 31.

												                     (29)

												                     (30)

												                     (31)

El denominador de la Ecuación 29 es diferente al de la Ecuación 6, lo que confirma la independencia entre los meca-
nismos de la contribución del acero de refuerzo y de la contribución del concreto. La comparación de las Ecuaciones 30 y 
31 contra las Ecuaciones 8 y 9, también muestra tendencias diferentes en la demanda de las cuerdas longitudinales antes 
y después del agrietamiento diagonal, lo que se aprecia mejor cuando tan a = 0. Esto le da otra ventaja a los modelos de 
armadura sobre la teoría de vigas para el estudio a cortante, pues la última no distingue la demanda en las cuerdas en 
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función del agrietamiento ( T = C = M/d ). De acuerdo con la armadura elástica, la demanda en el bloque de compresión 
es mayor, y en el acero de refuerzo longitudinal menor, de lo que predice la teoría de vigas y la armadura plástica. El 
resultado sugiere que, al presentarse la falla por tensión diagonal, la carga asociada con la contribución del concreto 
es transferida súbitamente a otro mecanismo donde el bloque de compresión no agrietado tiene importancia relevante. 
Este es el mecanismo de transición comentado con anterioridad, y debe desaparecer, gradualmente, al mismo tiempo 
que el agrietamiento diagonal se extiende para favorecer la formación de la armadura plástica.

Fig. 19: Modelo de armadura elástica para la región B de una trabe acartelada.

El  modelo de armadura elástica  apoya la fórmula  del  reglamento ACI-318 con la que se cuantifica la contribu-
ción del concreto (Ec. 32). La fórmula es semiempírica, y en su desarrollo se tomó en cuenta la importancia que tiene 
el bloque de compresión no agrietado (Committee 326 1962 a/b). Por otro lado, la solución de las armaduras plástica 
y elástica puede explicar por qué los métodos de diseño afines a la teoría modificada de los campos de compresión, 
cambian constantemente el criterio con el que se cuantifica la demanda de tensión para el cálculo de la contribución del 
concreto en trabes con y sin estribos (Collins y Mitchell 1986, Collins et al., 1996, Bentz et al., 2006).

												                     (32)

Por conveniencia, al diagrama de cortante se le resta la contribución del concreto para identificar las secciones, que 
en realidad son tramos de elemento (Ferguson et al., 1988), donde se requiere acero de refuerzo transversal. Esto obliga 
un cambio de formato en la Ecuación 29, es decir, convertir una ecuación que cuantifica demanda, en una que calcule 
resistencia. Este cambio también  fue  requerido  para  obtener  la  fórmula  que  determina  la  contribución  del  acero  
de refuerzo con la sección crítica.

La contribución del concreto (VcTA) que se propone en este trabajo tiene su origen en las Ecuaciones 29 y 32. Al com-
binarlas racionalmente se obtiene la Ecuación 33, donde el signo positivo  del  cociente | Magr | /d  aplica  cuando  el  peralte  
y el  momento  crecen  en  la  misma dirección (Fig. 4). Para usar la Ecuación 33, se debe conocer el valor del momento 
asociado al agrietamiento diagonal (Magr), así como el ángulo de inclinación ( qE ) del campo de esfuerzos elásticos.

Fig. 20: Bloque de esfuerzo equivalente asociado al agrietamiento diagonal (Nielsen 1999). Modificada.
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												                     (33)

De acuerdo con Nielsen (1999), el momento asociado al agrietamiento diagonal se puede calcular con el bloque 
equivalente curvo mostrado en la Fig. 20, o de manera más sencilla, con un bloque recto alineado con la línea que une 
los extremos A y B de la grieta teórica. Si en lugar del peralte total (h) los cálculos se hacen de forma más correcta con 
el peralte efectivo (d), el momento de agrietamiento diagonal se calcula con la Ecuación 34, donde ftef  es la resisten-
cia efectiva a tensión del concreto, b el ancho de la sección transversal, y  LAB  =  √(x2  + d2)  es la distancia entre los 
extremos A y B.

												                     (34)

De la mecánica de materiales, se sabe que los esfuerzos principales elásticos alrededor del eje neutro tienen una 
inclinación de 45 grados. Si se acepta la hipótesis de que la grieta por tensión diagonal tiene esa inclinación (qE  = 45˚), 
entonces su proyección horizontal es igual al peralte efectivo ( x = d ), por lo  que  LAB = 1.41d . La sustitución de estos 
valores en la Ecuación 34 conduce a la Ecuación 35.

												                     (35)

 

												                     (36)

												                     (37)

Nielsen (1999) recomienda calcular la resistencia efectiva a tensión del concreto (ftef), afectando la resistencia índice 
(ft) con varios factores de eficiencia (u). De ellos, sólo se tomó en cuenta el factor u = 0.6, pues  es  análogo  al  que  
se  usa  en  la construcción  del  bloque  equivalente a compresión del reglamento ACI-318. El resto de los factores 
de eficiencia que propone Nielsen son cuestionables. Por ejemplo, uno disminuye 50 % de la resistencia, a tensión o 
compresión, debido al micro-agrietamiento. La resistencia a tensión del concreto se supuso igual a la que se obtiene 
en la prueba brasileña. De acuerdo con el reglamento ACI-318, ésta es           =      cuando  las  unidades son kg y  cm. 
Al tomar en cuenta el  factor de  eficiencia u = 0.6, la resistencia efectiva a tensión es la mostrada en la Ecuación 36; 
cuando se sustituye este valor en la Ecuación 35 se obtiene la Ecuación 37.

 La sustitución de la Ecuación 37 en la Ecuación 33 conduce a las Ecuaciones 38 y 39. Ambas fórmulas cuantifican 
la contribución del concreto en cualquier sección que pertenezca a la región B de una trabe acartelada. La Ecuación 38 
aplica cuando el peralte y el momento crecen en la misma dirección, y la Ecuación 39 cuando crecen en sentido 
contrario. Alternativamente, puede usarse la Ecuación 40, que es la versión simplificada y conservadora que omite el 
efecto de armadura. En la Ecuación 40 el signo positivo dentro del paréntesis aplica cuando el peralte y el momento 
crecen en la misma dirección. Las Ecuaciones 38 a 40 deben ser sustituidas con valores en kg y cm.

												                     (38)
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												                     (39)

												                     (40)

Las Ecuaciones 38 a 40 funcionan en un diseño sección por sección; sin embargo, el diseño puede simplificarse si 
se conoce el valor del peralte crítico elástico. En Archundia (2013) se demuestra que, a partir del “detalle” de armadura 
elástica mostrado en la figura 21, la distancia crítica elástica  (xcrE)  y  el  peralte  crítico  elástico  (dcrE)  se  calculan  con  
las  Ecuaciones  41  y  42, respectivamente. Por consistencia, en estas ecuaciones también  qE  = 45˚. Se hace énfasis 
de que es un detalle de armadura elástica, porque aún no se ha publicado un modelo genérico para trabes sin estribos 
como lo es la armadura plástica para trabes con refuerzo transversal.

Fig. 21: Ubicación de la sección crítica elástica en una TACR.

												                     (41)

												                     (42)

												                     (43)

												                     (44)
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Puesto que la contribución del concreto se justifica con un modelo de armadura, debe verificarse que la cartela 
pueda alojar una región B elástica. En Archundia (2013) se demuestra que esto se cumple al satisfacer la Ecuación 43, 
donde el subíndice “E” es para marcar la diferencia con la Ecuación 27. Opcionalmente puede usarse la Ecua-
ción 44, la cual está fundamentada en los análisis con elementos finitos comentados con anterioridad. Como regla 
general: una trabe que puede alojar una región B plástica para el intervalo  26.6˚ ≤ q ≤ 45˚(Ec. 27), también aloja 
una región B elástica.

10. VALIDACIÓN
En la literatura no existen resultados experimentales de TACR esbeltas diseñadas con modelos de armadura, por lo que 
la validación del método se hizo con la mejor información disponible. En el ejercicio se utilizó la versión que incluye 
la sección crítica por cortante, y se analizaron por separado las predicciones en las trabes con y sin refuerzo transversal. 
La muestra de las trabes con estribos se compone de los siguientes elementos:

•  Las trabes simplemente apoyadas de Debaiky y El-Niema (1982).
•  Las trabes simplemente apoyadas de El-Niema (1988).
•  Las trabes simplemente apoyadas de la serie R1 de Tena-Colunga et al., (2008). 

La muestra de los elementos sin refuerzo transversal contiene los siguientes elementos:

•  Las trabes en doble voladizo de MacLeod y Houmsi (1994).
•  Las trabes simplemente apoyadas de la serie R0 de Tena-Colunga et al., (2008).
•  Las trabes simplemente apoyadas de Rombach y Nghiep (2011).

La validación incluye las trabes acarteladas y las prismáticas de los trabajos mencionados. El análisis de las trabes con refuerzo 
transversal se dividió en dos etapas: en la primera se consideró sólo la contribución del acero de refuerzo (VsTA), y en la segunda se 
incluyó la contribución del concreto (VsTA + VcTA). En las trabes sin  refuerzo transversal  sólo se tomó en cuenta la contribución 
del concreto. En todos casos, la resistencia calculada se normalizó con la resistencia experimental  (Vexp). 

Tabla 1: Resumen de las predicciones en trabes con refuerzo transversal. q = 45°.

		                            Muestra completa	    	                       Muestra depurada
		                           (48 elementos)		                         (42 elementos)
 
                      Fuente	  	  	  	
	Debaiky y El-Niema (1982)
Promedio	 0.39	 0.75	 0.42	 0.80
Desviación estándar	 0.20	 0.24	 0.17	 0.19

El-Niema (1988)
Promedio	 0.55	 0.82	 0.55	 0.82
Desviación estándar	 0.14	 0.15	 0.14	 0.15

Tena-Colunga et al., (2008)
Promedio	 0.35	 0.71	 0.36	 0.71
Desviación estándar	 0.04	 0.03	 0.04	 0.03

Todos
Promedio	 0.42	 0.76	 0.45	 0.80
Desviación estándar 	 0.19 	 0.21 	 0.17 	 0.17 	
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Como  el  método  depende  del  ángulo  de  inclinación  del  campo  de compresión diagonal, se usaron los ángulos 
con los que se validó la sección crítica (q = 45˚,  q = 30˚ y q = 45˚ – a). La contribución del concreto en las trabes con 
estribos se calculó con las fórmulas del método riguroso (Ecs. 38 y 39), y en las trabes sin estribos se compararon los 
métodos riguroso y simplificado (Ec. 40).

Se hicieron dos evaluaciones diferentes: en la primera se incluyeron todos los elementos mencionados, y en la 
segunda se hizo una depuración de la muestra. La depuración consistió en eliminar: i) las trabes con estribos que no 
cumplieron la Ecuación 27, ii) las trabes sin estribos que no cumplieron las Ecuaciones 43 y 44 y, iii) todas las trabes 
con un ángulo de acartelamiento a > 9˚. Los dos primeros requisitos atienden a la esbeltez de la cartela y al fomento de 
la región B; con el tercero se descartaron los elementos propensos a perder rápidamente su rigidez inicial por el daño 
a cortante (Tena-Colunga et al., 2008, Archundia et al., 2013).

En general, las predicciones en las muestras depuradas fueron mejores que en las muestras completas, notándose 
más en la desviación estándar que en el promedio (Tablas 1 a 5). Esto confirma que el método responde positivamente 
a los criterios con los que fue desarrollado, y predice la resistencia a cortante de una región B.

En  las  trabes  con  estribos  las  predicciones  con  los  ángulos  q = 45˚ y  q = 45˚ – a  fueron conservadoras  
cuando  se  ignoró  la  contribución  del  concreto  (Tablas  1  y  3).  Sin  embargo, mejoraron notablemente cuando 
se incluyó esta resistencia. Los resultados con el ángulo  q = 30˚ (Tabla 2) deben interpretarse con cautela, pues la 
dispersión fue alta cuando se ignoró la contribución del concreto, y las predicciones fueron inseguras cuando se tomó 
en cuenta esta resistencia.

 En las trabes sin estribos los mejores resultados se obtuvieron con el método riguroso (Tablas 4 y 5). Esto justifica 
el mecanismo de armadura elástica; sin embargo, puede usarse con confianza la fórmula simplificada que lo ignora. En 
ambos casos, el promedio y la desviación son del mismo orden  que  las  presentadas  por  el  Committee 326 (1962b), 
que  validan  la  fórmula  del reglamento ACI-318 para calcular la contribución del concreto en trabes prismáticas.

11. CONCLUSIONES
En este trabajo se presentó un método de diseño por cortante para trabes acarteladas de concreto reforzado, sustentado 
en campos de esfuerzo y modelos de armadura. La forma en que se abordó el problema permitió cuantificar los 

Tabla 2: Resumen de las predicciones en trabes con refuerzo transversal. q = 30°. 

		                            Muestra completa	    	                       Muestra depurada
		                           (48 elementos)		                         (23 elementos)
 
 	                   Fuente 	  	  	  	  	
	Debaiky y El-Niema (1982)
Promedio	 0.74	 1.10	 0.94	 1.31
Desviación estándar	 0.42	 0.47	 0.31	 0.34

El-Niema (1988)
Promedio	 1.10	 1.37	 1.20	 1.50
Desviación estándar	 0.25	 0.26	 0.24	 0.24

Tena-Colunga et al., (2008)
Promedio	 0.80	 1.16	 N/A	 N/A 
estándar		 0.18	 0.20	 N/A	 N/A

Todos
Promedio	 0.82	 1.16	 1.00	 1.36
Desviación estándar 	 0.40 	 0.42 	 0.31 	 0.32 
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parámetros de diseño sin recurrir a regresiones estadísticas de datos experimentales. El método es para trabes esbeltas, 
por lo que su aplicación está restringida a cartelas con longitud suficiente para alojar una región B; por ello también se 
desarrollaron ecuaciones para hacer esta discriminación. El método incluye aspectos del diseño de elementos completos 
y por secciones. Sólo la combinación de lo mejor de ambas formas de hacer ingeniería, permitió elaborar uno seccional 
basado en un modelo de comportamiento mecánico.

Tabla 3: Resumen de las predicciones en trabes con refuerzo transversal. q = 45° – a

		                            Muestra completa	    	                       Muestra depurada
		                           (48 elementos)		                         (31 elementos)
 
 	                    Fuente 	  	  		   	
Debaiky y El-Niema (1982)
Promedio	 0.52	 0.87	 0.57	 0.96
Desviación estándar	 0.36	 0.40	 0.24	 0.26

El-Niema (1988)
Promedio	 0.75	 1.02	 0.75	 1.03
 Desviación estándar	 0.19	 0.19	 0.20	 0.21

Tena-Colunga et al., (2008)
Promedio	 0.62	 0.98	 0.43	 0.77
Desviación estándar	 0.26	 0.29	 0.04	 0.03

Todos
Promedio	 0.58	 0.92	 0.61	 0.97
Desviación estándar 	 0.33 	 0.36 	 0.24 	 0.24 

Tabla 4: Resumen de las predicciones en trabes sin refuerzo transversal. Método riguroso.

		                                                         Muestra completa	                            Muestra depurada
		                                                          (25 elementos)	                                (22 elementos)

	                           Fuente 	  	  	
MacLeod y Houmsi (1994)
Promedio	 0.76	 0.79
Desviación estándar	 0.10	 0.07

Tena-Colunga et al., (2008)
Promedio	 1.14	 1.11
Desviación estándar	 0.09	 0.08

Rombach y Nghiep (2011)
Promedio	 0.86	 0.88
Desviación estándar	 0.09	 0.09

Todos
Promedio	 0.89	 0.90
Desviación estándar 	 0.16 	 0.14 
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Se hizo una comparación paramétrica entre: i) el método recomendado, ii) la propuesta de Dilger y Langohr (1997) 
y, iii) el método que resulta de aplicar la teoría de vigas. El ejercicio demostró que los diseños hechos con la teoría de 
vigas son seguros, aun cuando no explican racionalmente el mecanismo resistente de las TACR.

La validación del método permite recomendarlo para trabajos de diseño y revisión. El diseño se puede hacer con 
un campo de compresión diagonal que satisfaga el intervalo  26.6˚ ≤ q ≤ 45˚; sin embargo, en elementos que van a tra-
bajar en sistemas sismorresistentes se recomiendan los ángulos q = 45˚y  q = 45˚ – a (Archundia 2013). Estos últimos 
también se deben usar en la revisión de elementos existentes. Hasta lograr  un mejor entendimiento  de la falla dúctil 
en TACR, se recomienda limitar el ángulo de acartelamiento al intervalo  3˚ ≤ a ≤ 9˚. Esto tiene la intención de evitar 
una súbita degradación de la rigidez de la cartela debido al agrietamiento diagonal.

Finalmente, todo diseño por cortante debe cumplir reglas de detallado. En Tena-Colunga et al., (2008) se presenta uno para 
la zona del vértice de la cartela; también se deben consultar las recomendaciones de Park y Paulay (1975) y González y Robles 
(2006). Sin embargo, se deben tener cuidados especiales para que la distribución de estribos fomente el ángulo q supuesto 
en el diseño. En  Archundia  (2013)  se  proporcionan  recomendaciones  específicas  que   intentan satisfacer este punto.
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