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ABSTRACT

In this work neural networks are used as an 
advantageous tool to estimate petrophysical 
parameters of  the stratigraphic column traversed 
by several wells. The parameters porosity, mineral 
volumes, and water and hydrocarbon saturation 
are obtained from basic geophysical well logging 
(gamma rays, deep resistivity, volumetric density 
and transit time) and are inferred for other sites, in 
the same geological area, where they are not mea-
sured, so this information matrix is not available. 
This analysis was performed on sand-clay silici-
clastic sequences traversed by several wells drilled 
to reach a low-permeability hydrocarbon reservoir. 
Estimates with empirical models are presented to 
compare them with those obtained with neural 
networks in order to qualify the performance of  
the intelligent alternative. The laws that govern 
the dynamics of  the parameters as well as the 
details of  the geological context are immersed in 
the weights of  the network and the phenomeno-
logical consistency is defined through the congru-
ence of  the inputs to achieve the chosen outputs.
The way in which the neural model enables the 
reliable propagation of  property values is shown 
and becomes an advantageous auxiliary in the 
study of  very complex or poorly parameterized 
geological contexts in which the conditions for the 
application of  correlations and empirical methods 
as well as how the time invested in the processes 
of  adjustment and contextualization of  records, 
decreases the quality and quantity of  knowledge 
obtained about the environment.

Keywords: petrophysical mo- 
dels, well logs, siliciclastic 
sequences, neural networks.

RESUMEN

En este trabajo se utilizan redes neuronales 
como una ventajosa herramienta para esti-
mar parámetros petrofísicos de la columna 
estratigráfica atravesada por varios pozos. 
Los parámetros porosidad, volúmenes 
minerales y saturación de agua e hidro-
carburos, se obtienen a partir de registros 
geofísicos de pozo básicos (rayos gamma, 
resistividad profunda, densidad volumé-
trica y tiempo de tránsito) y se infieren para 
otras zonas de la misma área geológica, 
en los que no se cuenta con este cuadro 
de información. Este análisis se realizó en 
secuencias siliciclásticas areno-arcillosas 
atravesadas por varios pozos perforados 
para alcanzar un yacimiento de hidrocar-
buros de baja permeabilidad. Se presentan 
estimaciones con modelos empíricos para 
enfrentarlas con las obtenidos con las redes 
neuronales de forma que se califique la 
actuación de la alternativa inteligente. Las 
leyes que rigen la dinámica de los pará-
metros, así como los detalles del contexto 
geológico quedan inmersos en los pesos de 
la red y la consistencia fenomenológica está 
definida a través de la congruencia de las 
entradas para conseguir las salidas elegidas. 
Se muestra la forma en la que el modelo 
neuronal habilita la propagación confiable 
de valores de propiedad y se convierte en un 
ventajoso auxiliar en el estudio de contextos 
geológicos muy complejos o escasamente 
parametrizados en los que las condiciones 
para la aplicación de correlaciones y méto-
dos empíricos, así como el tiempo que se 
invierte en los procesos de ajuste y contex-
tualización de registros, menguan la calidad 
y cantidad del conocimiento que se obtiene 
sobre el medio.

Palabras clave: modelos petro-
físicos, registros de pozos, 
secuencias siliciclásticas, redes 
neuronales.
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1. Introducción

El análisis petrofísico a partir de registros geofísicos 
de pozos es una de las herramientas más impor-
tantes en el desarrollo de conocimiento aplicado 
del subsuelo. La información recuperada de estos 
registros se emplea durante la perforación y termi-
nación del pozo y en las intervenciones durante su 
vida útil hasta su abandono. El proceso convencio-
nal para la obtención de propiedades petrofísicas 
implica el uso de varios modelos restringidos por 
el tipo de litología (siliciclásticos o carbonatos) los 
cuales, a su vez, se subdividen en otros más espe-
cíficos (arcillosos-arenosos o carbonatos-dolomías, 
por citar algunos ejemplos) que constituyen una 
serie de formulaciones que son como trajes a la 
medida para cada contexto geológico. Esta diná-
mica de partición funcional tiene éxito restringido 
sobre todo en los casos frontera o aquellos que se 
alejan (así sea ligeramente) de las condiciones de la 
muestra (litología) que sirvió para el desarrollo de 
esas ecuaciones. Además, estos modelos precisan 
de ciertos parámetros que no son siempre econó-
micos o de fácil adquisición (como, por ejemplo, la 
resistividad del agua (Rw), la resistividad del lodo 
(Rmf) y el enjarre de lodo (Rmc)).
	 Otra condición que en ocasiones afecta la esti-
mación de propiedades petrofísicas es la cantidad 
de curvas de registros que son suficientes para re-
solver, por ejemplo, la matriz de volúmenes mine-
rales. Para esta solución se requiere que la matriz 
de m * n sea cuadrada (m=n) por lo que la cantidad 
de parámetros litológicos que se desean obtener 
debe ser igual a la cantidad de curvas de entrada 
con las que se cuenta para realizar el arreglo ma-
tricial. Ante la escasez se puede sacrificar el núme-
ro de salidas (determinar únicamente los princi-
pales minerales que forman la roca, por ejemplo) 
o construir las curvas faltantes con información 
básica disponible.
	 Entre los trabajos antecedentes de construcción 
de modelos petrofísicos con redes neuronales pue-
de mencionarse el de Krug y Ali (2018) quienes 
utilizaron análisis estadísticos de datos de registros 
geofísicos de pozo y datos geoquímicos de campos 

siliciclásticos. Con los registros de rayos gamma, 
densidad volumétrica y tiempo de tránsito los auto-
res obtienen perfiles acumulativos de minerales ar-
cillosos y carbonatados. Se muestran las capacida-
des del modelo para obtener litología, sin embargo, 
no determina saturaciones de fluidos en la roca, lo 
cual es un objetivo planteado en el presente traba-
jo. Por su parte, Ba Alawi, et al. (2020) predicen la 
resistividad, presión capilar y permeabilidad relati-
va con modelos neuronales a través de la resistivi-
dad de núcleos, además obtienen saturaciones de 
fluidos. Una de las limitantes del trabajo de Alawi, 
es que sólo es aplicable a bases de datos con análisis 
de núcleos, situación menos frecuente en los pozos 
comparada con la asequibilidad de registros geofí-
sicos. Khan et al. (2021) y Al-Sabaa et al. (2021) son 
trabajos en los que también se presentan modelos 
inteligentes con las salidas relativas. 
	 La propuesta en este documento es un método 
robusto que salva las dificultades o carencias de las 
aplicaciones del tipo porque permite, de forma sim-
ple y asequible estimar la porosidad, los volúmenes 
minerales y la saturación de fluidos. Las redes 
neuronales pueden ser una herramienta de soporte 
paramétrico inicial, cuando se modelan datos de 
registro, en retroalimentación cuando sirven para 
completar los modelos petrofísicos. En ambas fases 
un modelo neuronal permite propagar las informa-
ciones a otras áreas o pozos dentro del geo-contexto 
analizado. 

2. Sobre la Inteligencia Artificial y las 
Redes Neuronales

La inteligencia artificial (IA) es una de las ramas de 
las ciencias de la computación que se inserta en el 
estudio del proceso del pensamiento y comporta-
miento cognitivo humano (Russell y Norvig, 2010). 
Se intenta que de alguna forma las máquinas sean 
capaces de percibir, razonar y actuar (Winston, 
1992) con la inteligencia que desplegaría una perso-
na (Kurzweil, 1990), es decir, la automatización de 
la conducta inteligente (Luger y Stubblefield,1993). 
Las teorías de la IA encuentran un medio para su 
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implementación a través de las computadoras, 
la programación inteligente es extensa y no fun-
cionaría sin los avances de velocidad de procesa-
miento y memoria aportados por la industria del 
cómputo. 
	 La IA utiliza representaciones simbólicas basa-
das en un número finito de primitivas y de reglas 
para la manipulación de símbolos, por ejemplo, 
redes semánticas y lógica de predicados, y tam-
bién la llamada sub-simbólica, la cual utiliza re-
presentaciones numéricas del conocimiento. Este 
enfoque se caracteriza por crear sistemas con ca-
pacidad de aprendizaje imitando al cerebro (redes 
neuronales), o a la evolución (algoritmos genéti-
cos).
	 Existe una clasificación de modelos de inte-
ligencia artificial que se basa en el objetivo y la 
forma en que trabaja el sistema (Russell y Norvig, 
2010) (Figura 1):
•	 Sistemas que piensan como humanos: o mo-
delado cognitivo, basado en teorías de la mente 
expresadas como un programa computacional. A 
través de entradas y salidas del programa se emula 
el funcionamiento de la mente.

•	 Sistemas que piensan racionalmente: se inten-
ta codificar el “pensamiento correcto”, o proceso 
de razonamiento. Se construyen programas con 
líneas del pensamiento que crean sistemas inteli-
gentes.  
•	 Sistemas que actúan racionalmente: se trata 
con agentes que perciben su ambiente a través de 
sensores y actúan sobre ese ambiente. Se intenta 
que operen autónomamente en la creación y per-
secución de metas.
	 Sobre los intentos por describir aspectos de la 
inteligencia con máquinas son las redes neurona-
les RN las que buscan emular el aprendizaje hu-
mano (reconocimiento de patrones, memorización 
y asociación de hechos, entre otros) para resolver 
problemas donde la expresión de la solución a 
través de un algoritmo es compleja o imposible. 
Una RN está compuesta por unidades de procesa-
miento que habilitan intercambio de información 
a través de una estructura diseñada para operar 
haciendo crecer su capacidad de aprender y mejo-
rar su funcionamiento (Matich, 2001).
	 La analogía entre una neurona biológica y una 
artificial se muestra en la Figura 2. Se muestran las 

Figura 1  Clasificación de los modelos de Inteligencia con base al objetivo y esquema de funcionamiento.
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conexiones entre los nodos (I_1, I_2, …, I_n) que 
representan las dendritas y los axones (entradas) y 
la salida (y) sí se referencia a una neurona anterior 
a la que se está analizando. Los pesos (w_1, w_2, 
…, w_n) representan la sinapsis y la aproximación 
umbral representa la actividad realizada por el nú-
cleo de la célula (soma).
	 Los componentes principales de una red es el 
conjunto de nodos y las conexiones entre ellos. Los 
nodos son unidades computacionales que reciben 
información externa (entradas) la cual es procesa-
da para obtener una respuesta (salida). Las unida-
des de procesamiento reciben, procesan y transmi-
ten señales tal como las neuronas biológicas.
	 En la Figura 3 se muestra un esquema de una 
red neuronal con la representación del flujo de in-
formación. La red tiene tres capas: entradas, ocul-
ta y salida.
	 El procesamiento neuronal tiene ventajas de 
modelado importantes: i) aprendizaje adaptativo, 
ii) auto-organización, iii) tolerancia a fallos y iv) 

operaciones en tiempo real. La adaptabilidad se 
refiere a la capacidad para diferenciar patrones 
mediante el entrenamiento sin especificar funcio-
nes de distribución de probabilidad ni modelos 
descriptivos específicos. Las redes neuronales em-
plean su capacidad de aprendizaje adaptativo para 
autoorganizar la información que reciben durante 
la operación, siendo “aprender” el concepto que 
describe la modificación de cada elemento pro-
cesal. La generalización en las redes es la facul-
tad para responder apropiadamente cuando se 
presentan datos o situaciones a las que no habían 
sido expuestas anteriormente (Hilera y Martínez, 
1995). 
	 Comparadas con los sistemas computacionales 
tradicionales donde estos pierden su funcionalidad 
cuando sufren un error de memoria, las RN son 
resilientes ante fallo de neuronas sin caídas o co-
lapsos. Lo anterior se traduce como la capacidad 
para reconocer patrones con ruido, distorsionados 
o incompletos (tolerancia a fallos respecto a los 

Figura 2  Analogía de Neuronas Biológicas con una Neurona Artificial.
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datos) y seguir realizando su función (aunque sea 
destruida parte de la red). Esto porque la informa-
ción está distribuida en las conexiones con cierto 
grado de redundancia.

2.1 APRENDIZAJE EN LAS RN
Se conoce como entrenamiento al proceso en el 
que una red aprende a calcular la salida correcta 
a partir de los datos de entrada del conjunto ejem-
plo o conjunto de entrenamiento. Se puede definir 
al aprendizaje como el proceso en el que se modi-
fican los pesos de la red como respuesta a una in-
formación de entrada (modificación, destrucción 
o creación de conexiones entre neuronas). Existen 
dos métodos de aprendizaje de gran importancia: 
a) no supervisado y b) supervisado.
	 En el caso no supervisado o autoorganizado la 
red no requiere de un agente externo para realizar 
el ajuste de sus pesos sinápticos mientras que en 
el supervisado se requiere de un agente externo 
o supervisor que sirve para realizar la modifica-
ción de los pesos hasta que la salida sea lo bastante 
aproximada a la considerada correcta.
	 En esta investigación se usó el algoritmo de 
aprendizaje supervisado conocido como backpro-
pagation, cuya idea central es que los errores en 

las capas ocultas son retro-propagadas desde la 
capa de salida. El método emplea un ciclo que co-
mienza aplicando un patrón como estímulo, éste 
se propaga hasta generar una salida que se com-
para con la deseada y se calcula una señal de error. 
Las salidas de error se propagan hacia atrás hacia 
todas las neuronas de la capa oculta que contribu-
yen directamente a la salida. Sin embargo, las neu-
ronas de la capa oculta solo reciben una fracción 
de la señal total del error, relativa a la contribución 
a la salida. 
	 El algoritmo busca el conjunto de pesos que 
genera el valor mínimo de error mediante una 
técnica conocida como regla del gradiente descen-
diente o regla delta. 

2.2 ETAPAS DEL ENTRENAMIENTO
Las etapas del algoritmo de retro-propagación 
son:
•	 Etapa 0: Se inicializan los pesos como un con-

junto de valores aleatorios.
•	 Etapa 1: Mientras la condición “parar” sea 

falsa, se deben realizar los pasos 2 a 9 aquí 
nombrados.

•	 Etapa 2: Para cada par de entrenamiento, eje-
cutar las etapas 3 a 8.

Figura 3  Esquema de una RN multicapa, modificada de Matich (2001).
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•	 Etapa 3 (feedforward): Para cada unidad de en-
trada (ᵡi,→ i = 1,2,3,...,n), recibe una señal ᵡi 
y se envía esta señal a todas las unidades de 
la capa siguiente (unidades de la capa oculta).

•	 Etapa 4: Cada unidad oculta  ainj,→ j = 
1,2,3,...,m) suma los pesos de las señales de en-
trada o realiza la operación correspondiente 
según la función de entrada escogida.

							     
		  ainj = netinj = Σn

i=1 ᵡi wij, 		  (1)

se aplica la función de activación para el cál-
culo de la señal de salida como

							     
			   aj = f (netinj), 		  (2)

y se envía la señal a todas las unidades de la 
capa siguiente.

•	 Etapa 5: Suma de cada unidad de salida (yk,→ 
k = 1,2,3,...,l)  con los pesos en la señal de en-
trada,

							     
		  yink = netk = Σm

j=1 aj wj,k,		   (3)

aplicando la función de activación se obtiene 
la señal de salida,

							     
			   yk = f (yink ), 		  (4)

•	 Etapa 6 (retro propagación del error): Cada unidad 
de salida (yk,=1,2,3,...,l) recibe el valor deseado 
correspondiente al patrón de entrenamiento, 
para el cálculo del error:

							     
		  δk = (zk - ak) f´ (yink ), 		  (5)

con este valor se puede calcular el término de 
corrección de peso (usado para actualizar el 
peso wj,k ).

•	 Etapa 7: Cada unidad oculta (aj,→ j = 
1,2,3,...,m) suma a la entrada delta,

							     
			   δinj =. Σl

k=1 δkwj,k,		  (6)

multiplicando por la derivada de la función de 
activación para calcular el error, para las j-ési-
mas unidades ocultas,

							     
			   δj = δinj f ´(ainj).		   (7)

•	 Etapa 8 (actualización de pesos): Para cada uni-
dad de salida (yk,→ k = 1,2,3,...,l) se deberá 
actualizar su correspondiente peso. La regla 
de cambio de pesos para la capa de salida es 
la siguiente:
						    
	 wj,k (Nuevo) = wj,k (Anterior) + Δwj,k , (8)

donde
Δwj,k= ηδkaj

Ahora, para realizar la actualización de los pe-
sos en las unidades de entrada a una unidad 
oculta, se procede a hacer el siguiente cálculo:

							     
wj,k (Nuevo) = wj,k (Anterior) + Δwi,j ,	  (9)

donde
Δwi,j= ηδjaj

•	 Etapa 9: Restablecer la condición de inicio.

3. Presentación de la base de datos: 
caso de estudio

El estudio se desarrolló en formaciones sobreya-
centes a un campo productor de hidrocarburos en 
horizontes areno-arcillosos (siliciclásticos) de apro-
ximadamente 250 km2 de extensión el cual puede 
ser catalogado como campo petrolero de tamaño 
grande. Los registros geofísicos básicos de 16 po-
zos que constituyen la base de datos se muestran 
en planta en la Figura 4.
	 Para distinguir entre patrones de comporta-
miento y dirigir las búsquedas paramétricas para 
la particular distribución espacial de la informa-
ción petrofísica, se definieron las siguientes tres 
formaciones geológicas (a partir del registro de 
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Rayos Gamma, información común en los pozos 
seleccionados):

•	 Formación A → Formación de Sobrecarga, 
oscila entre los 300 y 800 [m], de profundi-
dad, compuesta de litologías areno-arcillosas 
con contenido de hidrocarburos gaseosos. En 
el área de estudio esta formación representa 
un intervalo de recursos prospectivos-contin-
gentes (que no se ha desarrollado por diversos 
factores) y es apartada del análisis principal 
pues no está presenta en todos los pozos.

•	 Formación B → Esta formación geológica 
representa el sello regional de los yacimien-
tos subyacentes a ella, toda vez que está com-
puesta de minerales arcillosos. El interés de 

analizar esta formación es por su génesis y las 
implicaciones  sobre las características únicas 
del yacimiento, lo que pone a prueba las ca-
pacidades de generalización de las redes neu-
ronales para determinar litologías y estado de 
fluidos. 

•	 Formación C → Esta formación tiene propie-
dades litológicas que derivan de la presencia 
de secuencias arenosas y arcillosas (diferentes 
espesores) con una distribución espacial aso-
ciada al origen turbidítico que generan aba-
nicos submarinos al pie del talud, en donde 
también se presentó erosión generada por la 
corriente de turbidez. El contacto inferior de 
esta formación geológica es discordante con 
secuencias carbonatadas del Cretácico, evi-

Figura 4  Detalle de los pozos ubicados en el área de estudio, que se encuentran entre las coordenadas 22°00’00”S y 114°00’00”E.
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denciado por secuencias de brecha de diferen-
tes espesores. En esta investigación se atiende 
el efecto de este contacto, pero está fuera del 
espacio acotado por los pozos analizados. 
Es importante reiterar que esta formación geo-
lógica contiene intervalos arenosos y arcillosos 
y que estos últimos representan sellos locales 
(además del sello regional que es la Formación 
B). Ambos constituyen trampas que contienen 
fluidos hidrocarburos, sin embargo, en este tra-
bajo se analizan los efectos que podrían gene-
rar la presencia de hidrocarburos en trampas 
finitas en la emulación del modelo petrofísico.

De los registros geofísicos en la base de datos, sie-
te fueron separados para el entrenamiento y nueve 
para la prueba de la red (Tabla 1). Las variables 
de entrada son cinco curvas de registros por pozo 
(ordenada por un contador Z, pseudoprofundidad), 
en dos formaciones geológicas cortadas por todos 
los pozos: el yacimiento C y la formación que le 
sobreyace B: a) Profundidad (depth), b) Rayos Gam-
ma (GR), c) Tiempo de Transito (DT), d) Densidad 
volumétrica (RHOB) y e) Velocidad Compresional 
(VP).

4. Descripción de la Metodología

La metodología empleada en el presente trabajo 
implica, primero, obtener las propiedades petrofí-
sicas porosidad, volumen de cada mineral, satura-
ción de agua y saturación de hidrocarburos para los 
siete pozos de entrenamiento con una resolución 
de 0.1524 m.  El conjunto de prueba seleccionado 
asegura que las examinaciones a la red avalan el 

mismo nivel de funcionamiento con entradas dis-
tintas a las que usaron en el entrenamiento, es decir, 
lo que da confianza sobre su modo de trabajo al 
tiempo que evita la sobre-especialización (compor-
tamiento óptimo únicamente con los ejemplos de 
entrenamiento y errores considerables en casos no 
vistos). Después de estas etapas se calculan para los 
nueve pozos las propiedades petrofísicas con méto-
dos convencionales de forma que se puedan com-
parar con las obtenidas con el modelo neuronal. En 
la Figura 5 se presenta un diagrama de flujo sobre 
los pasos descritos en los párrafos anteriores.

5. Resultados Obtenidos

La distribución de datos de entrenamiento y prueba 
se considera adecuada para controlar la evolución 
de los modelos y para generar su validación. Debe 
mencionarse que la resolución vertical (en Z) en en-
trenamiento es de 0.1524 m mientras que, para los 
datos de prueba, se obtienen resultados cada 2 m. 
	 Una vez definidos los modelos litológicos y la 
saturación de fluidos en los siete pozos de entrena-
miento, se utiliza este arreglo neuronal para pre-
decir los volúmenes litológicos de los nueve pozos 
de prueba. Los resultados son muy alentadores si 
se calculan las correlaciones y se observa la con-
gruencia entre los valores neuronales, las curvas 
de porosidad, saturación y volúmenes de minera-
les y sus correspondientes calculadas con métodos 
convencionales utilizados en la industria.
	 Los resultados de la porosidad total (Por y 
Por_Red)  (carril 4, obtenidas con petrofísica curva 
color morado y con redes curva negra punteada), 
saturación de fluidos obtenida con petrofísica  (Sat; 

Tipo de datos                        Resolución vertical [𝑚𝑚]                   Número de Líneas 

Datos de entrenamiento: →               0.1524                                       52,132 

Datos de prueba: →                           2.0000                                        6,547   

Tabla 1. Descripción de los datos utilizados en RN.
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Figura 6  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) y mineralogía (carriles 7 y 8), del pozo 1 de entrenamiento.

carril 5), saturación de fluidos obtenida con redes 
(Sat_Red carril 6), volúmenes mineralógicos deter-
minados con petrofísica ( Vclay y Vsand ; carril 7) y 
con redes ( Vclay_R y Vsand_R; carril 8); para tres 
pozos de entrenamiento (pozos 1,4 y 6), más cinco 
pozos de prueba (pozos 2, 3, 6, 8 y 9) se muestran 
en las Figuras 6-13.
	 Los resultados del pozo 1 (entrenamiento) 
(Figura 6) guardan una alta correlación entre 
métodos para la porosidad y la saturación en la 
zona de hidrocarburos siendo un poco más baja la 
estimación con el método convencional. En cuan-
to a la mineralogía se identifica el máximo porcen-
taje de litología de arenas (cuarzo) en la zona de 
hidrocarburos (roca almacén) y una disminución 
hacia la cima del yacimiento, manteniéndose en 
un porcentaje mínimo en todo el sello (zona de ar-
cillas). 
	 Por lo que respecta a los resultados para el pozo 
4 (Figura 7) se obtuvieron resultados similares a los 
obtenidos para el pozo 1. Este caso es influenciado 
por la determinación petrofísica convencional, la 
zona de alta presencia de cuarzo e hidrocarburos, 
se extiende algunos metros sobre la base del sello, 
lo que invita a reconsiderar su cima determina-
da inicialmente con el análisis cualitativo del GR. 

Por otro lado, en el pozo 6 se obtuvieron resultados 
muy similares, es decir, las estimaciones están muy 
próximas para las curvas de porosidad y fraccio-
nes minerales obtenidas (con ambos métodos). En 
cuanto a la curva de saturación de hidrocarburos 
lo identificado con las redes neuronales resulta ser 
más certero (en contexto con lo obtenido para los 
otros pozos, zona punteada), que lo calculado con el 
modelo convencional en cuya estimación se observa 
una incipiente saturación de hidrocarburos en toda 
la columna geológica incluyendo el sello regional 
(Formación B), lo cual es poco factible a partir de 
los resultados de los otros pozos del área.
	 Hasta este punto se han explicado los comporta-
mientos sobre datos de entrenamiento, siendo más 
atractivo el tipo de resultados obtenidos para las 
pruebas, como el pozo 2 (Figura 9). En este caso los 
valores fueron obtenidos sin el soporte de aproxima-
ciones petrofísicas (obtenidas con métodos conven-
cionales) y fueron congruentes (espacialmente) con 
lo definido para el pozo 6 (Figura 8), definiendo con 
claridad la zona de yacimiento en los tracks asocia-
dos a la mineralogía y saturaciones (zona punteada 
Figura 9). De manera independiente se obtuvo el 
modelo petrofísico convencional siendo evidente 
que hay disparidad en la saturación respecto de los 
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Figura 7  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) y mineralogía (carriles 7 y 8), del pozo 4 de entrenamiento.

Figura 8  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) correlación errática y mineralogía (carriles 7 y 8), del pozo 6 de 

entrenamiento.
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Figura 9  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) muy errática y mineralogía (carriles 7 y 8), del pozo 2 de 

prueba.

Figura 10  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) errática y mineralogía (carriles 7 y 8), del pozo 3 de prueba, 

muestran buena correlación.
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Figura 11  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) errática y mineralogía (carriles 7 y 8), del pozo 6 de prueba.

Figura 12  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) y mineralogía (carriles 7 y 8), del pozo 8 de prueba.
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resultados de otros pozos (condición que es identi-
ficada con la red neuronal).
	 Para los pozos 3 y 6 de prueba con la red neu-
ronal se obtuvieron resultados adecuados para el 
contexto geológico y consistentes con lo obtenido 
con el método convencional, sobre todo para la 
estimación de saturación de hidrocarburos.
	 Finalmente, la litología para los pozos 8 y 9 de 
prueba, se determinó con ambas metodologías, 
pero son las redes neuronales la que generaron una 
mejor discretización de los paquetes arenosos en 
el yacimiento. Para la saturación de fluidos, como 
ocurrió en los casos anteriores, es más específica 
con redes ya que la presencia de hidrocarburos se 
acota en su mayoría al yacimiento tanto para el 
pozo 8 de prueba, como para el pozo 9 de prueba  
(área punteada).

6. Discusión de resultados obtenidos

Mediante modelos petrofísicos convencionales y 
redes neuronales se obtuvieron valores de porosi-
dad total, saturación de hidrocarburos y las frac-

ciones minerales de los siete pozos de entrenamien-
to y nueve pozos de prueba, obteniendo resultados 
muy aceptables con la alternativa inteligente en las 
curvas de porosidad que presentan buena correla-
ción entre curvas obtenidas con uno y otro método, 
incluso para pozos de prueba en los que la obten-
ción del parámetro es mediante la propagación del 
trabajo de la topología neuronal. 
	 Por su parte, respecto a la saturación de hidro-
carburos, este fue el parámetro obtenido con redes 
neuronales que mejor sustento encontró con la 
configuración geológica (se destaca mediante una 
elipse de línea punteada negra para los casos en los 
que se obtuvo una mejor aproximación). Las redes 
permiten obtener valores de saturaciones más ho-
mogéneos entre pozos (en entrenamiento y prueba) 
que confirman la presencia de hidrocarburos hacia 
la cima de la Formación C, sin que los resultados se 
vieran alterados por lo reconocido sobre saturación 
de fluidos con modelos petrofísicos (entre los pozos 
de entrenamiento estos valores divergen).
	 Finalmente, para las fracciones minerales se ob-
tuvieron resultados con buena correlación entre la 
definición con modelos convencionales implemen-

Figura 13  Resultados de porosidad (carril 4), saturación (carriles 5 y 6) errática y mineralogía (carriles 7 y 8), del pozo 9 de prueba.
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tando el proceso de inversión petrofísica básica y 
los resultados de petrofísica obtenidos con redes 
neuronales, lo cual refleja la alta capacidad de los 
modelos inteligentes para ser usados en la propa-
gación de parámetros hacia zonas de interés que 
cuenten con información escasa o parcialmente 
definida.

7. Conclusiones 

El método y el trabajo con redes neuronales 
para determinar el modelo petrofísico fue apli-
cado a pozos de entrenamiento y pozos con con-
diciones similares (prueba), para estos últimos el 
modelo petrofísico convencional fue obtenido 
de manera independiente. El enfrentamiento de 
los resultados permite concluir que el compor-
tamiento del modelo inteligente fue satisfactorio 
y, se considera, puede extenderse a la estimación 
de otros parámetros de interés petrolero.
	 Se obtuvieron curvas de porosidad, satura-
ción de agua e hidrocarburos, así como las frac-
ciones mineralógicas predominantes de 16 po-
zos (siete de entrenamiento y nueve de prueba), 
con una muy alta correlación respecto de los re-
sultados obtenidos con modelos convencionales.
	 Se observó que los resultados obtenidos con 
redes neuronales adquirieron mayor estabilidad 
pozo a pozo si se comparan con los obtenidos 
con correlaciones disponibles en la literatura, 
cuya calidad de salida está sujeta a la expe-
riencia del usuario. De esto se desprende que 
la técnica, mediante el entrenamiento adecuado 
aún sobre un número reducido de pozos, puede 
aplicarse en extrapolación hacia otros pozos y 
áreas con características similares. Es decir, in-
tegrando un modelo petrofísico 1D para cada 
pozo, o pseudopozo, se pueden construir mode-
los tridimensionales (3D), como un entramado 
de los 1D, de forma que en cualquier punto del 
espacio se consigan valores ponderados de po-
rosidad, saturación, volúmenes mineralógicos, 
entre otros, con un relativamente alto nivel de 
confianza. 
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PROPIEDADES PETROFÍSICAS CON EL MÉTODO 

CONVENCIONAL

El método convencional para obtener el modelo 
petrofísico del medio continúo atravesado por 
el pozo, de acuerdo a la literatura se basa en 
resolver con un sistema de ecuaciones en el que 
las variables desconocidas son la porosidad y los 
“n” minerales formadores de roca que se consi-
dere se tienen en el área de estudio. En este mé-
todo es fundamental conocer igual número de 
registros que tipos de litologías presentes en la 
roca. Por ejemplo, si se consideren las siguientes 
matrices de roca: sílice, calcita, dolomita y ar-
cilla, será necesariamente requerido contar con 
registros que brinden información litológica, 
como pueden ser: porosidad neutrón (NPHI), 
densidad volumétrica (RHOB), tiempo de trán-
sito (DTCO) y factor fotoeléctrico (PEF); por 
decir algunos. En caso de no contar con algún 
registro de los antes citados, es posible intercam-
biar alguno de ellos por algún parámetro obte-
nido de los otros registros, como, por ejemplo, el 
volumen de arcilla. 
	

	 Para el caso que se cita, el sistema de ecuacio-
nes es el siguiente:

 ϕN= ϕϕNf +V1 ϕN1+V2 ϕN2+V3 ϕN3+V4 ϕN4…(A2.1)

 ρb=ϕ ρf+ V1ρ1+ V2ρ2+ V3ρ3+ V4ρ4…… (A2.2)

 DT=ϕDTf+V1DT1+V2DT2+V3DT3+V4DT4…… (A2.3)

 VSH=ϕ VSHf  + V1VSH1+ V2VSH2+ V3VSH3+ V4VSH4 (A2.4)

 1=ϕ + V1+ V2+ V3+ V4…… (A2.5)

Donde:
	 φN, es el valor leído del registro de Porosidad 
Neutrón (NPHI).
	 ρb, es el valor leído del registro de Densidad vo-
lumétrica (RHOB).
	 DT, es el valor leído del registro de Tiempo de 
Tránsito compresional o primario (DTCO).
	 VSH, es el valor leído del registro sintético de Vo-
lumen de Arcilla.
	 φ, es la porosidad total del medio.
	 V1, a V4, son los minerales formadores de roca, 
presentes en la litología de análisis. Son las varia-
bles incógnitas del sistema.

Mineral o Fluido RHOB (gr/cc) DTCO (us/ft) NPHI(dec) PEF(b/e) 
Cuarzo 2.65 55.5 0.065 1.8 
Calcita 2.71 47.5 0.1 5.08 
Dolomita 2.87 43.5 0.18 3.14 
Anhidrita 2.96 50 -0.02 5.05 
Halita 2.16 66.7 -0.03 4.65 
Carbón 1.4 72 0.5 0.16 
Bitumen 1.5 102 0.5 0.18 
Agua dulce 1.0 189 1.0 0.36 
Agua salada (GOM) 1.07 187 1.0 0.81 
Aceite 35° API 0.85 230 1.0 0.12 

 

Tabla A2.1.Valores de referencia de principales minerales y fluidos del subsuelo (Ramos, 2008).
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Del sistema de ecuaciones anterior, se obtiene el 
siguiente arreglo matricial:

Donde:
	 La primera matriz (5 * 1), de la izquierda 
son las lecturas directas de los registros in-
volucrados en el punto de interés.
	 La segunda matriz (5 * 5), son valores de 
respuesta a los registros geofísicos conocidos 

para el f luido como para cada uno de los 
minerales considerados en el análisis (Tabla 
A2.1). 
	 La tercera matriz (5 * 1), de la derecha, 
son las incógnitas que se busca discretizar.
	 El sistema de ecuaciones tiene solución, 
ya que tenemos 5 incógnitas y 5 ecuaciones, 
que al tener los datos de referencia e invir-
tiendo la matriz de 5 * 5, así como multipli-
cándola por la matriz 5 * 1 de los valores 
leídos de los registros, es posible obtener los 
parámetros petrofísicos de las fracciones de 
los minerales y la porosidad del sistema de 
roca analizado.
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