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RESUMEN

En este trabajo se utilizan redes neuronales
como una ventajosa herramienta para esti-
mar parametros petrofisicos de la columna
estratigrafica atravesada por varios pozos.
Los parametros porosidad, volimenes
minerales y saturacién de agua e hidro-
carburos, se obtienen a partir de registros
geofisicos de pozo basicos (rayos gamma,
resistividad profunda, densidad volumé-
trica y tiempo de transito) y se infieren para
otras zonas de la misma area geoldgica,
en los que no se cuenta con este cuadro
de informacion. Este andlisis se realizé en
secuencias  siliciclasticas — areno-arcillosas
atravesadas por varios pozos perforados
para alcanzar un yacimiento de hidrocar-
buros de baja permeabilidad. Se presentan
estimaciones con modelos empiricos para
enfrentarlas con las obtenidos con las redes
neuronales de forma que se califique la
actuacion de la alternativa inteligente. Las
leyes que rigen la dinamica de los para-
metros, asi como los detalles del contexto
geologico quedan inmersos en los pesos de
la red y la consistencia fenomenolégica esta
definida a través de la congruencia de las
entradas para conseguir las salidas elegidas.
Se muestra la forma en la que el modelo
neuronal habilita la propagacién confiable
de valores de propiedad y se convierte en un
ventajoso auxiliar en el estudio de contextos
geologicos muy complejos o escasamente
parametrizados en los que las condiciones
para la aplicacién de correlaciones y méto-
dos empiricos, asi como el tiempo que se
invierte en los procesos de ajuste y contex-
tualizacion de registros, menguan la calidad
y cantidad del conocimiento que se obtiene
sobre el medio.

Palabras clave: modelos petro-
fisicos, registros de pozos,
secuencias siliciclasticas, redes
neuronales.

ABSTRACT

In this work neural networks are used as an
advantageous tool lo estimate  petrophysical
paramelers of the stratigraphic column traversed
by several wells. The parameters porosity, mineral
volumes, and waler and hydrocarbon saturation
are oblained from basic geophysical well logging
(gamma rays, deep resistivily, volumelric density
and transit time) and are inferred for other sites, in
the same geological area, where they are not mea-
sured, so this information matrix is not available.
This analysis was performed on sand-clay silici-
clastic sequences traversed by several wells drilled
lo reach a low-permeability hydrocarbon reservoi:
Estimates with empirical models are presented to
compare them with those oblained with neural
networks in order to qualify the performance of
the wntelligent alternative. The laws that govern
the dynamics of the parameters as well as the
details of the geological context are immersed in
the weights of  the nelwork and the phenomeno-
logical consistency is defined through the congru-
ence of the inpuls lo achieve the chosen outpuls.
The way in which the neural model enables the
reliable propagation of properly values is shown
and becomes an advantageous auxiliary in the
study of very complex or poorly paramelterized
geological contexts in which the conditions for the
application of correlations and empirical methods
as well as how the time invested in the processes
of adjustment and conlextualization of records,
decreases the quality and quantily of knowledge
obtained about the environment.

Keywords: petrophysical mo-
dels, well logs, siliciclastic
sequences, neural networks.
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1. Introduccion

El analisis petrofisico a partir de registros geofisicos
de pozos es una de las herramientas mas impor-
tantes en el desarrollo de conocimiento aplicado
del subsuelo. La informacion recuperada de estos
registros se emplea durante la perforacion y termi-
nacion del pozo y en las intervenciones durante su
vida atil hasta su abandono. El proceso convencio-
nal para la obtencion de propiedades petrofisicas
implica el uso de varios modelos restringidos por
el tipo de litologia (siliciclasticos o carbonatos) los
cuales, a su vez, se subdividen en otros mas espe-
cificos (arcillosos-arenosos o carbonatos-dolomias,
por citar algunos ejemplos) que constituyen una
serie de formulaciones que son como #rgjes a la
medida para cada contexto geologico. Esta dina-
mica de particién funcional tiene éxito restringido
sobre todo en los casos frontera o aquellos que se
alejan (asi sea ligeramente) de las condiciones de la
muestra (litologia) que sirvié para el desarrollo de
esas ecuaciones. Ademas, estos modelos precisan
de ciertos parametros que no son siempre econo-
micos o de facil adquisicién (como, por e¢jemplo, la
resistividad del agua (Rw), la resistividad del lodo
(Rmf) y el enjarre de lodo (Rmc)).

Otra condiciéon que en ocasiones afecta la esti-
macion de propiedades petrofisicas es la cantidad
de curvas de registros que son suficientes para re-
solver, por ejemplo, la matriz de volimenes mine-
rales. Para esta solucién se requiere que la matriz
de m *n sea cuadrada (m=n) por lo que la cantidad
de parametros litologicos que se desean obtener
debe ser igual a la cantidad de curvas de entrada
con las que se cuenta para realizar el arreglo ma-
tricial. Ante la escasez se puede sacrificar el nime-
ro de salidas (determinar tnicamente los princi-
pales minerales que forman la roca, por ejemplo)
o construir las curvas faltantes con informacion
basica disponible.

Entre los trabajos antecedentes de construccion
de modelos petrofisicos con redes neuronales pue-
de mencionarse el de Krug y Ali (2018) quienes
utilizaron analisis estadisticos de datos de registros
geofisicos de pozo y datos geoquimicos de campos
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siliciclasticos. Con los registros de rayos gamma,
densidad volumétrica y tiempo de transito los auto-
res obtienen perfiles acumulativos de minerales ar-
cillosos y carbonatados. Se muestran las capacida-
des del modelo para obtener litologia, sin embargo,
no determina saturaciones de fluidos en la roca, lo
cual es un objetivo planteado en el presente traba-
jo. Por su parte, Ba Alawi, et al. (2020) predicen la
resistividad, presion capilar y permeabilidad relati-
va con modelos neuronales a través de la resistivi-
dad de nucleos, ademas obtienen saturaciones de
fluidos. Una de las limitantes del trabajo de Alawi,
es que solo es aplicable a bases de datos con analisis
de ntcleos, situacién menos frecuente en los pozos
comparada con la asequibilidad de registros geofi-
sicos. Khan et al. (2021) y Al-Sabaa et al. (2021) son
trabajos en los que también se presentan modelos
inteligentes con las salidas relativas.

La propuesta en este documento es un método
robusto que salva las dificultades o carencias de las
aplicaciones del tipo porque permite, de forma sim-
ple y asequible estimar la porosidad, los volimenes
minerales y la saturacién de fluidos. Las redes
neuronales pueden ser una herramienta de soporte
paramétrico inicial, cuando se modelan datos de
registro, en retroalimentacion cuando sirven para
completar los modelos petrofisicos. En ambas fases
un modelo neuronal permite propagar las informa-
ciones a otras areas o pozos dentro del geo-contexto
analizado.

2. Sobre la Inteligencia Artificial y las
Redes Neuronales

La inteligencia artificial (IA) es una de las ramas de
las ciencias de la computacion que se inserta en el
estudio del proceso del pensamiento y comporta-
miento cognitivo humano (Russell y Norvig, 2010).
Se intenta que de alguna forma las maquinas sean
capaces de percibir, razonar y actuar (Winston,
1992) con la inteligencia que desplegaria una perso-
na (Kurzweil, 1990), es decir, la automatizacion de
la conducta inteligente (Luger y Stubblefield,1993).
Las teorias de la IA encuentran un medio para su
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implementaciéon a través de las computadoras,
la programacién inteligente es extensa y no fun-
cionaria sin los avances de velocidad de procesa-
miento y memoria aportados por la industria del
computo.

La IA utiliza representaciones simbélicas basa-
das en un ntmero finito de primitivas y de reglas
para la manipulacién de simbolos, por ejemplo,
redes semanticas y logica de predicados, y tam-
bién la llamada sub-simbolica, la cual utiliza re-
presentaciones numéricas del conocimiento. Este
enfoque se caracteriza por crear sistemas con ca-
pacidad de aprendizaje imitando al cerebro (redes
neuronales), o a la evolucion (algoritmos genéti-
Cos).

Existe una clasificaciéon de modelos de inte-

ligencia artificial que se basa en el objetivo y la
forma en que trabaja el sistema (Russell y Norvig,
2010) (Figura 1):
e Sistemas que piensan como humanos: o mo-
delado cognitivo, basado en teorias de la mente
expresadas como un programa computacional. A
través de entradas y salidas del programa se emula
el funcionamiento de la mente.

e Sistemas que piensan racionalmente: se inten-
ta codificar el “pensamiento correcto”, o proceso
de razonamiento. Se construyen programas con
lineas del pensamiento que crean sistemas inteli-
gentes.

e Sistemas que actGan racionalmente: se trata
con agentes que perciben su ambiente a través de
sensores y actian sobre ese ambiente. Se intenta
que operen autbnomamente en la creaciéon y per-
secucion de metas.

Sobre los intentos por describir aspectos de la
inteligencia con maquinas son las redes neurona-
les RN las que buscan emular el aprendizaje hu-
mano (reconocimiento de patrones, memorizacion
y asociacion de hechos, entre otros) para resolver
problemas donde la expresion de la soluciéon a
través de un algoritmo es compleja o imposible.
Una RN esta compuesta por unidades de procesa-
miento que habilitan intercambio de informacion
a través de una estructura diseiada para operar
haciendo crecer su capacidad de aprender y mejo-
rar su funcionamiento (Matich, 2001).

La analogia entre una neurona biolégica y una
artificial se muestra en la Figura 2. Se muestran las

Sistemas que Piensan como
Humanos

< El modelo es el funcionamiento de
la mente humana.

<+ Trata de establecer una teoria sobre
el funcionamiento de la mente.

Teoria > Modelo

\ computacional
/ Sistemas que Piensan
Racionalmente

< Fundamentados en la Légica.

Sistemas que Actian como

+ El modelo es el hombre.

« EIl objetivo es construir un sistema

Humanos

que pase por humano.

Prueba de Turing

Sistemas que Actﬁan\
Racionalmente

INTELIGENCIA ARTIFICIAL Y LAS

REDES NEURONALES

< El paradigma es el agente racional que
actia segun el entorno que lo rodea.
« Existen dos obstaculos:
1. Dificultad para formalizar
el conocimiento.

< Existen dos ventajas:
1. Es el enfoque mas general.

2. Resolucion tedrica y 2. Facilidad para el desarrollo
practica del problema. cientifico

maasificacién de los modelos de Inteligencia con base al objetivo y esquema de funcionamiento.
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conexiones entre los nodos (/_1, 1_2, ..., I_n) que
representan las dendritas y los axones (entradas) y
la salida (y) si se referencia a una neurona anterior
a la que se esta analizando. Los pesos (w_1, w_2,
..., w_n) representan la sinapsis y la aproximacién
umbral representa la actividad realizada por el na-
cleo de la célula (soma).

Los componentes principales de una red es el
conjunto de nodos y las conexiones entre ellos. Los
nodos son unidades computacionales que reciben
informacion externa (entradas) la cual es procesa-
da para obtener una respuesta (salida). Las unida-
des de procesamiento reciben, procesan y transmi-
ten sefiales tal como las neuronas biologicas.

En la Figura 3 se muestra un esquema de una
red neuronal con la representacion del flujo de in-
formacion. La red tiene tres capas: entradas, ocul-
ta y salida.

El procesamiento neuronal tiene ventajas de
modelado importantes: i) aprendizaje adaptativo,
ii) auto-organizacion, iii) tolerancia a fallos y 1v)
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operaciones en tiempo real. La adaptabilidad se
refiere a la capacidad para diferenciar patrones
mediante el entrenamiento sin especificar funcio-
nes de distribucion de probabilidad ni modelos
descriptivos especificos. Las redes neuronales em-
plean su capacidad de aprendizaje adaptativo para
autoorganizar la informacién que reciben durante
la operacion, siendo “aprender” el concepto que
describe la modificaciéon de cada elemento pro-
cesal. La generalizacion en las redes es la facul-
tad para responder apropiadamente cuando se
presentan datos o situaciones a las que no habian
sido expuestas anteriormente (Hilera y Martinez,
1995).

Comparadas con los sistemas computacionales
tradicionales donde estos pierden su funcionalidad
cuando sufren un error de memoria, las RN son
resilientes ante fallo de neuronas sin caidas o co-
lapsos. Lo anterior se traduce como la capacidad
para reconocer patrones con ruido, distorsionados
o incompletos (tolerancia a fallos respecto a los

Cuerpo
Celular

Axon

Sinapsis

Dendritas

MAnalogia de Neuronas Biolégicas con una Neurona Artificial.
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Esquema de una RN multicapa, modificada de Matich (2001).
atos) y seguir realizando su funciéon (aunque sea as capas ocultas son retro-propagadas desde la
datos) y seg lizando su fi q 1 p It tro-propagadas desde 1
destruida parte de la red). Esto porque la informa- capa de salida. El método emplea un ciclo que co-
cion esta distribuida en las conexiones con cierto mienza aplicando un patrén como estimulo, éste
grado de redundancia. se propaga hasta generar una salida que se com-
para con la deseada y se calcula una senal de error.
2.1 APRENDIZAJE EN LAS RN Las salidas de error se propagan hacia atras hacia
Se conoce como entrenamiento al proceso en el todas las neuronas de la capa oculta quc contribu-
que una red aprende a calcular la salida correcta yen directamente a la salida. Sin embargo, las neu-
a partir de los datos de entrada del conjunto ejem- ronas de la capa oculta solo reciben una fraccion
plo o conjunto de entrenamiento. Se puede definir de la senal total del error, relativa a la contribucion
al aprendizaje como el proceso en el que se modi- a la salida.
fican los pesos de la red como respuesta a una in- El algoritmo busca el conjunto de pesos que
formacion de entrada (modificacion, destruccion genera el valor minimo de error mediante una
o creacion de conexiones entre neuronas). Existen técnica conocida como regla del gradiente descen- b
dos métodos de aprendizaje de gran importancia: diente o regla delta. g
. . o
a) no supervisado y b) supervisado. =
En el caso no supervisado o autoorganizado la 2.2 ETAPAS DEL ENTRENAMIENTO £
red no requiere de un agente externo para realizar Las etapas del algoritmo de retro-propagacion é
el ajuste de sus pesos sinapticos mientras que en son: &
el supervisado se requiere de un agente externo *  Etapa 0: Se inicializan los pesos como un con- S
. . . . . . o
o supervisor que sirve para realizar la modifica- junto de valores aleatorios. 2
ci6n de los pesos hasta que la salida sea lo bastante e Ftapa 1: Mientras la condicién “parar” sea 2
aproximada a la considerada correcta. falsa, se deben realizar los pasos 2 a 9 aqui 5
En esta investigacion se uso el algoritmo de nombrados. Z
aprendizaje supervisado conocido como backpro- *  [Etapa 2: Para cada par de entrenamiento, eje- "
. . )
pagation, cuya idea central es que los errores en cutar las etapas 3 a 8. =
o
o
=
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Etapa 3 (feedforward): Para cada unidad de en-
trada (t,— i = 1,2,3,...,n)
y se envia esta sefial a todas las unidades de

, recibe una sefal X,
la capa siguiente (unidades de la capa oculta).
Etapa 4: Cada unidad oculta @, ,— j =
1,2,3,...,m) suma los pesos de las sefiales de en-
trada o realiza la operaciéon correspondiente
segtn la funcién de entrada escogida.
a _=net =X"_ Lw. (1)
inj inj =1 i,

se aplica la funcién de activacion para el cal-
culo de la sefial de salida como

a,=f (net,), &)

inj

y se envia la sefial a todas las unidades de la
capa siguiente.

Elapa 5: Suma de cada unidad de salida (y, —
k=1,2,3,...,0) conlos pesos en la sefial de en-
trada,

Vi = NEL=2"_ aW,, )

aplicando la funcién de activacién se obtiene
la senal de salida,

yk :j‘(-yink )’ (4)

Etapa 6 (retro propagacion del error): Cada unidad
de salida (y, =1 ,2,3,...,0) recibe el valor deseado
correspondiente al patrén de entrenamiento,

para el calculo del error:

0, = (k- ak) 1" (v,,), (%)

con este valor se puede calcular el término de
correccion de peso (usado para actualizar el
pesow,, ).

Etapa 7: Cada unidad oculta (a,— j =
1,2,3,...,m) suma a la entrada delta,

X 3w (6)

inj T k=1 A4
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multiplicando por la derivada de la funcién de
activacion para calcular el error, para las j-ési-
mas unidades ocultas,

5,=5,,/ (a,). (7)

e FEtapa 8 (actualizacion de pesos): Para cada uni-
dad de salida (y,— &k = 1,2,3,...,]) se debera
actualizar su Cofrespondiente peso. La regla
de cambio de pesos para la capa de salida es
la siguiente:

w, ,(Nuevo) = W, (Anterior) + Aw, . (8)

donde
Aw, = no W

Ahora, para realizar la actualizacion de los pe-
sos en las unidades de entrada a una unidad
oculta, se procede a hacer el siguiente calculo:

W, (Nuevo) = W, (Anterior) + Aw,, 9)

donde
Aw. =nmda.
L] JJ

e Elapa 9: Restablecer la condicion de inicio.

3. Presentacion de la base de datos:
caso de estudio

El estudio se desarroll6 en formaciones sobreya-
centes a un campo productor de hidrocarburos en
horizontes areno-arcillosos (siliciclasticos) de apro-
ximadamente 250 km” de extension el cual puede
ser catalogado como campo petrolero de tamaiio
grande. Los registros geofisicos basicos de 16 po-
zos que constituyen la base de datos se muestran
en planta en la Figura 4.

Para distinguir entre patrones de comporta-
miento y dirigir las bsquedas paramétricas para
la particular distribucion espacial de la informa-
cion petrofisica, se definieron las siguientes tres
formaciones geologicas (a partir del registro de
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Rayos Gamma, informacién comun en los pozos
seleccionados):

e Formacion A — Formacién de Sobrecarga,
oscila entre los 300 y 800 [m], de profundi-
dad, compuesta de litologias areno-arcillosas
con contenido de hidrocarburos gaseosos. En
el area de estudio esta formacién representa
un intervalo de recursos prospectivos-contin-
gentes (que no se ha desarrollado por diversos
factores) y es apartada del analisis principal
pues no esta presenta en todos los pozos.

* Tormacion B — Esta formacion geologica
representa el sello regional de los yacimien-
tos subyacentes a ella, toda vez que esta com-
puesta de minerales arcillosos. El interés de

analizar esta formacion es por su génesis y las
implicaciones sobre las caracteristicas Gnicas
del yacimiento, lo que pone a prucba las ca-
pacidades de generalizaciéon de las redes neu-
ronales para determinar litologias y estado de
fluidos.

Formacion G — Esta formacion tiene propie-
dades litologicas que derivan de la presencia
de secuencias arenosas y arcillosas (diferentes
espesores) con una distribucion espacial aso-
ciada al origen turbiditico que generan aba-
nicos submarinos al pie del talud, en donde
también se presentd erosion generada por la
corriente de turbidez. El contacto inferior de
esta formacion geoldgica es discordante con
secuencias carbonatadas del Cretacico, evi-

b ,».P,efzo 5 - 3 . (
| 0zo \
Pozo 7
L. Pozo Test ’P"ZO Test 1
P ~ Pozo Test 6.P bep e
e Pozo Test 2
- ®
Pozo 4
. | Pozo Test 3
.Pozo Test 4 Sy \ .Pozo » M | &
Pozo 3 | ) _
/ { Pozo 6
G —\ ® v 5
- /.’\l N |
; : " PozoTest ?‘3 ozo Test 8
Simbologia 4 !
® Pozode prueba N Tt \
; 105 0 i 2/ 3
[ ] : Pozo de entrenamiento p—— ——

m Detalle de los pozos ubicados en el area de estudio, que se encuentran entre las coordenadas 22°00°00”S y 114°00’00”E.
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denciado por secuencias de brecha de diferen-
tes espesores. En esta investigacion se atiende
el efecto de este contacto, pero esta fuera del
espacio acotado por los pozos analizados.

Es importante reiterar que esta formacién geo-
logica contiene intervalos arenosos y arcillosos
y que estos ultimos representan sellos locales
(ademas del sello regional que es la Formacion
B). Ambos constituyen trampas que contienen
fluidos hidrocarburos, sin embargo, en este tra-
bajo se analizan los efectos que podrian gene-
rar la presencia de hidrocarburos en trampas
finitas en la emulacion del modelo petrofisico.

De los registros geofisicos en la base de datos, sie-
te fueron separados para el entrenamiento y nueve
para la prueba de la red (Tabla 1). Las variables
de entrada son cinco curvas de registros por pozo
(ordenada por un contador Z, pseudoprofundidad),
en dos formaciones geoldgicas cortadas por todos
los pozos: el yacimiento C y la formacion que le
sobreyace B: a) Profundidad (depth), b) Rayos Gam-
ma (GR), ¢) Tiempo de Transito (D7), d) Densidad
volumétrica (RHOB) y e) Velocidad Compresional
(vp).

4. Descripcion de la Metodologia

La metodologia empleada en el presente trabajo
implica, primero, obtener las propiedades petrofi-
sicas porosidad, volumen de cada mineral, satura-
ci6n de agua y saturacion de hidrocarburos para los
siete pozos de entrenamiento con una resolucion
de 0.1524 m. El conjunto de prueba seleccionado
asegura que las examinaciones a la red avalan el

é Tabla 1. Descripcion de los datos utilizados en RN.
9 Tipo de datos Resolucion vertical /m] Niimero de Lineas
o
(a]
=
g Datos de entrenamiento: — 0.1524 52,132
Datos de prueba: — 2.0000 6,547

mismo nivel de funcionamiento con entradas dis-
tintas a las que usaron en el entrenamiento, es decir,
lo que da confianza sobre su modo de trabajo al
tiempo que evita la sobre-especializacion (compor-
tamiento Optimo Unicamente con los ejemplos de
entrenamiento y errores considerables en casos no
vistos). Después de estas etapas se calculan para los
nueve pozos las propiedades petrofisicas con méto-
dos convencionales de forma que se puedan com-
parar con las obtenidas con el modelo neuronal. En
la Figura 5 se presenta un diagrama de flujo sobre
los pasos descritos en los parrafos anteriores.

5. Resultados Obtenidos

La distribucion de datos de entrenamiento y prueba
se considera adecuada para controlar la evolucién
de los modelos y para generar su validacion. Debe
mencionarse que la resolucion vertical (en Z) en en-
trenamiento es de 0.1524 m mientras que, para los
datos de prueba, se obtienen resultados cada 2 m.

Una vez definidos los modelos litologicos y la
saturacion de fluidos en los siete pozos de entrena-
miento, se utiliza este arreglo neuronal para pre-
decir los volimenes litologicos de los nueve pozos
de prueba. Los resultados son muy alentadores si
se calculan las correlaciones y se observa la con-
gruencia entre los valores neuronales, las curvas
de porosidad, saturaciéon y volimenes de minera-
les y sus correspondientes calculadas con métodos
convencionales utilizados en la industria.

Los resultados de la porosidad total (Por y
Por_Red) (carril 4, obtenidas con petrofisica curva
color morado y con redes curva negra punteada),
saturacion de fluidos obtenida con petrofisica (Sat;
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m Resultados de porosidad (carril 4), saturacion (carriles 5 y 6) y mineralogia (carriles 7 y 8), del pozo 1 de entrenamiento.

carril 5), saturacion de fluidos obtenida con redes Por otro lado, en el pozo 6 se obtuvieron resultados
(Sat_Red carril 6), volimenes mineralogicos deter- muy similares, es decir, las estimaciones estan muy
minados con petrofisica ( Velay y Vsand ; carril 7) y proximas para las curvas de porosidad y fraccio-
con redes ( Velay_R 'y Vsand_R; carril 8); para tres nes minerales obtenidas (con ambos métodos). En
pozos de entrenamiento (pozos 1,4 y 6), mas cinco cuanto a la curva de saturaciéon de hidrocarburos
pozos de prueba (pozos 2, 3, 6, 8 y 9) se muestran lo identificado con las redes neuronales resulta ser
en las Figuras 6-13. mas certero (en contexto con lo obtenido para los
Los resultados del pozo 1 (entrenamiento) otros pozos, zona punteada), que lo calculado con el
(Figura 6) guardan una alta correlaciéon entre modelo convencional en cuya estimacion se observa
métodos para la porosidad y la saturacion en la una incipiente saturacion de hidrocarburos en toda
zona de hidrocarburos siendo un poco mas baja la la columna geolégica incluyendo el sello regional
estimacion con el método convencional. En cuan- (Formaciéon B), lo cual es poco factible a partir de
to a la mineralogia se identifica el maximo porcen- los resultados de los otros pozos del area.
" taje de litologia de arenas (cuarzo) en la zona de Hasta este punto se han explicado los comporta-
< hidrocarburos (roca almacén) y una disminucion mientos sobre datos de entrenamiento, siendo mas
§ hacia la cima del yacimiento, manteniéndose en atractivo el tipo de resultados obtenidos para las
= un porcentaje minimo en todo el sello (zona de ar- pruebas, como el pozo 2 (Figura 9). En este caso los
o cillas). valores fueron obtenidos sin el soporte de aproxima-
% Por lo que respecta a los resultados para el pozo ciones petrofisicas (obtenidas con métodos conven-
c 4 (Figura 7) se obtuvieron resultados similares a los cionales) y fueron congruentes (espacialmente) con
S obtenidos para el pozo 1. Este caso es influenciado lo definido para el pozo 6 (Figura 8), definiendo con
§ por la determinacién petrofisica convencional, la claridad la zona de yacimiento en los tracks asocia-
;g zona de alta presencia de cuarzo e hidrocarburos, dos a la mineralogia y saturaciones (zona punteada
g se extiende algunos metros sobre la base del sello, Figura 9). De manera independiente se obtuvo el
g lo que invita a reconsiderar su cima determina- modelo petrofisico convencional siendo evidente
S da inicialmente con el analisis cualitativo del GR. que hay disparidad en la saturacion respecto de los
)]
3
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resultados de otros pozos (condicién que es identi-
ficada con la red neuronal).

Para los pozos 3 y 6 de prueba con la red neu-
ronal se obtuvieron resultados adecuados para el
contexto geoldgico y consistentes con lo obtenido
con el método convencional, sobre todo para la
estimacion de saturaciéon de hidrocarburos.

Finalmente, la litologia para los pozos 8 y 9 de
prucba, se determiné con ambas metodologias,
pero son las redes neuronales la que generaron una
mejor discretizacion de los paquetes arenosos en
el yacimiento. Para la saturacion de fluidos, como
ocurri6 en los casos anteriores, es mas especifica
con redes ya que la presencia de hidrocarburos se
acota en su mayoria al yacimiento tanto para el
pozo 8 de prueba, como para el pozo 9 de prucbha
(area punteada).

6. Discusion de resultados obtenidos

Mediante modelos petrofisicos convencionales y
redes neuronales se obtuvieron valores de porosi-
dad total, saturacion de hidrocarburos y las frac-

ciones minerales de los siete pozos de entrenamien-
to y nueve pozos de prueba, obteniendo resultados
muy aceptables con la alternativa inteligente en las
curvas de porosidad que presentan buena correla-
cion entre curvas obtenidas con uno y otro método,
incluso para pozos de prueba en los que la obten-
cion del parametro es mediante la propagacion del
trabajo de la topologia neuronal.

Por su parte, respecto a la saturaciéon de hidro-
carburos, este fue el parametro obtenido con redes
neuronales que mejor sustento encontrdé con la
configuracion geoldgica (se destaca mediante una
elipse de linea punteada negra para los casos en los
que se obtuvo una mejor aproximacion). Las redes
permiten obtener valores de saturaciones mas ho-
mogéneos entre pozos (en entrenamiento y prueba)
que confirman la presencia de hidrocarburos hacia
la cima de la Formacion C, sin que los resultados se
vieran alterados por lo reconocido sobre saturacion
de fluidos con modelos petrofisicos (entre los pozos
de entrenamiento estos valores divergen).

Finalmente, para las fracciones minerales se ob-
tuvieron resultados con buena correlacion entre la
definicién con modelos convencionales implemen-
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tando el proceso de inversion petrofisica basica y Contribucion de los autores

los resultados de petrofisica obtenidos con redes
neuronales, lo cual refleja la alta capacidad de los
modelos inteligentes para ser usados en la propa-
gacion de parametros hacia zonas de interés que
cuenten con informacién escasa o parcialmente
definida.

7. Conclusiones

El método y el trabajo con redes neuronales
para determinar el modelo petrofisico fue apli-
cado a pozos de entrenamiento y pozos con con-
diciones similares (prueba), para estos ultimos el
modelo petrofisico convencional fue obtenido
de manera independiente. El enfrentamiento de
los resultados permite concluir que el compor-
tamiento del modelo inteligente fue satisfactorio
y, se considera, puede extenderse a la estimacién
de otros parametros de interés petrolero.

Se obtuvieron curvas de porosidad, satura-
cion de agua e hidrocarburos, asi como las frac-
ciones mineralodgicas predominantes de 16 po-
zos (siete de entrenamiento y nueve de prucba),
con una muy alta correlacién respecto de los re-
sultados obtenidos con modelos convencionales.

Se observo que los resultados obtenidos con
redes neuronales adquirieron mayor estabilidad
pozo a pozo si se comparan con los obtenidos
con correlaciones disponibles en la literatura,
cuya calidad de salida esta sujeta a la expe-
riencia del usuario. De esto se desprende que
la técnica, mediante el entrenamiento adecuado
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atn sobre un numero reducido de pozos, puede
aplicarse en extrapolacion hacia otros pozos y
areas con caracteristicas similares. Es decir, in- Referencias

tegrando un modelo petrofisico 1D para cada
pozo, o pseudopozo, se pueden construir mode-
los tridimensionales (3D), como un entramado
de los 1D, de forma que en cualquier punto del
espacio se consigan valores ponderados de po-
rosidad, saturacion, volimenes mineraldgicos,
entre otros, con un relativamente alto nivel de
confianza.
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Anhexo Para el caso que se cita, el sistema de ecuacio-

nes es el siguiente:
PROPIEDADES PETROFISICAS CON EL METODO

CONVENCIONAL $3= 00V, bV, bV btV by (A1)

El método convencional para obtener el modelo
petrofisico del medio contintio atravesado por
el pozo, de acuerdo a la literatura se basa en
resolver con un sistema de ecuaciones en el que
las variables desconocidas son la porosidad y los
“n” minerales formadores de roca que se consi-
dere se tienen en el area de estudio. En este mé-
todo es fundamental conocer igual nimero de
registros que tipos de litologias presentes en la
roca. Por ejemplo, si se consideren las siguientes
matrices de roca: silice, calcita, dolomita y ar-
cilla, serd necesariamente requerido contar con
registros que brinden informacién litolégica,
como pueden ser: porosidad neutron (NPHI),
densidad volumétrica (RHOB), tiempo de tran-
sito (DTCO) y factor fotoeléctrico (PEL); por
decir algunos. En caso de no contar con algtn
registro de los antes citados, es posible intercam-
biar alguno de ellos por algin parametro obte-
nido de los otros registros, como, por ejemplo, el
volumen de arcilla.

p=ppt Vpt Vot Vot Vp,...... (A2.2)

DT=¢DT+V,DT 4V, DT +V,DT+V,DT,...... (A2.3)

2~ SH2 3 " SH3 4 7 SH4

Vi Vi +V Vet V,Vt VIV 4+ V VL (A2.4)
120 + V4V, V4V, ... (A2.5)

Donde:

¢, es el valor leido del registro de Porosidad
Neutrén (NPHI).

p,, es el valor leido del registro de Densidad vo-
lumétrica (RHOB).

DT, es el valor leido del registro de Tiempo de
Transito compresional o primario (D7CO).

v

SH?
lumen de Arcilla.

es el valor leido del registro sintético de Vo-

¢, es la porosidad total del medio.

V', a V, son los minerales formadores de roca,
presentes en la litologia de analisis. Son las varia-
bles incognitas del sistema.

Tabla A2.1.Valores de referencia de principales minerales y fluidos del subsuelo (Ramos, 2008).

Mineral o Fluido RHOB (gr/cc) | DTCO (us/ft) NPHI(dec) PEF(b/e)

Cuarzo 2.65 55.5 0.065
Calcita 2.71 47.5 0.1 5.08 2
Dolomita 2.87 43.5 0.18 3.14 S
Anhidrita 2.96 50 -0.02 5.05 2
Halita 2.16 66.7 -0.03 4.65 2
Carbén 1.4 72 0.5 0.16 e
Bitumen 1.5 102 0.5 0.18 S
Agua dulce 1.0 189 1.0 0.36 3
O
Agua salada (GOM) 1.07 187 1.0 0.81 Z
Aceite 35° API 0.85 230 1.0 0.12 2
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Del sistema de ecuaciones anterior, se obtiene el
siguiente arreglo matricial:

[¢N][¢Nf ¢N1 ¢N2 ¢N3 ¢N4] o)
| oo || pr P P2 P3 Pa | A
|DT || DTy DTy DT, DTz DT, ||Vzf..... (A2.6)
lVSH J [VSH f VSH1 Vsy 2 VSH3 VSH4J [V3 J
by 1 01 1 11

Donde:

La primera matriz (5 * 1), de la izquierda
son las lecturas directas de los registros in-
volucrados en el punto de interés.

La segunda matriz (5 * 5), son valores de
respuesta a los registros geofisicos conocidos
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para el fluido como para cada uno de los
minerales considerados en el analisis (Tabla
A2.1).

La tercera matriz (5 * 1), de la derecha,
son las incognitas que se busca discretizar.

El sistema de ecuaciones tiene solucidn,
ya que tenemos 5 incoégnitas y 5 ecuaciones,
que al tener los datos de referencia e invir-
tiendo la matriz de 5 * 5, asi como multipli-
candola por la matriz 5 * 1 de los valores
leidos de los registros, es posible obtener los
parametros petrofisicos de las fracciones de
los minerales y la porosidad del sistema de
roca analizado.



