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RESUMEN

Los skarns IOCG ricos en Cu y Au de 
Tatatila–Las Minas en Veracruz (cen-
tro-oriente de México) están circunscritos 
a los estadíos más tempranos de la Faja 
Volcánica Transmexicana (FVTM) e indi-
can directamente la existencia de una provin-
cia metalogenética vinculada a su dinámica 
tectonomagmática. Este es el primer caso 
bien documentado para dicha provincia 
metalogenética. Estos depósitos se formaron 
como skarns entre rocas de la secuencia 
carbonatada del Mesozoico y rocas hipa-
bisales indermedias a ácidas del Mioceno. 
Los nuevos fechamientos U-Pb en zircón y 
40Ar/39Ar evidencian la existencia de cuatro 
épocas de actividad magmática en el área: 
(1) en el Pérmico temprano (Artinskiano), 
en asociación con el basamento paleozoico 
de las secuencias del Mesozoico, (2) un 
conjunto de intrusivos pre-FVTM entre del 
Oligoceno tardío y el Mioceno temprano, 
(3) un conjunto de intrusivos del Mioceno 
medio y tardío asociados a la FVTM, y 
(4) rocas intrusivas extrusivas del Plioceno 
de la FVTM, posiblemente asociadas a los 
depósitos del estadio post-caldera de Los 
Humeros. Las edades obtenidas varían entre 
24.60 ± 1.10 y 19.04 ± 0.69 Ma para 
el estadío 2, y entre 16.34 ± 0.20 y 13.92 
± 0.22 Ma para el estadío 3. El estadío 2 
corresponde a una etapa magmática hasta el 
presente estudio desconocida en el área. Sólo 
las rocas del estadío 3 están asociadas a las 
mineralizaciones de skarn IOCG, cuyas eta-
pas retrógradas han sido fechadas en 12.44 
± 0.09 (moscovita crómica, asociación 
fílica) y 12.18 ± 0.21 Ma (zircón, asocia-
ción potásica). Por tanto, las edades de las 
rocas intrusivas del estadío 3 se interpretan 
como parte de las asociaciones de skarn pró-
grado (mayormente, de ~15.4 a <14 Ma). 
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ABSTRACT

The Cu- and Au-rich Tatatila–Las 
Minas IOCG skarn deposits in 
Veracruz (central-east Mexico) are 
circumscribed to the earliest stages 
of  the Trans-Mexican Volcanic Belt 
(TMVB) and stand for a metallogenic 
province directly linked to its tec-
tonomagmatic dynamics. This is the 
first well-documented case for such 
metallogenic province. These depos-
its were formed as skarns between 
rocks of  the Mesozoic carbonate 
series and Miocene intermediate to 
acid hypabyssal rocks. New U-Pb 
zircon and 40Ar/39Ar ages provide 
evidence for four epochs of  mag-
matic activity in the area: (1) early 
Permian (Artinskian), in association 
with the Paleozoic basement, (2) late 
Oligocene to early Miocene suite 
of  pre-TMVB intrusive rocks, (3) 
middle to late Miocene suite of  early 
TMVB-related intrusive rocks, and 
(4) Pliocene intrusive and extrusive 
rocks of  the TMVB, possibly associ-
ated with the Los Humeros post-cal-
dera stage. The obtained ages range 
between 24.60 ± 1.10 and 19.04 ± 
0.69 Ma for stage 2, and between 
16.34 ± 0.20 and 13.92 ± 0.22 Ma 
for stage 3. Stage 2 corresponds to 
a magmatic stage unheard of  in the 
area, until this study. Only stage 3 
rocks are associated with the IOCG 
skarn mineralization, with retro-
grade stages dated at 12.44 ± 0.09 
(chromian muscovite, phyllic associ-
ation) and 12.18 ± 0.21 Ma (zircon, 
potassic association). Therefore, the 
ages of  stage-3 intrusive rocks are 
interpreted to date the formation of  
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1. Introduction

Recent assessment has shown that the metallo-
genic potential of  the mid-Miocene to Holocene 
Trans-Mexican Volcanic Belt (TMVB) and the 
potential of  Miocene to Holocene ore deposits 
in Mexico are greater than previously believed 
(Camprubí, 2009, 2013; Clark and Fitch, 2009; 
Poliquin, 2009; Jansen et al., 2017; Camprubí et 
al., 2019, 2020; Fuentes-Guzmán et al., 2020). 
The metallogeny of  Miocene to Holocene epochs 
in Mexico is, in fact, distributed across several 
regions, namely (1) the southernmost part of  the 
Sierra Madre Occidental, in association with its 
last ignimbritic flare-up, (2) the Trans-Mexican 
Volcanic Belt (TMVB), (3) the southern part of  
the Eastern Mexico Alkaline Province (EMAP) 

La afinidad petrogenética de las rocas correspondientes a los estadíos 
2 y 3 es prácticamente la misma—su principal diferencia estriba los 
contenidos más altos de Y e Yb en rocas del estadío 3 (aunque no se 
encontró afinidad alguna con granitos de intraplaca), lo cual sugiere 
la interacción de sus magmas primigenios con magmas alcalinos que 
posiblemente pertenecieron a la contigua y contemporánea Provincia 
Alcalina Oriental Mexicana. Los indicadores petrogenéticos (elemen-
tales e isotópicos) en las rocas del Cenozoico apuntan consistentemente 
a rocas intermedias a ácidas, metalumínicas, de tipo I y S, emplazadas 
en un arco continental debido a subducción y pertenecen a las series 
calci-alcalinas de potasio medio a alto, con (mayormente) firmas de 
adakitas altas en sílice debidas a un origen profundo de magmas que 
experimentaron cierto grado de contaminación cortical. La diversidad 
de posibles orígenes para las fimas adakíticas en este contexto pueden 
reducirse a sólo dos de ellas, que no son mutuamente exclusivas: adaki-
tas derivadas de la fusión de la placa subducida y adakitas derivadas 
de procesos tipo fusión-asimilación-almacenamiento-homogeneización 
(MASH, por sus siglas en inglés). Ambas fuentes, en principio, 
poseen la capacidad de generar magmas que eventualmente pudieran 
producir sistemas mineralizantes magmático-hidrotermales con una 
cierta variedad de tipos de depósitos minerales asociados, incluyendo 
depósitos IOCG. Además, ambas posibles fuentes de adakitas son 
compatibles con la reverticalización de la placa subducida tras un 
periodo de subducción plana para el estadío más temprano en la evo-
lución de la FVTM.

Palabras clave: IOCG, adakitas, Mioceno, Faja 
Volcánica Transmexicana, skarn, magmático-hi-
drotermal, óxidos de hierro.

the prograde skarn associations (mostly ~15.4 to <14 Ma). 
The petrogenetic affinity of  stage-2 and stage-3 rocks is 
about the same—the main difference has to do with higher 
Y and Yb contents in stage-3 rocks (although no affinity with 
within-plate granites was found), which is suggestive of  an 
interaction of  their parental magmas with alkaline magmas 
that most likely belong to the conterminous and contempo-
raneous Eastern Mexico Alkaline Province. Petrological indi-
cators (elemental and isotopic) in Cenozoic rocks consistently 
point to intermediate to acid, metaluminous, I- and S-type 
rocks that were emplaced in a subduction-related continen-
tal arc, within the medium- to high-potassium calc-alkaline 
series, with high-silica adakitic signatures due associated to 
deep-sourced magmas that underwent crustal contamination 
to some degree. The various possible sources for the mag-
mas with adakitic signature in this context can be narrowed 
down to two of  them that are not mutually exclusive: adakitic 
derived from subducted slab melting and melting-assimila-
tion-storage-homogenization (MASH)-derived adakites. Both 
sources are, in principle, capable of  generating magmas that 
would eventually produce magmatic-hydrothermal mineral-
izing systems with an associated variety of  ore deposit types, 
including IOCG. Also, both possible sources for adakites are 
compatible with the renewed steepening of  the subducted 
slab after a period of  flat subduction, for the earliest stage in 
the evolution of  the TMVB.

Keywords: IOCG, adakites, Miocene, Trans-
Mexican Volcanic Belt, skarn, magmatic-hydro-
thermal, iron oxides.

and northern Chiapas, (4) the easternmost part 
of  the Sierra Madre del Sur (in Oaxaca), and (5) 
the Gulf  of  California. As (a) the easternmost 
ending of  the TMVB coincides with the N-S 
geographic distribution of  the EMAP, (b) the 
metallogeny of  the TMVB is still poorly under-
stood, and (c) there is a wide variety of  types 
of  ore deposits across the EMAP—including, 
skarns, metalliferous porphyries, epithermal 
deposits, IOCG deposits and carbonatites—, the 
identification of  whether an ore deposit in such a 
region is geologically associated with the TMVB 
or the EMAP is not a straightforward task. 
	 The Tatatila–Las Minas district in Veracruz 
State is located precisely in the region in which the 
TMVB and the EMAP overlap geographically, 
in the Palma Sola area. The ore deposits in the 
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long-standing program that aims to the geochro-
nological characterization of  Mexican mineral 
deposits and the geologic events with which 
they are genetically associated (Camprubí et al., 
2015, 2016a, 2016b, 2017, 2018, 2019, 2020; 
Farfán-Panamá et al., 2015; Martínez-Reyes et 
al., 2015; González-Jiménez et al., 2017a, 2017b; 
Enríquez et al., 2018; Fuentes Guzmán et al., 
2020) to better constrain the metallogenic evo-
lution of  Mexico, as documented by Camprubí 
(2009, 2013, 2017).

2. Geological setting

The Tatatila-Las Minas mining district is located 
in the central-eastern part of  the state of  Vera-
cruz (Figure 1) within the Palma Sola massif. It is 
characterized by the intrusion of  Neogene stocks. 
Stock compositions are described to vary between 
gabbro and granodiorite, with dominantly mon-
zodioritic to dioritic compositions, and intruded 
middle Jurassic, red beds and lower Cretaceous 
carbonate rocks. The latter rocks are part of  the 
continental to marine sequences of  the Sierra 
Madre Oriental that were deformed during the 
orogenic pulses of  the Mexican Fold-and-Thrust 
Belt between the late Cretaceous and the Paleocene 
(Centeno-García, 2017; Fitz-Díaz et al., 2018; and 
references therein). The Middle Jurassic red bed 
sequence in the area correlates with the Cahua-
sas Formation, and is overlain by carbonates and 
lutites of  the Pimienta (Tithonian-Barriasian) and 
Orizaba (Albian-Cenomanian) formations. The 
host carbonate series in the study area consists 
essentially of  platform carbonates that correspond 
to the Orizaba Formation (Ortuño-Arzate et al., 
2005). The Lower Cretaceous sequence uncon-
formably overlies Permo-Triassic schists intruded 
by granitic rocks. The latter can be mistaken for 
Neogene intrusive bodies with similar compo-
sitions, as the thick vegetation cover commonly 
hinders their visualization and the identification 
of  the lithologic contacts; both groups of  intrusive 
rocks come in contact by faulting in the northern-

Tatatila–Las Minas have a magmatic-hydrother-
mal origin and are essentially Cu-Au iron oxide 
skarns, part of  the IOCG “clan”, and epithermal 
deposits (Camprubí, 2013). Therefore, in order 
to investigate the origin of  these deposits, the first 
necessary step would be to elucidate their genetic 
affinity with either magmatic province. Cam-
prubí (2013) deduced a plausible age of  ~11 Ma 
and some affinity with alkaline magmatism for 
the deposits in the Tatatila–Las Minas district, 
based on Negendank et al. (1985) and Ferrari et 
al. (2005a), which linked the Palma Sola massif  
with the EMAP. However, the middle Miocene 
to Recent alkaline and calc-alkaline volcanism of  
the Palma Sola area was ascribed to the TMVB, 
and to the subduction along the Pacific trench, as 
in Besch et al. (1988), Gómez-Tuena et al. (2003), 
and Orozco-Esquivel et al. (2007). The relevance 
of  the EMAP, besides its petrotectonic affinity, 
as a major metallogenic province was already 
stressed by Camprubí (2009, 2013). However, the 
age of  magmatism with which these ore deposits 
were plausibly associated corresponds well to the 
middle and late Miocene arc at the beginning of  
the TMVB (~19 to 10 Ma; Gómez-Tuena et al., 
2005, 2007). 
	 In summary, we may use as a starting hypoth-
esis the fact that neither the EMAP nor the 
TMVB are implausible magmatic provinces to 
have produced the parental magmatism to the 
Tatatila–Las Minas deposits. The implications 
for regional mineral exploration that may arise 
from either possibility are very different, none-
theless. In this paper, we analyze the petrologic 
affinity of  the hypabyssal intrusive bodies with 
which the formation of  the IOCG deposits of  
the Tatatila–Las Minas district is associated. This 
will enable a discrimination between the ascrip-
tion of  these deposits to the metallogeny of  the 
TMVB or the EMAP. The proximal-to-source 
character of  these magmatic-hydrothermal 
deposits (i.e., iron skarns) allows to soundly elu-
cidate the linkage between the magmatism and 
the hydrothermal activity that generated the 
deposits. In addition, this paper contributes to a 
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most termination of  the mineralized area (Figure 
1). The Mesozoic sedimentation was controlled by 
the horst-and-graben configuration that resulted 
from the opening of  the Gulf  of  Mexico during 
the breakup of  Pangea (Martini and Ortega-Guti-
érrez, 2018), thus developing simultaneously shal-
low platforms and relatively deep open-sea facies, 
hence the Córdoba platform (Ortuño-Arzate et 
al., 2005) on which the upper Jurassic and Lower 
Cretaceous sedimentary units developed.
	 Neogene intrusive bodies generated typical 
skarn associations, with prograde mineralization by 
contact metamorphism (Ca silicate-rich) that was 
followed by retrograde IOCG-type hydrothermal 
stages of  mineralization (Figure 2). Such intrusive 

bodies made up a NE-SW striking ~20 km long 
and ~10 km wide intrusive ensemble whose com-
position varies from gabbro to granodiorite, with 
dominantly monzodioritic to dioritic compositions 
(see below) with phaneritic textures. These rocks 
typically contain hornblende, biotite, pyroxenes, 
apatite and zircon this two as accessory mineral 
(Figure 3). Some andesite dykes, up to 30 m long 
and ~2 m thick crosscut the intrusive ensemble 
and predate the mineralization. A sequence of  
andesitic, basaltic and dacitic hypabyssal, this 
with porphyritic texture include plagioclase phe-
nocrysts and volcanic rocks postdates the miner-
alization and the emplacement of  the associated 
intrusive rocks, and comprises a variety of  depos-

Figure 1   Geological map of the Tatatila–Las Minas mining district, east of the Palma Sola massif. Adapted from Servicio Geológico Mexicano 

(2007, 2010). Purple circles denote the location of samples on which this study is based, with indication of the obtained ages.
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its, including volcanic conglomerates, tuffs, ash-fall 
and pyroclastic deposits. Such rocks are inter-
preted as distal Pliocene deposits associated with 
the post-caldera deposits of  Los Humeros caldera 
(Carrasco-Nuñez et al., 2018; Dorantes-Castro, 
2016; Sarabia-Jacinto, 2017). Ages for the Palma 
Sola area to the east of  the Tatatila-Las Minas area 
were 14.6 ± 0.3 (U-Pb, zircon) and 11 ± 0.87 Ma 
(K-Ar, biotite), were reported by Poliquin (2009) 
and Murillo-Muñetón and Torres-Vargas (1987), 
respectively. These correspond to the ensemble of  
hypabyssal and volcanic rocks that allowed Cam-
prubí (2013) to deduce a tentative age of  ~11 Ma 
for these ore deposits, which is also constrained by 

the formation of  capping volcanic rocks between 
9 and 6.6 Ma. Contact metamorphism and min-
eralization of  the fresh carbonate rocks can be 
observed in the conspicuous formation of  marble 
in a 300 to 400 m wide zone that shows an out-
ward decreasing degree of  recrystallization. Skarn 
associations are distributed in the classic zonation 
from endoskarn to exoskarn. Endoskarns consist 
of  grossular-andradite, clinopyroxene, and quartz 
in prograde associations, and magnetite, chalcopy-
rite, bornite, and native gold in retrograde associa-
tions (Figure 2). Exoskarns consist of  wollastonite, 
clinopyroxene, potassium feldspar, quartz, epidote, 
and chromian muscovite (“fuchsite”; Figure 2).

Figure 2    Selected aspects of the IOCG skarn mineralization at the Tatatila–Las Minas deposits showing both prograde (garnet and 

tourmaline) and retrograde (actinolite and fuchsite) associations. (A) Hand specimen showing a garnet-rich prograde association followed 

by an actinolite- and fuchsite-rich retrograde association in the Santa Cruz mine. (B) Photomicrography of a garnet and tourmaline prograde 

association followed by an actinolite and fuchsite retrograde association; transmitted light, crossed polars; same sample as in A. Fuchsite 

separates from A and B were dated by argon geochronometry in this study. (C) Hand specimen of prograde patchy to partially banded 

magnetite ore; El Dorado mine. (D) Hand specimen of banded exoskarn magnetite- and chalcopyrite-rich retrograde ore, with martitized 

magnetite; El Dorado mine. Key: Amp = amphibole-group minerals (actinolite), Cal = calcite, Ccp = chalcopyrite, Ep = epidote, Fuch = chromian 

muscovite or “fuchsite”, Grt = garnet-group minerals (grossular-andradite), Hm = hematite, Mag = magnetite, Mc = malachite, Py = pyrite, Tur 

= tourmaline.
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Figure 3   Photomicrographs of representative hypabyssal bodies, unaffected by hydrothermal alteration, associated with IOCG skarn 

mineralization in the Tatatila–Las Minas district. (A) Quartz-monzodiorite showing euhedral apatite crystals within plagioclase phenocrysts, 

Santa Cruz mine; transmitted light, crossed polars. (B) Quartz-monzodiorite showing myrmekitic intergrowths, surrounded by hornblende 

and plagioclase phenocrysts, La Virgen mine; transmitted light, crossed polars. (C) Quartz-monzodiorite showing hornblende phenocrysts, 

Santa Cruz mine; transmitted light, crossed polars. (D) Quartz-monzodiorite showing euhedral zircon crystals within potassium feldspar, 

Santa Cruz mine; transmitted light, crossed polars. (E) Monzodiorite showing hornblende intergrown with magnetite, Carbonera mine; plane-

polarized transmitted light. (F) Monzodiorite showing euhedral hornblende, biotite and apatite crystals within a plagioclase-potassium 

feldspar assemblage, Carbonera mine; plane-polarized transmitted light. (G) Monzogranite showing rock-forming biotite crystals, same 

sample as in F, Rancho La Virgen; transmitted light, crossed polars. (H) Monzogranite showing late biotite crystals intergrown with magnetite, 

Rancho La Virgen; plane-polarized transmitted light. Key: Ap = apatite, Bt = biotite, Fp = potassium feldspar, Hb = hornblende, Mt = magnetite, 

Pl = plagioclase, Qz = quartz, Zr = zircon.
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Mining activity in the study area can be dated 
back to pre-colonial epochs, when the native 
population of  Chiconquiaco obtained gold that 
was mainly destined to fulfill the contributions 
imposed upon them by their Aztec overlords. For-
mal mining by the Spaniards can be dated back 
to at least 1680, when the exploitation of  large 
high-grade gold and silver bonazas has been doc-
umented (Castro-Mora et al., 1994). Mining and 
exploration have remained intermittently active in 
the area ever since (Viniegra, 1965; Castro-Mora 
et al., 1994; Servicio Geológico Mexicano, 2007). 
By 1996, the exploration endeavors carried out by 
International Northair, in association with Battle 
Mountain Gold Co., allowed location of  relevant 
Au-Cu-Fe resources in a broad area. In 2006, Bell 
Resources Corp. took over the property in the Las 
Minas area and subsequently assigned the mining 
rights to Chesapeake Gold Corp. 
	 The formation of  this Au-Cu-Fe rich area is 
generally acknowledged to belong to an IOCG 
model with overimposed late epithermal veins 
(Servicio Geológico Mexicano, 2007; Camprubí, 
2009, 2013; Dorantes-Castro, 2016; Castro-Mora 
et al., 2016; Sarabia-Jacinto, 2017). The metal 
grades in the deposit range between 1 and 39.3 
ppm Au, between 4.11 and 127 ppm Ag, and 
between 0.64 and 11.7% Cu; inferred reserves are 
719000 Oz Au equiv., and indicated reserves are 
304000 Oz Au equiv. (Castro-Mora et al., 2016).

3. Methodology

Representative samples from the Neogene intru-
sive ensemble were collected in the Tatatila–Las 
Minas mineralized area (47 samples; purple circles 
in Figure 1) in order to characterize the petrologic 
affinity and age of  skarn-generating intrusive 
bodies, as well as the age of  hydrothermal activity 
itself. The ages of  intrusions are considered as rep-
resentative of  the age of  prograde mineralization 
in IOCG skarns, and hydrothermal assemblages 
correspond to retrograde stages of  these depos-
its. The representativeness of  such samples with 
regard to the formation (or postdating) of  min-

eralized bodies was determined on the basis of  
their distribution, their possible association with 
mineralized bodies, and the types of  rocks thereby 
represented, after thorough cartography and sam-
pling. All the analyzed samples were examined by 
means of  petrographic studies in order to ensure 
that no alteration would cause any disturbances to 
the geochemical or geochronological analyses. 
	 Elemental analyses were carried out on 15 g ali-
quots from samples at a 200 mesh. The two dated 
samples from retrograde hydrothermal associa-
tions are chromian muscovite, which correspond 
to high-temperature phyllic assemblages from 
the Las Minas area, and zircon within pervasive 
potassic alteration assemblages from the Tatatila 
area.
	 Multi-elemental geochemical analyses of  host 
rocks were carried out by means of  X-ray fluores-
cence (XRF) with a Rigaku Primus II equipment 
available at the Laboratorio Nacional de Geo-
química y Mineralogía (LANGEM) in accordance 
with the procedure described by Lozano-Santa 
Cruz et al. (1995); results are presented in Table 
1. Trace and rare-earth elements (REE) were 
analyzed by means of  inductively coupled plasma 
quadrupole mass spectrometery (Q-ICP-MS) with 
a Termo ICap Qc equipment, coupled to a colli-
sion/reaction cell (He, N2, NH3 and O2) in order 
to minimize spectral interference, the procedure 
described by Mori et al. (2007), at the Laborato-
rio de Estudios Isotópicos (LEI) of  the Centro 
de Geociencias (CGeo-UNAM). The obtained 
data are presented in Table 2. For Sr, Nd and Pb 
isotopic analyses, a Thermo Fisher Neptune Plus 
mass spectrometer available at the CGeo-UNAM. 
Sample preparation and measurement procedures 
for Sr–Nd–Pb isotopic analyses are described in 
Gómez-Tuena et al. (2003) for LDEO. 87Sr/86Sr 
ratios obtained in both labs were normalized to 
86Sr/88Sr = 0.1194 and corrected to a NBS-987 
standard ratio of  87Sr/86Sr = 0.710230, and 
143Nd/144Nd ratios were normalized to 146Nd/144Nd 
= 0.72190 and corrected to a La Jolla standard 
value of  143Nd/144Nd=0.511860. At LDEO, Sr 
and Nd were measured by dynamic multicollec-
tion, with each analysis consisting of  ~120 isotopic 
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Table 1. Major elements in host intrusive rocks to the Tatatila-Las Minas IOCG deposits. All values in wt.%. Asterisks (*) correspond to 

analyses in Dorantes-Castro (2016). 
 

UTM coordinates Rock SiO2 TiO2 Al2O3 Fe2O3(t) MnO MgO CaO Na2O K2O P2O5 LOI Total 
 

E N 
 

TMG-1 699173 2176551 Gabbro 43.89 0.81 17.94 13.66 0.22 8.92 13.02 1.30 0.19 0.04 1.12 99.60 
TMG-2 698856 2176474 Diorite 61.33 0.75 17.09 5.32 0.07 2.31 4.78 3.95 4.20 0.20 0.75 99.58 
TMG-3 698516 2176325 Quartz 

monzodiorite 62.14 0.71 17.06 5.41 0.07 2.49 4.53 4.10 3.30 0.19 1.79 99.56 

TMG-4 697820 2176599 Quartz 
monzodiorite 58.22 0.78 17.87 6.81 0.11 3.23 5.85 3.93 2.96 0.23 0.71 99.60 

TMG-5 697764 2176999 Monzodiorite 58.63 0.85 17.35 6.81 0.12 3.03 5.72 3.97 3.28 0.23 0.68 99.60 
TMG-6 696871 2177577 Quartz 

monzodiorite 61.78 0.71 17.05 5.46 0.10 2.39 4.32 3.82 4.19 0.19 0.49 99.60 

TMG-7 692733 2179299 Quartz diorite 59.29 0.60 16.53 6.15 0.13 4.40 7.10 3.68 1.92 0.19 0.71 99.58 
TMG-8 692919 2179241 Diorite 48.99 0.73 15.64 9.98 0.17 9.21 12.27 2.24 0.64 0.13 1.17 99.60 
TMG-9 692782 2178838 Diorite 52.39 0.85 19.26 9.48 0.15 4.07 8.50 3.93 1.02 0.35 0.95 99.50 

TMG-10 701856 2183672 Diorite 55.09 1.47 17.04 7.86 0.14 3.87 7.57 4.13 2.42 0.41 0.19 99.50 
TMG-11 701275 2182995 Monzodiorite 62.15 0.90 16.83 5.13 0.10 2.42 4.02 4.60 3.58 0.27 0.54 99.28 
TMG-12 701201 2183034 Monzonite 63.44 0.88 16.16 4.60 0.11 2.03 3.50 4.51 4.55 0.22 0.03 99.59 
TMG-13 700794 2183290 Quartz diorite 59.34 1.00 15.69 6.09 0.17 5.08 4.72 3.76 3.82 0.35 2.31 99.58 
TMG-14 699639 2181985 Monzonite 55.79 1.05 14.15 5.82 0.10 4.60 10.97 3.47 3.46 0.60 0.46 99.55 
TMG-15 699490 2180296 Sienite 59.34 0.61 20.94 4.23 0.05 1.69 4.52 4.92 3.36 0.33 1.29 99.60 
TMG-16 698062 2181248 Quartz monzonite 55.76 1.18 17.36 8.87 0.17 4.14 7.11 3.10 2.00 0.31 0.04 99.58 
TMG-17 698283 2181931 Monzodiorite 57.89 1.16 17.38 6.62 0.12 3.51 6.11 4.12 2.75 0.34 0.67 99.55 
TMG-18 698504 2182345 Monzogranite 71.60 0.25 15.89 1.13 0.02 0.36 1.95 3.64 5.09 0.07 0.72 99.60 
TMG-19 694715 2179684 Diorite 63.04 0.82 16.39 4.86 0.11 2.26 4.67 4.22 3.39 0.23 0.75 99.59 
TMG-20 696828 2180239 Quartz monzonite 63.02 0.52 18.26 4.66 0.07 1.74 5.24 4.71 1.51 0.27 0.79 99.61 
TMG-21 696325 2179917 Diorite 52.79 1.47 19.06 8.42 0.15 3.73 7.90 4.27 1.80 0.42 1.41 99.62 
TMG-22 695717 2179384 Granite 77.60 0.09 14.83 0.42 0.00 0.31 1.02 2.78 2.91 0.04 1.63 99.61 
TMG-23 694397 2177628 Diorite 60.88 0.54 15.82 6.07 0.13 4.41 6.16 3.97 1.88 0.13 0.95 99.59 
TMG-24 694207 2177867 Quartz diorite 55.59 0.79 19.02 7.76 0.14 3.14 8.17 3.75 1.39 0.25 0.47 99.59 
TMG-26 692818 2176784 Diorite 58.33 0.92 18.96 6.01 0.10 2.40 6.50 4.17 2.23 0.38 0.52 99.58 

TMG-23 B 694397 2177628 Diorite 52.36 1.37 18.46 7.94 0.14 3.93 6.67 4.34 1.63 0.39 2.38 99.61 
TMG-1 2a 699173 2176551 Gabbro 43.27 0.79 17.69 13.34 0.21 8.80 12.86 1.30 1.87 0.37 1.12 99.60 

RV-2 694740 2179098 Granodiorite 66.55 0.44 17.38 2.95 0.03 0.89 4.22 4.88 1.83 0.16 0.57 99.90 
RV-3 694688 2179102 Gabbro 47.00 0.95 15.66 10.86 0.14 10.61 9.47 1.89 2.35 0.20 0.84 99.97 
BQ-1 694445 2178202 Granite 65.36 0.48 17.94 2.72 0.03 1.06 4.01 5.01 2.06 0.17 1.04 99.86 
CR-1 6946662 2179718 Gabbro-diorite 52.00 0.85 16.65 8.79 0.15 6.67 8.44 3.17 1.19 0.25 1.04 99.96 

SC-2 b 1 694317 2177448 Diorite 61.46 0.53 17.10 5.30 0.08 2.43 5.20 4.28 2.10 0.19 1.24 99.92 
SC-2 b 2 694317 2177448 Diorite 61.78 0.52 16.79 5.12 0.09 2.32 5.30 4.17 2.25 0.19 0.19 99.91 
SC-2 b 3 694317 2177448 Diorite 60.65 0.53 16.58 5.89 0.10 2.77 5.37 4.39 2.32 0.21 1.13 99.92 

LS-6 696153 2179805 Gabbro-diorite 54.06 1.32 18.07 8.60 0.14 3.97 8.14 3.52 1.50 0.31 0.36 100.00 
Es-3 698250 2181451 Gabbro-diorite 51.68 1.21 18.04 8.75 0.16 5.10 8.83 3.77 1.05 0.32 1.09 99.99 
Ag-2 699636 2180877 Monzodiorite 59.70 0.76 16.78 6.43 0.09 2.94 5.34 3.72 3.45 0.22 0.58 99.99 
LS-4 697074 2180612 Granodiorite 64.27 0.47 18.58 3.81 0.10 1.09 4.39 3.93 2.50 0.22 0.64 99.99 
CR-6 693182 2179054 Gabbro-diorite 52.84 0.90 18.13 9.12 0.14 4.64 8.49 3.39 1.29 0.28 0.78 99.99 
SC-3 694347 2177616 Diorite 57.52 0.76 18.06 7.40 0.12 2.55 7.43 3.61 1.60 0.26 0.70 99.99 
LV-1 701870 2184419 Monzodiorite 56.29 1.15 18.15 7.23 0.13 3.29 6.70 4.03 2.31 0.35 0.15 100.00 
CR-5 694325 2179704 Gabbro-diorite 53.49 0.92 17.21 8.28 0.15 4.73 8.12 3.48 1.97 0.24 1.42 100.00 
LV-2 702091 2184527 Monzodiorite 56.67 1.16 17.64 7.38 0.13 3.38 6.76 3.80 2.55 0.34 0.19 100.00 
LS-3 696389 2080049 Monzodiorite 56.88 1.09 18.09 7.37 0.13 2.94 6.33 3.76 2.39 0.34 0.68 100.00 
Ag-5 699561 2181458 Gabbro 51.74 1.16 16.83 7.95 0.07 6.17 9.68 3.49 2.02 0.27 0.62 100.00 
Es-2 698330 2181972 Monzodiorite 57.42 1.16 17.22 7.03 0.12 3.49 6.30 3.76 2.83 0.35 0.32 100.00 

1TJBQ*   Diorite 58.74 0.38 16.96 6.61 0.14 2.81 8.09 5.08 0.38 0.15 0.61 99.22 
538*   Gabbro 48.29 0.94 15.68 7.58 0.14 4.24 9.59 2.51 1.60 0.22 9.1 99.06 
33*   Monzodiorite 54.57 1.14 16.14 6.59 0.14 5.21 9.57 3.72 2.13 0.34 0.34 99.17 

529*   Granodiorite 66.94 0.42 16.95 2.60 0.029 1.22 3.89 4.66 2.00 0.17 0.96 99.55 
 
Key: LOI = loss on ignition.
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ratios. Sr ratios were measured using tungsten fila-
ments and a TaCl4 activator solution (Birck, 1986). 
Nd isotopes were measured as NdO+. During five 
separate analysis intervals the measured values of  
the NBS-987 standard were 87Sr/86Sr = 0.710245 
± 0.000016 (2σ, n = 4); 0.710271 ± 0.000014 (2σ, 
n = 6); 0.710274 ± 0.000016 (2σ, n=18); 0.710310 
± 0.000013 (2σ, n = 5); 0.710261 ± 0.000012 (2σ, 
n = 10). The measured 143Nd/144Nd ratio of  the La 
Jolla standard at LDEO was 0.511836 ± 0.000013 
(2σ, n = 15), as of  Todt et al. (1996), according 
to the procedure described by Mori et al. (2007), 
obtained data are presented in Table 3.
	 The two dated samples from retrograde hydro-
thermal associations are chromian muscovite 
that corresponds to high-temperature phyllic 
assemblages from the Las Minas area, and zircon 
within pervasive potassic alteration assemblages 
from the Tatatila area, the 40Ar/39Ar analyses of  
samples from intrusive rocks were carried out at 
the Noble Gas Laboratory, Pacific Centre for Iso-
topic and Geochemical Research, University of  
British Columbia (Vancouver, British Columbia, 
Canada). The mineral separates were step-heated 
at incrementally higher powers in the defocused 
beam of  a 10W CO2 laser (New Wave Research 
MIR 10) until fused. The gas evolved from each 
step was analyzed by a VG5400 mass spectrometer 
equipped with an ion-counting electron multiplier. 
All measurements were corrected for total system 
blank, mass spectrometer sensitivity, mass discrim-
ination, radioactive decay during and subsequent 

to irradiation, as well as interfering Ar from 
atmospheric contamination and the irradiation 
interferences of  Ca, Cl and K. The plateau and 
correlation ages were calculated using the Isoplot 
3.09 software (Ludwig, 2003). Errors are quoted at 
the 2-sigma (95% confidence) level and are prop-
agated from all sources except mass spectrometer 
sensitivity and age of  the flux monitor. The full 
results and spectra are reported in Appendices 1 
and 2 and summarized in Figure 4.
The 40Ar/39Ar analysis were performed at the 
Geochronology Laboratory of  the Departmento 
de Geología, Centro de Investigación Científica 
y Educación Superior de Ensenada (CICESE, 
Mexico). The argon isotope experiments were 
conducted on a few flakes of  fuchsite, hornblende, 
K-feldspar and biotite. The mineral grains were 
heated with a Coherent Ar-ion Innova 370 laser. 
The extraction system is on line with a VG5400 
mass spectrometer. The sample and irradiation 
monitors, were irradiated in the Uenriched 
research reactor of  University of  McMaster in 
Hamilton, Canada, at position 5C. To block 
thermal neutrons, the capsule was covered with 
a cadmium liner during irradiation of  chro-
mian muscovite (“fuchsite”; Figure 5A and 5B) 
from the skarn gangue association in IOCG 
mantos, Santa Cruz mine (sample SC-1). The 
mineral grains were heated with a Coherent Ar 
ion Innova 370 laser. The extraction system is 
on line with a VG5400 mass spectrometer. The 
sample and irradiation monitors were irradiated 

Table 3. Sr, Nd and Pb isotopic values of selected samples from intrusive rocks associated with IOCG skarn mineralization in the 

Tatatila–Las Minas area

Muestra 87Sr/86Sr ɛSr 143Nd/144Nd ɛNd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 
SC-2 b1 0.7044 -1.4 0.5127 1.2 18.75 15.6012 38.4921 
SC-2 b2 0.7045 0 0.5127 1.2 18.70 15.6004 38.4490 
SC-2 b3 0.7041 -5.7 0.5127 1.2 18.73 15.5966 38.4887 

BQ-1 0.7059 19.9 0.5123 -6.6 18.68 15.6085 38.4041 
RV-2 0.7059 19.9 0.5123 -6.6 18.65 15.6062 38.4562 
RV-3 0.7040 -7.1 0.5128 3.2 18.69 15.5993 38.4149 
CR-5 0.7042 -4.3 0.5126 -0.7 18.75 15.5994 38.4601 
LV-2 0.7039 -8.5 0.5128 3.2 18.74 15.5947 38.4433 
Es-3 0.7042 -4.3 0.5127 1.2 18.72 15.5982 38.5354 
LS-3 0.7037 -11.4 0.5128 3.2 18.67 15.5800 38.3878 
LS-6 0.7040 -7.1 0.5128 3.2 18.68 15.5928 38.4449 
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in the U-enriched research reactor of  University 
of  McMaster in Hamilton, Canada, at position 
5C. To block thermal neutrons, the capsule was 
covered with a cadmium liner during irradiation. 
To determine the neutron flux variations, aliquots 
of  the irradiation monitor FCT-2 sanidine (28.201 
± 0.046 Ma; Kuiper et al., 2008) were irradiated 
alongside sample SC-1. Upon irradiation the 
monitors were fused in one step while the fuchsite 
sample was step-heated. The argon isotopes were 
corrected for blank, mass discrimination, radio-
active decay of  37Ar and 39Ar, and atmospheric 
contamination. For the Ca neutron interference 
reactions, the factors given by Masliwec (1984) 
were used. The decay constants recommended 
by Steiger and Jäger (1977) were applied in the 
data processing. The equations reported by York 
et al. (2004) were used in all the straight line fitting 
routines of  the argon data reduction. 40Ar/39Ar 
data are presented in Appendices 1 and 2, which 

includes the results of  the individual steps, and the 
integrated, plateau and isochron ages, and their 
synthetic version in Figure 5. The analytical pre-
cision is reported as standard deviation (2σ). The 
error in the integrated, plateau and isochron ages 
includes the scatter in the irradiation monitors. 
With the exception of  the first fraction, a well-de-
fined straight line, with mean squared weighted 
deviations (MSWD) of  0.55 for n = 6, indicates an 
isochron age of  12.49 ± 0.09 Ma.
	 Zircon crystals were separated by means of  
panning from samples selected for U–Pb dating 
that are representative of  various sets of  rocks in 
the area: Au-Ag mineralized vein from Tatatila 
(sample TMG-5), and granodiorite to granite 
samples from the Santa Cruz (samples TMG-24 
and SC-2), Carboneras (CR-5), Escalona (ES-
3), Cinco Señores (5S-1), Boquillas (BQ-1), and 
Rancho Virgen (RV-2) areas. The sizes of  the 
collected zircon crystals range between 20 and 

Figure 4   Outlines of 40Ar/39Ar age spectra (plateau ages) of intrusive host rocks to the IOCG skarn deposits in the Tatatila–Las Minas district, 

Veracruz.
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90 μm in length. The U–Pb zircon analyses were 
performed with a quadrupole Thermo-X series 
ICP-MS with an Excimer (193 nm) laser ablation 
system by Resonetics, at the Isotopic Studies Lab-
oratory (LEI), CGeo-UNAM, and following the 
procedure described by Solari et al. (2010). The 
data reduction was performed with the aid of  the 
UPb.age in-house software (Solari and Tanner, 
2011) and plotted with the Isoplot 3.0 software 
(Ludwig, 2003). See further technical aspects in 
González-León et al. (2017). U-Pb ages are dis-
played in Figures 6 and 7, Table 4 and Appendix 
3.

4. Results

The U-Pb ages of  zircon crystals from granite, 
granodiorite, quartz-monzonite and monzodiorite 
are displayed in Figures 6 and 7, in Table 4, and 
Appendices 3 and 4. The sample from Carboneras 
(CR-5) yielded a U-Pb concordia lower intercept 
at 15.05 ± 0.94 Ma (MSWD = 2.5, n = 19; Figure 
7C). Two samples from the Santa Cruz mine were 
dated; sample TMG-24 yielded a U-Pb concor-
dant age at 15.27 ± 0.36 Ma (MSWD = 2 n = 14; 

Figure 6A), and sample SC-2b a weighted mean 
U-Pb age at 14.33 ± 0.38 Ma (MSWD = 2.6, n 
= 9; Figure 7B). The sample from Cinco Señores 
(5S-1) yielded a U-Pb weighted mean age at 15.09 
± 0.48 Ma (MSWD = 4.0, n = 8; Figure 7D). 
40Ar/39Ar determinations in host intrusive sam-
ples as granodiorite, granite, monzodiorite and 
quartz-monzonite yielded two groups of  ages: (A) 
late Oligocene to early Miocene, between 22.12 ± 
0.74 and 19.04 ± 0.69 Ma for a pre-mineralization 
suite of  intrusive bodies, and (B) middle to late 
Miocene, between 16.34 ± 0.20 and 13.92 ± 0.22 
Ma for a syn-mineralization suite of  intrusive bod-
ies, all reported ages correspond to plateau ages. 
	 The samples for 40Ar/39Ar different miner-
als such as biotite, hornblende, K-feldspar and 
fuchsite, were separated from each sample for 
analysis.
	 The 40Ar/39Ar determination in hydrothermal 
chromian muscovite (“fuchsite”) of  the Santa 
Cruz mine yielded a plateau age of  12.49 ± 0.09 
Ma (isochron age at 12.39 ± 0.1 Ma; Figure 5). 
The sample (TMG-5) from a potassic alteration 
assemblage that was pervasively developed on 
a granite-granodiorite intrusion in the village of  
Tatatila (thus corresponding to hydrothermal 

Figure 5   40Ar/39Ar age spectra (plateau and isochron ages) of a chromian muscovite (“fuchsite”) from the magmatic-hydrothermal retrograde 

assemblage of the IOCG skarn deposit in the Santa Cruz mine, Tatatila–Las Minas district, Veracruz.
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Figure 6   Tera-Wasserburg U-Pb concordia diagrams and plots of weighted averages of individual 206Pb/238U ages of analyzed zircons, and 

pre-ablation SEM-CL images of zircons from a granodiorite intrusive from the Santa Cruz Mine (A), and from a potassic alteration assemblage 

that was pervasively developed on a granite-granodiorite intrusion in the village of Tatatila (B), from the Tatatila–Las Minas district, Veracruz. 

Solid-line ellipses, with blue square centers, are data used for age calculations; gray-line ellipses are data excluded from age calculations due 

to different degrees of Pb-loss and/or zircon inheritance. All U–Pb data are plotted with 2-sigma errors and all calculated weighted mean ages 

are also listed at the 2-sigma level. Original U(Th)–Pb data can be found for inspection in Table 5.
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 #U
 and Th concentrations (ppm

) are calculated relative to analyses of trace-elem
ent glass standard N

IST 610.
†Isotopic ratios are corrected relative to 91500 standard zircon for m

ass bias and dow
n-hole fractionation (91500 w

ith an age ~1065 M
a; W

iedenbeck et al., 1995). Isotopic 207Pb/ 206Pb ratios, ages and errors are calculated follow
ing Paton et al. (2010).

*A
ll errors in isotopic ratios are in percentage w

hereas ages are reported in absolute and given at the 2-sigm
a level. The w

eighted m
ean 206Pb/ 238U

 age is also reported in absolute values at the 2-sigm
a level. The uncertenties have been propagated follow

ing the 
m

ethodology discussed by Paton et al. (2010).

**R
ho is the error correlation value for the isotopic ratios 206Pb/ 238U

 and 207Pb/ 235U
 calculated by dividing these tw

o percentage errors. The R
ho value is required for plotting concordia diagram

s.

***Percentage discordance values are obtained using the follow
ing equation (100*[(edad 207Pb/ 235U

)-(edad 206Pb/ 238U
)]/edad 207Pb/ 235U

) proposed by Ludw
ig (2001). Positive and negative values indicate norm

al and inverse discordance, respectively.

Individual zircon ages in bold w
ere used to calculate the w

eighted m
ean 206Pb/ 238U

 age and M
SW

D
 (M

ean Square of W
eigthed D

eviates) using the com
putacional program

 Isoplot (Ludw
ig , 2003).
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associations) yielded a U-Pb age of  12.18 ± 0.21 
Ma, (2σ, MSWD = 1.5; n = 26; Figure 6B).
	 The sample ES-3 from Escalona corresponds 
to a dyke that crosscuts the IOCG mineralization 
and yielded a U-Pb weighted mean age at 4.11 ± 
0.11 Ma (MSWD = 0.53, n = 8; Figure 7A). A 
sample from Boquillas (BQ-1a, BQ-1b) yielded a 
U-Pb weighted mean age at 286 ± 2 Ma (MSWD 
= 1.02, n = 6; Artinskian, early Permian; Figure 
7E). 
	 The intrusive rocks associated with the forma-
tion of  IOCG deposits in the Tatatila–Las Minas 
area span compositions between those of  sub-al-
kaline gabbros and granodiorites, and mostly con-
centrate in the granite, diorite and monzodiorite 
fields (Figure 8A). The geochemical affinity of  
the rocks is essentially metaluminous (Figure 8B), 
calc-alkaline (Figure 8C), and they plot within the 
fields of  volcanic-arc granites (VAG) (Figure 9A) 
and I- and S-type granites (Figure 9B). Some sam-
ples have adakitic signatures (Figure 9D), mostly 
of  the high-silica type (Figure 9E), thus indicating 
that their compositional variation is controlled 
mainly by partial melting (Figure 9C). Light rare-
earth and large-ion lithophile elements (LREE 
and LILE) are slightly enriched in such rocks 
(Figure 10) with respect to heavy rare-earth and 
high field strength elements (HREE and HFSE), 
as is characteristic for rocks associated with sub-
duction, and conform with the results obtained by 
Dorantes-Castro (2016). Radiogenic isotope data 
range as follows: 87Sr/86Sr between 0.7040 and 
0.7059, ɛSr between –11.4 and 19.9, 143Nd/144Nd 
between 0.5123 and 0.5128, ɛNd between –6.6 
and 3.2, and 206Pb/204Pb between 18.65 and 
18.75 (Table 3; Figure 11). The distribution of  
such data is in accordance with that determined 
by Gómez-Tuena et al. (2003) for rocks from the 
Trans-Mexican Volcanic Belt.

5. Discussion

5.1. AGE CONSTRAINTS

The ages (Figures 4 and 12; Table 5) of  mag-
matic and hydrothermal episodes the Tatati-

la-Las Minas deposits range between 16.34 and 
13.92 Ma for the associated intrusive bodies (all 
of  them observed as direct contributors to pro-
grade skarn formation), and between 12.49 and 
12.18 Ma for hydrothermal minerals (retrograde 
skarn stages). It is important to emphasize that 
the analyzed rocks are not merely terms of  an 
intrusive suite that included IOCG skarn gen-
erators, but IOCG skarn generators themselves, 
as the sampling strategy was directed to rocks 
spatially associated with such mineralization—
whether prograde or retrograde. The discussion 
to follow relies on this fact. The maximum time 
gap between prograde and retrograde skarn 
associations thus determined spans ~1.5 My, 
which is similar to that defined for other skarn 
deposits (i.e., Camprubí et al., 2015). A late dyke 
that crosscuts the mineralization, in association 
with capping volcanic rocks of  the Trans-Mex-
ican Volcanic Belt, was dated at 4.11 Ma. The 
early Permian age obtained for intrusive rocks 
in the Las Minas area (286 ± 2 Ma) is likely to 
correspond to the Carboniferous-Permian arc 
(Ortega-Obregón et al., 2013; Kirsch et al., 2012), 
known as the Teziutlán massif, that constitutes 
the basement in the region and was dated at 
269–252 Ma (K–Ar; López-Infanzón, 1991) and 
at 281–268 Ma (40Ar/39Ar; Iriondo et al., 2003).
	 A consistent range of  ages between 24.60 
and 19.04 Ma (late Oligocene to early Miocene; 
Figures 4 and 12; Table 5) has been additionally 
obtained, which corresponds to intrusive rocks 
that predate the syn-mineralization suite. Such 
ages also predate the earliest stage of  magma-
tism that is associated with the Trans-Mexican 
Volcanic Belt (Gómez-Tuena et al., 2005, 2007) 
and are similar to those characteristic of  the final 
stage of  magmatic activity of  the Sierra Madre 
Occidental (Ferrari et al., 2005b, 2007).

5.2. PETROLOGIC AFFINITY

The multielemental and isotopic geochemical 
determinations of  IOCG skarn-related intru-
sive rocks at Tatatila–Las Minas are sound and 
congruent indicators of  mostly intermediate 
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Figure 7   Tera-Wasserburg U-Pb concordia diagrams for zircons from various intrusive bodies in the Tatatila–Las Minas area. (A) Post-

mineralization dyke. (B to D) Syn-mineralization hypabyssal bodies whose age can be attributed to the prograde skarn associations. (E) 

Granitic intrusive that corresponds to the Permo-Triassic basement. Solid-line ellipses, with black square centers, are data used for age 

calculations; gray-line ellipses are data excluded from age calculations due to different degrees of Pb-loss and/or zircon inheritance. All U–Pb 

data are plotted with 2-sigma errors. Original U(Th)–Pb data can be found for inspection in Appendix 3.
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to acid (Figure 8A), metaluminous (Figure 8B), 
and I- and S-type rocks (Figure 9B) that were 
emplaced in a subduction-related continental arc 
(Figure 9A), and high La/Yb ratios could also 
be obtained through high pressures in basaltic 
melt (Figure 9C; McPherson et al., 2006), since 
the late Oligoce to Miocene. In addition, these 
rocks are part of  the medium- to high-potassium 
(not shown) calc-alkaline series, with adakitic 
signatures and a compelling isotopic affinity 
with the Trans-Mexican Volcanic Belt (TMVB). 
A sound adakitic affinity of  most analyzed sam-
ples in the study area is determined by a general 
geochemical behavior (Tables 1 to 3; Figure 9D, 
E) that meets most of  the characteristics of  such 
petrological association (Table 6). If  anything, Y 

and Yb contents appear to be significantly higher 
than in adakitic (Tables 3 and 6), a characteristic 
that will be addressed later on. Despite the pos-
sible occurrence of  alkaline magmatism in the 
Palma Sola region in association with the Eastern 
Mexico Alkaline Province (EMAP; Demand and 
Robin, 1975; Negendank et al., 1985; Ferrari et al., 
2005a), the formation of  IOCG skarn deposits 
in the Tatatila–Las Minas district can be solely 
attributed to the TMVB, as no adakitic affinity 
has been consistently reported for the magma-
tism associated with the EMAP (see references 
in Camprubí, 2013). However, some ages of  
alkaline rocks in Palma Sola are much younger 
than syn-mineralization ages, with no associated 
mineralization. Then, the adakitic signatures 

Figure 8   Petrological discrimination diagrams from major elements in intrusions associated with IOCG skarn mineralization in the Tatatila–

Las Minas district, Veracruz. (A) Silica vs. alkaline element bivariant diagram, adapted from Cox et al. (1979). (B) Alumina saturation diagram, 

adapted from Frost et al. (2001), with compositions of skarns from Meinert (1995). (C) AFM diagram, adapted from Irvine and Baragar (1971).
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Table 5. Summary of geochronometric data obtained for host intrusive rocks and IOCG mineralization at the Tatatila–Las Minas area.

Sample / location Association Method / mineral Age ± 2σ (Ma) Comments 

     

Tatatila–Las Minas district  
BQ-1a, BQ-1b / 
Boquillas Granite U-Pb / zircon 286 ± 2 Early Permian granitoids in the 

Permo-Triassic basement 
     

CR-1 / Carboneras Granodiorite 40Ar/39Ar / biotite 24.60 ± 1.10 
Pre-mineralization intrusive 
suite (late Oligocene to early 
Miocene) 

CR-1 / Carboneras Granodiorite 40Ar/39Ar / HB 23.40 ± 2.50   
BQ-1c / Boquillas Granite 40Ar/39Ar / KF 22.12 ± 0.74 Transition between the Sierra 

Madre Occidental and the 
Trans-Mexican Volcanic Belt? 

RV-2 / Vaquería Granite 40Ar/39Ar / KF 20.67 ± 0.57 

CR-1 / Carboneras Granodiorite 40Ar/39Ar / KF 19.04 ± 0.69 
     

SC-2-b1 / Santa Cruz Granodiorite 40Ar/39Ar / biotite 16.34 ± 0.20   
SC-2a / Santa Cruz Granodiorite 40Ar/39Ar / biotite 15.43 ± 0.16 Syn-mineralization intrusive 

suite (middle to late Miocene) TMG-24 / Santa Cruz Qz-monzonite U-Pb / zircon 15.27 ± 0.36 
5S-1 / Cinco Señores Granite U-Pb / zircon 15.09 ± 0.48   
CR-5 / Carboneras Granodiorite U-Pb / zircon 15.05 ± 0.94 

Matches with the middle to late 
Miocene age range of intrusive 
bodies of gabbroic to dioritic 
composition defined by Ferrari 
et al. (2005a) at the Palma Sola 
massif, east of the Tatatila–Las 
Minas area 

BQ-1b / Boquillas Granite 40Ar/39Ar / biotite 14.60 ± 0.34 

SC-2b / Santa Cruz Granodiorite 40Ar/39Ar / biotite 14.46 ± 0.15 

SC-2b / Santa Cruz Granodiorite U-Pb / zircon 14.33 ± 0.38 

BQ-1b / Boquillas Granite 40Ar/39Ar / biotite 13.92 ± 0.22 

FSC-1 / Santa Cruz mineralization 40Ar/39Ar / CM 12.49 ± 0.09 

TMG-5 / Tatatila mineralization U-Pb / zircon 12.18 ± 0.21   

 
    

Es-3 / Escalona Granodiorite U-Pb / zircon 4.11 ± 0.11 Post-mineralization intrusives 
     

Regional intrusive ages  

Laguna Verde microdiorite  17 
Cantagrel and Robin (1979), 
deemed as unreliable by Ferrari 
et al. (2005a) 

Junique gabbro 40Ar/39Ar 15.62 ± 0.5 Ferrari et al. (2005a) 

Plan de las Hayas hypabyssal rock 40Ar/39Ar 14.65 ± 0.32 Ferrari et al. (2005a) 

Tenochtitlan to 
Junique granitic plutons  

13.0 ± 1.0 

López-Infanzón (1991) 9.0 ± 0.7 

6.2 ± 0.6 

Candelaria gabbro 
 12.3 and 12.9 Negendank et al. (1985) 

40Ar/39Ar / PL 10.9 ± 0.8 Ferrari et al. (2005a) 

El Limón hypabyssal rock 40Ar/39Ar 11.07 ± 0.2 Ferrari et al. (2005a) 

Whole range of ages of magmatism in the Palma Sola massif 
15.6 to 10.9 Ferrari et al. (2005a) 

17 to 7.5 Camprubí (2009, 2013) 
 

found in the Palma Sola region are more likely to 
correspond to the volcanism of  the TMVB rather 
than that of  the EMAP. This is the first instance 
in which adakites are directly associated with the 
formation of  any ore deposits in the TMVB—in 
this case, IOCG skarn deposits. 
	 However, anomalously high Y and Yb contents 
(with respect to typical adakitic signatures) similar 
to those found in the Tatatila–Las Minas host rocks 

have been explained in adakites as to reflect some 
degree of  interaction with alkaline or ultrapotassic 
rocks (Lu et al., 2013; Liu et al., 2017)—hence the 
high-potassium character of  many of  the studied 
rocks (?)—or due to crustal contamination (Zhang 
et al., 2017). Therefore, despite the likely dominant 
affinity of  these rocks with the TMVB, some degree 
of  interaction between their parental TMVB mag-
mas and EMAP magmas cannot be ruled out at this 
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Figure 9   Petrological discrimination diagrams from trace elements in intrusive rocks associated with IOCG skarn mineralization in the 

Tatatila–Las Minas district, Veracruz. (A) Y+Nb vs. Rb, Y vs. Nb, Ta+Yb vs. Rb, and Yb vs. Ta diagrams for discriminating tectonic settings, 

adapted from Pearce et al. (1984). (B) Discrimination diagram for different granite sources, adapted from Whalen et al. (1987). (C) Discrimination 

diagram for the generation of magmas by fractional crystallization vs. variable degree of partial melting, adapted from Thirlwall et al. (1994). 

(D) Discrimination diagram for adakitic affinity, adapted from Martin (1986) with chondrite-normalized values  Sun and McDonough (1989). 

(E) Discrimination diagrams for high-silica (HSA) and low-silica adakites (LSA), adapted from Martin and Moyen (2002, 2003) and Martin et 

al. (2005). Key: HSA = high-silica adakites (>60% SiO
2
), LSA = low-silica adakites (<60% SiO

2
), ORG = ocean ridge granites, VAG = volcanic arc 

granites, syn-COLG = syn-collision granites, WPG = within plate granites.
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stage of  research. As a matter of  fact, magmas with 
either affinity coexisted in the region, as evidenced 
by the formation of  the Tatatila–Las Minas deposits 
(Negendank et al., 1985; Ferrari et al., 2005a; see also 
Figure 7 in Camprubí, 2009). Also, the occurrence 
of  A-type granites (alkaline) is hinted at in some 
of  the analyzed samples despite mostly belonging 
to I- and S-types (Figure 9B), but no affinity with 
within-plate granites was found (Figure 9A).
	 In addition, the data in this paper stand for the 
idea of  a metallogeny of  the TMVB in its own 
right, as established by Camprubí (2013). The ages 
of  Miocene IOCG skarn-related magmatism in 
the Tatatila-Las Minas area (16.34 to 13.92 Ma) fit 
well within the ~19 to 10 Ma bracket defined by 
Gómez-Tuena et al. (2005, 2007) for the early stages 
of  the TMVB, particularly in its eastern region, 
in which the adakitic signature of  volcanism is 
conspicuous. Such continental magmatism display 
geochemical signatures that strongly evoke those of  
adakites, with the inherent likeliness that it may be 
associated with melting of  the flattened subducted 
slab (Gómez-Tuena et al., 2005, 2007; Mori et al., 
2007). Adakite is the common term that refers to 
magmas produced by melting of  subducted oceanic 
crust under high pressures and in the presence of  
water (due to dehydration of  the subducted slab). 

However, other processes for magma generation are 
possible in the generation of  magmas with adakitic 
geochemical signatures (Defant et al., 2002; Richards 
and Kerrich, 2007; Rodríguez et al., 2007; Richards, 
2011; Ma et al., 2015; Ribeiro et al., 2016; Deng et 
al., 2017; Keevil et al., 2019). The adakitic signatures 
at a regional scale in the TMVB are the very high 
Sr/Y ratios, depletion in Y and HREE, and Sr, Nd 
and Pb isotopic compositions that approximate to 
those of  mid-ocean ridge basalts in the East Pacific 
Rise (Gómez-Tuena et al., 2005, 2007; Mori et al., 
2007). Nonetheless, adakitic affinities do not nec-
essarily imply that these magmas are derived from 
the melting of  the subducted slab alone, and other 
geological mechanisms are also plausible for their 
inception or as relevant contributors to adakitic 
signatures, as discussed below.

5.3. ORIGIN OF ADAKITIC COMPOSITIONS AND 
LINKAGE WITH ORE DEPOSITS

The linkage between adakitic magmas and the 
variety of  tectonomagmatic settings that the gen-
eration of  such magmas entails is suggestive of  a 
significant potential for the formation of  associ-
ated ore deposits (González-Partida et al., 2003a, 
2003b; Chiaradia et al., 2004; Sun et al., 2011; 

Table 6. Comparative table between the general geochemical composition of adakites (as of Mori et al., 2007; Richards and Kerrich, 

2007) and of intrusive rocks at the Tatatila–Las Minas area.

  “Normal” adakites Tatatila–Las Minas   

SiO2 (wt.%) ≥56 ~44 to 68  

Al2O3 (wt.%) ≥15 ~14 to 21  

MgO (wt.%) ~<3 <1 to ~11 Mostly <6.7 wt.% 
Na2O (wt.%) 3.5 to 7.5 ~3 to 5  

K2O/Na2O ~0.42 0.1 to 1.2 Mostly 0.4 to 0.6 
HREE depleted depleted  

Sr (ppm) ≥400 ~16 to 734  

Y (ppm) ≤18 ~3 to 50 Mostly between 20 and 40 ppm 
Yb (ppm) ≤1.9 ~0 to 16 Mostly <3 ppm 
Cr (ppm) ≥30 ~2 to 439 9 out of 25 values are ≥30 ppm 

Sr/Y ≥20 ~7 to 190  

La/Yb ≥20 ~5 to 13  

87Sr/86Sr ≤0.7045 0.7037 to 0.7059  

ɛNd -0.1 to 1.7 -6.6 to 3.2  

ɛSr  -11.4 to 19.9   
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Deng et al., 2017; Keevil et al., 2019). Although the 
association between “adakites” and ore deposits 
normally refers to the classic definition of  adakite 
magmas, the generation of  such magma through 
melting of  a subducted slab has been questioned 
(Richards and Kerrich, 2007; Richards, 2011). 
In the case of  Tatatila-Las Minas, however, the 
intrusive rocks of  adakitic-affinity associated with 
IOCG skarn mineralization have dominantly 
high-silica compositions (Figure 9E). This denotes 
that melting of  basalt from the subducted slab 
would have effectively occurred, with subsequent 
reaction of  the resulting melts with peridotites 
during their ascent through the mantle wedge 
(Defant and Drummond, 1990; Drummond 
and Defant, 1990; Martin et al., 2005). Also, the 
distribution of  Nd and Sr isotopic compositions 
in the Tatatila–Las Minas intrusions point to 
magma fractionation as per their distribution 
(Figure 11A). ɛNd values in the analyzed rocks 
(between –6.6 and 3.2; Table 3) point to contribu-
tions of  both relatively isotopically enriched and 
depleted magma sources for Nd, and represent 
mantle derived melts that were contaminated by 
continental crust lithologies, especially when cor-
related with ɛSr values (Figure 11D). As already 
highlighted by Gómez-Tuena et al. (2003), Pb 
isotopic compositions lie between those expected 
for subducted sediments and MORB (Figure 11B, 
11C and Table 3), thus requiring an isotopically 
depleted source. 

An association between adakites and the for-
mation of  IOCG skarn deposits was earlier 
established in Mexico for the late Cretaceous–
early Paleocene Mezcala deposits in the Sierra 
Madre del Sur (Camprubí and González-Partida, 
2017, and references therein). The formation of  
adakites in that locality has been linked to early 
stages of  a subduction-related continental arc 
(González-Partida et al., 2003b), a feature that is 
explained by the switch from subduction-related 
oceanic arcs to continental arcs in southern Mex-
ico during the Late Cretaceous (Camprubí, 2013, 
2017). Besides the particular case of  Mezcala, 
in these and the Tatatila-Las Minas deposits the 
formation of  associated adakitic magmas can be 
explained by slab rollback or flattening subduc-
tion as younger portions of  the subducted slab 
were being consumed (Morán-Zenteno et al., 
1999; Ferrari and Rosas-Elguera, 1999; Gutscher 
et al., 2000; Gómez-Tuena et al. 2003; Keppie and 
Morán-Zenteno, 2005). Also, in both regions sim-
ilar associations of  different magmatic-hydrother-
mal types of  deposits (i.e., IOCG, sulfide skarns, 
metalliferous porphyries, epithermal deposits; 
Camprubí, 2013, 2017) were produced. Such flat-
tening of  the subducted slab has been extensively 
documented along the entire Western Cordillera 
of  North America and the Andes and explains the 
historical distribution of  metallogenic provinces 
within them (Camprubí, 2017, and references 
within). 

Figure 10  Spider diagrams of REE (A) and trace element contents (B) normalized to chondrite (Sun and McDonough, 1989).
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However, magmatic processes such as assimila-
tion and fractional crystallization (AFC) or those 
occurring in melting-assimilation-storage-homog-
enization (MASH) zones in “normal” continental 
arc magmas may also account for adakitic com-
positions of  intrusions in association with the 
subsequent formation of  magmatic-hydrothermal 
ore deposits (Richards and Kerrich, 2007; Rich-
ards, 2011; Gatzoubaros et al., 2014; Lohmeier 
et al., 2019). fact, these processes can generate 
andesitic to dacitic differentiates with HREE-de-
pleted normalized REE patterns, and high La/
Yb and Sr/Y ratios (Feeley and Davison, 1994; 
Kay et al., 1999; Klepeis et al., 2003; Richards, 
2011). However, AFC processes can be virtually 
ruled out as important contributors to the adakitic 
signal because Eu anomalies in this case are weak 
(Figure 10; see Chen et al., 2014). The absence 
of  Eu anomalies would support the model by 
Richards (2011), as high water contents in typical 
adakitic rocks are characteristic of  MASH zones. 
MASH interactions may involve partial melts of  
lower crustal rocks that may imprint high La/
Yb and Sr/Y. Such signature is derived from 
high pressure fractionation in MASH zones with 
amphibole and garnet, which would produce high 
La/Yb ratios, and from the suppression of  pla-
gioclase fractionation due to high water content 
in the magmas, thus resulting in high Sr/Y ratios 
(see references in Richards, 2011). In low f  S2 and 
high f  O2 conditions underneath “normal” con-
tinental arcs, MASH processes may induce the 
formation of  IOCG deposits in intra-arc settings 
(Richards and Mumin, 2013), thus producing an 
alternative scenario for the association between 
adakite-like and IOCG deposits. With regard to 
slab flattening underneath a continental arc due 
to steep subduction, Richards and Mumin (2013) 
argued about scarce to nil associated magmatic 
activity or the migration of  magmatism toward 
back-arc settings. Interestingly, slab flattening 
would cause the dehydration of  the slab and the 
subsequent hydration of  the lithosphere, which 
would be too cold to melt. However, once the slab 
re-steepened, the temperature of  the hydrated 
lithosphere would rise in contact with the asthe-

nosphere, generating the partial melting of  
sub-continental mantle and subsequent vigorous 
volcanic flare-ups, thus reactivating the formation 
of  magmatic-hydrothermal ore deposits—among 
them, IOCG deposits (see Figure 1 in Richards 
and Mumin, 2013). The formation of  adakites 
in such specific settings and in association with 
magmatic-hydrothermal ore deposits has not 
been reported. However, the involvement of  
MASH-type processes in metallogeny has actually 
been invoked in the formation of  continental-arc 
related magmatic-hydrothermal ore deposits 
nonetheless (Sun et al., 2011). The possibility of  
magma generation by MASH-type processes that 
followed re-steepening of  the subducted slab with 
which the formation of  IOCG deposits would be 
linked is particularly significant for the Tatatila–
Las Minas case. Indeed, the formation of  these 
deposits occurred during the late Miocene, once 
the subducted slab underneath the Trans-Mexi-
can Volcanic Belt, in fact, re-steepened (see Figure 
13 in Gómez-Tuena et al., 2003).
	 In summary, the most likely settings for the for-
mation of  parental adakitic magmas to the IOCG 
skarn deposits at Tatatila–Las Minas would be (1) 
a “normal adakitic” slab-melt setting with some 
crustal contamination, or (2) MASH-related 
adakitic compositions. However, these settings do 
not necessarily have to be considered as mutually 
exclusive in the generation of  adakites with associ-
ated magmatic-hydrothermal ore deposits (Chen 
et al., 2014; Sun et al., 2018). To our reckoning, 
these settings cannot be effectively discriminated 
given the current wealth of  data from the Tatatila–
Las Minas district. In addition, it is possible that 
TMVB calc-alkaline and EMAP alkaline magmas 
underwent some kind of  interaction that pro-
duced the intrusive bodies with which the studied 
IOCG skarn deposits are associated. Interestingly, 
despite the common tectonomagmatic affinity of  
all the Cenozoic magmatic rocks, the only samples 
that show high Y and Yb contents are those whose 
ages correspond entirely to the initial stages of  the 
TMVB (not those older than 19 Ma). This, again, 
stands for different magmatic processes—albeit 
slightly—between TMVB and pre-TMVB rocks.
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Figure 11  Isotope variation diagrams for the Tatatila–Las Minas Miocene intrusive bodies associated with IOCG skarn mineralization. (A) 

Sr-Nd isotopes variation diagram. (B) Pb-Nd isotopes variation diagram. (C) Pb isotopes variation diagram. (D) ɛNd vs. ɛSr diagram that 

illustrates possible end-member sources for magmas, after DePaolo and Wasserburg (1979a, 1979b). Key = DMM = depleted MORB-mantle, 

EMI = enriched mantle I, EMII = enriched mantle II, HIMU = mantle component, MORB = 5°-15° NE Pacific Rise mid-ocean ridge basalts, NHRL 

= northern hemisphere reference line, TMVB = current volcanic front of the Trans-Mexican Volcanic Belt. See sources for all reference values 

in Gómez-Tuena et al. (2003), which is also the source of values represented as green dots in diagrams A to C that correspond to volcanic 

rocks from the Palma Sola area in the eastern TMVB. The magmatic fractionation and sediment recycling trends in the zoomed view of A are 

simplified after Hoffman and White (1982).
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S 6. Conclusions

The iron oxide-Cu-Au deposits at the Tatatila–Las 
Minas district (central Veracruz) are skarn-related 
deposits that belong to the IOCG family, and 
associated Au-rich epithermal deposits also occur 
in the area. U-Pb and 40Ar/39Ar dating of  these 
IOCG skarns yielded early to middle Miocene ages 
for prograde (16.34 to 13.92 Ma for the associated 
intrusive bodies) and retrograde (12.44 to 12.18 
Ma for hydrothermal minerals) associations. Such 
ages and the geochemical affinity of  host intrusive 
rocks (calc-alkaline to adakitic) that are directly 
involved in the formation of  IOCG skarns match 
well with those previously established for the early 
stages of  evolution of  the Trans-Mexican Volcanic 
Belt (TMVB). A set of  pre-TMVB Cenozoic rocks 
has been also dated between ~24.6 and 19 Ma. 

	 The multi-elemental and isotopic geochemi-
cal study of  IOCG skarn-related intrusive rocks 
determined that these are intermediate to acid, 
metaluminous, I- and S-type, medium- to high-po-
tassium, typical calc-alkaline to adakitic rocks that 
are compatible with those expected for a conti-
nental volcanic arc such as the TMVB. Therefore, 
the studied deposits are likely to be ascribed to the 
metallogeny of  the TMVB, which can be right-
fully spoken of  as an actual metallogenic province. 
Such a fact broadens the economic expectations of  
a province that has traditionally been overlooked 
by mineral exploration.
	 The prominent adakitic signal as found in the 
IOCG skarn-generating intrusive rocks has been 
regionally attributed to adakitic melts associated 
with flat subduction and the subsequent resteep-
ening of  the subducted slab—with independent 

Figure 12  Summary of the U-Pb and 39Ar/40Ar ages obtained in this study for the intrusive rocks and IOCG skarn mineralization at the 

Tatatila–Las Minas area, Veracruz.
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evidence for crustal contamination. The results in 
this paper concur with such an interpretation. The 
general geochemical characteristics of  these rocks, 
however, do not rule out the possibility that melt-
ing-assimilation-storage-homogenization (MASH) 
processes were involved in the generation of  paren-
tal magmas. There are also hints that these mag-
mas interacted with alkaline melts, which would 
likely be associated with the nearly contemporane-
ous EMAP. Only TMVB rocks display Y and Yb 
contents that would suggest such interaction—all 
other petrologic indicators suggest common char-
acteristics for TMVB and pre-TMVB Cenozoic 
rocks. In both a adakitic and MASH scenarios, 
the most plausible stage at which the formation of  
IOCG skarn-associated magmas occurred would 
be once the flattened subducted slab re-steepened, 
thus allowing melting of  either (or both) slab mate-
rial or the hydrated lower lithosphere.
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Castro-Mora, J., Ortíz-Hernández, L.E., 
Escamilla-Casas, J.C., Cruz-Chávez, E., 
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Estado de Veracruz: Tópicos de Investigación 
en Ciencias de la Tierra y Materiales, 3, 
128-143. 



M
io

ce
n

e
 I

O
C

G
 d

e
p

o
si

ts
 a

n
d

 a
d

a
k
it

ic
 m

a
g

m
a
s 

in
 t

h
e
 T

ra
n

s-
M

e
x
ic

a
n

 V
o

lc
a
n

ic
 B

e
lt

29Boletín de la Sociedad Geológica Mexicana / 72 (3) / A110520/ 2020 / 29

http://dx.doi.org/10.18268/BSGM2020v72n3a110520

Boletín de la Sociedad Geológica Mexicana / 72 (3) / A110520/ 2020 /   

Centeno-García, E., 2017, Mesozoic tectono-
magmatic evolution of  Mexico: An overview: 
Ore Geology Reviews, 81, 1035-1052. https://
doi.org/10.1016/j.oregeorev.2016.10.010

Chen, J.-L., Xu, J.-F., Ren, J.-B., Huang, X.-X., 
Wang, B.-D., 2014, Geochronology and 
geochemical characteristics of  Late Triassic 
porphyritic rocks from the Zhongdian 
arc, eastern Tibet, and their tectonic and 
metallogenic implications: Gondwana 
Research, 26, 492-504. https://doi.
org/10.1016/j.gr.2013.07.022

Chiaradia, M., Fontboté, L., Beate, B., 2004, 
Cenozoic continental arc magmatism and 
associated mineralization in Ecuador: 
Mineralium Deposita, 39, 204-222. https://
doi.org/10.1007/s00126-003-0397-5

Clark, K.F., Fitch, D.C., 2009, Evolución de 
depósitos metálicos en tiempo y espacio 
en Mexico, in Clark, K.F., Salas-Pizá, 
G., Cubillas-Estrada, R., eds., Geología 
Económica de México, II Edición: Pachuca, 
Hidalgo, Servicio Geológico Mexicano, 
62-133.

Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979, The 
interpretation of  igneous rocks: Boston, USA, 
George Allen and Unwin, 459 p.

Defant, M.J., Drummond, M.S., 1990, Derivation 
of  some modern arc magmas by melting of  
young subducted lithosphere: Nature, 347, 
662-665. https://doi.org/10.1038/347662a0

Defant, M.J., Xu, J.F., Kepezhinskas, P., Wang, 
Q., Zhang, Q., Xiao, L., 2002, Adakites: 
Some variations on a theme: Acta Petrologica 
Sinica, 18, 129-142.

Demant, A., and Robin, C., 1975, Las fases 
del volcanismo en Mexico; una sintesis en 
relacion con la evolucion geodinamica desde 
el Cretacico: Revista - Instituto de Geologia 
UNAM, Mexico, D.F., Mexico, v. I, p. 70-82.

Deng, J., Wang, Q., Li, G., 2017, Tectonic 
evolution, superimposed orogeny, and 
composite metallogenic system in China: 
Gondwana Research, 50, 216-266. https://
doi.org/10.1016/j.gr.2017.02.005

DePaolo, D.J., Wasserburg, G.J., 1979a, 
Petrogenetic mixing models and Nd-Sr 
isotopic patterns: Geochimica et 
Cosmochimica Acta, 43, 615-627. https://
doi.org/10.1016/0016-7037(79)90169-8

DePaolo, D.J., Wasserburg, G.J., 1979b, Sm-Nd 
age of  the Stillwater complex and the mantle 
evolution curve for neodymium: Geochimica 
et Cosmochimica Acta, 43, 999-1008. https://
doi.org/10.1016/0016-7037(79)90089-9

Dorantes-Castro, C.G., 2016, Características 
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Viera, F., Chávez, G., 1995, Calibración 
preliminar de fluorescencia de rayos X para 
análisis cuantitativo de elementos mayores en 
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IX

FSC-1 Fuchsita
Pwr 39Ar  ́10-6 % 39Ar 40Ar*/39ArK 1s Age in Ma 1s % 40Ar* 40Ar/36Ar 37ArCa/

39ArK

0.6 0.668 0.08 33.6 12.03 140.99 48.56 a 23.27 385.11 0.003
1.5 4.769 0.57 2.57 2.18 11.18 9.47 b 7.65 319.96 1.58
2.2 14.443 1.74 0.39 0.76 1.71 3.3 c 1.68 300.54 0.044
2.7 38.246 4.61 2.5 0.39 10.88 1.67 d 25.18 394.94 0.008
3.4 43.922 5.3 3 0.18 13.04 0.77 e 55.38 662.25 0.003
4 145.819 17.59 2.87 0.06 12.47 0.26 f 72.32 1067.62 0.006
5 270.778 32.67 2.86 0.03 12.43 0.11 g 87.63 2388.74 0.004
6 140.591 16.96 2.87 0.03 12.46 0.12 h 95.72 6898.02   < 0.001
8 169.7 20.47 2.88 0.03 12.51 0.13 i 96.36 8120.85   < 0.001

Integrated results

39Ar  ́10-6  40Ar*/39ArK 1s Age in Ma 1s % 40Ar* 40Ar/36Ar
37ArCa

/39ArK

828.9 2.84 0.04 12.33 0.16 65.29 851.36 0.013

J = 0.002419 ± 0.000010

Plateau age tp = 12.49 ± 0.09 Ma
Weighted mean of fractions e to i, representing 92.99% of 39Ar released in 5 consecutive fractions, MSWD = 0.18

Isochron age tc = 12.45 ± 0.11 Ma;  (40Ar/36Ar)i = 300 ± 15, MSWD = 0.2 for n = 5 (e to i)

Appendix 1. (continuation) Ar/Ar determinations dataset for intrusive rocks associated with the IOCG skarn deposits at the Tatatila–Las 

Minas district, Veracruz.
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Appendix 2. Plateau age spectra and normal isochron diagrams in host intrusive bodies to the IOCG skam deposits at the Tatatila-Las 

Minas district, Veracruz.

Appendix 2. Plateau age spectra and normal isochron diagrams in host intrusive 
bodies to the IOCG skarn deposits at the Tatatila-Las Minas district, Veracruz
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Appendix 2. (Continuation) Plateau age spectra and normal isochron diagrams in host intrusive bodies to the IOCG skam deposits at 

the Tatatila-Las Minas district, Veracruz.
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Appendix 2. (Continuation) Plateau age spectra and normal isochron diagrams in host intrusive bodies to the IOCG skam deposits at 

the Tatatila-Las Minas district, Veracruz.
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ppendix 4. A
ge and trace elem

ent data for LA
-IC
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S spot analyses on zircon grains for intrusive units in Tatatila de Las M

inas, Veracruz, M
exico.
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ppendix 4 (C
ont.). A

ge and trace elem
ent data for LA

-IC
PM

S spot analyses on zircon grains for intrusive units in Tatatila de Las M
inas, Veracruz, M

exico.
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ent glass standard N

IST 610.
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