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ABSTRACT

The Medellin Metaharzburgitic Unit (MMU),
emplaced onto the western continental mar-
gin of Pangea during Triassic time, is located
in the Central Cordillera of Colombia and
consists of metaharzburgites, minor meta-
dunites and chromitite bodies (Patio Bonito
and San Pedro ore deposits). The ultramafic
rocks contain relicts of mantle-derived
olivine, chromian spinel and minor ortho-
pyroxene, and a later metamorphic mineral
assemblage composed by tremolite, chlorite,
talec, fine-grained recrystallized olivine,
serpentine-group minerals, magnetite, and
secondary chromian spinel, formed during
the thermal evolution of the unit. The Cr#
[Cr/(Cr+Al) atomic ratio] of the accessory
primary chromian spinel in the metaperi-
dotites ranges from 0.58 to 0.62 and overlaps
those of supra-subduction peridotites from
ophiolites. According to textural and com-
positional variations, the accessory chromian
spinel in the metaperidotites can be classified
into three groups: i) partially altered chromian
spinel with an Al-rich core, ii) porous, Cr-Fe**-
enriched and Al-Mg-depleted chromian
spinel, and iii) homogeneous Fe**-rich chro-
mian spinel. These variations can be related
to superimposed medium-T metamorphism
that reached amphibolite facies (ca. 600 °C).
Chromitite bodies associated with the meta-
peridotites have massive and semi-massive
textures, and mainly consist of chromian spi-
nel crystals, which show large unaltered cores
surrounded by thin alteration rims of ferrian
chromian spinel and chlorite. Chromitites are
Al-rich (#Cr <0.6) and strongly depleted in
platinum group elements (JPGE <41 ppb).
The primary petrological and geochemical
characteristics preserved in the metaperidot-
ites and chromitites indicate that the MMU
formed at shallow levels of a suboceanic litho-
spheric mantle related to a supra-subduction
zone (back-arc basin/incipient arc scenario),
and that the chromitites crystallized from a
tholeiitic magma (back-arc basin basalt type).

Keywords:  Metaperidotite, chro-
mian spinel, chromitite, ophiolite,
supra-subduction zone, Colombia.

RESUMEN

La Unidad Metaharzburgitica de Medellin (UMM),
emplazada en el margen continental de Pangea durante
el Tridsico, localizada en la Cordillera Central
de Colombia, comprende — melaharzburgitas y en
menor proporcion metadunitas y cuerpos de cromitita
(depdsitos de Patio Bonito y San Pedro). Estas rocas
contienen olivino mantélico, Cr-espinela y en menor
proporcion ortopiroxeno, ademds de una asoctacion
metamdrfica posterior compuesta por tremolita, clorita,
lalco, olwvino recristalizado de grano fino, minerales
del grupo de la serpentina, magnetita y Cr-espinela
secundaria, formada durante los procesos de evolucion
térmica de esta unidad. La Cr-espinela primaria tiene
#Cr [Cr/(Cr+Al)] entre 0.58 y 0.62, similar a
los valores de las peridotitas de zonas de suprasub-
duccion. La Cr-espinela accesoria se puede clasificar
en tres grupos segin sus variaciones texturales y
composicionales: 1) Cr-espinela parcialmente allerada
con un niicleo rico en Al, 1) Cr-espinela porosa, enri-
quecida en Cr-F&* y empobrecida en Al-Mg, y i)
Cr-espinela homogénea rica en I%"*. Las variaciones
lexturales y composicionales de las Cr-espinelas acce-
sorias son evidencia de un metamorfismo superpuesto
que alcanzd facies anfibolita (ca. 600 °C). Los
cuerpos de cromitita asociados a las metaperidotitas
lienen lexturas masivas y semi-masivas y comprenden
niicleos de Cr-espinela inalterada rodeados por bordes
de Cr-espinela férrica y clorita. Las cromititas son
ricas en Al (grado refractario: #Cr en la Cr-espinela
primarta <0.6) y un contenido total muy bajo de ele-
mentos del grupo de platino (XPGE <41 ppb). Las
caracleristicas petroldgicas y geoquimicas primarias de
las metaperidotitas y las cromititas indican que estas
Ultimas cristalizaron a partir de un magma loleitico
(tipo basalto de cuenca de trasarco) y que la UMM
representa niveles someros del manto litosférico subo-
cednico relacionado con una zona de suprasubduccion
(cuenca de trasarco/arco incipiente).

Palabras clave: Metaperidotita,
Cr-espinela, cromitita, ofiolita, zona
de suprasubduccion, Colombia.
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1. Introduction

The Colombian Andes, located in the northwest
of South America, are divided into three mountain
ranges separated by valleys, namely from east to
west: the Eastern Cordillera, the Magdalena River
Valley, the Central Cordillera, the Cauca River
Valley, and the Western Cordillera (Figure 1A). The
western flank of the Central Cordillera, the Cauca
River Valley, the Western Cordillera, and the Baudo
Range make up the geographic region called “ Western
Colombia” (Restrepo and Toussaint, 1973; Bourgois
et al., 1987; Moreno-Sanchez and Pardo-Trujillo,
2003). Due to its high potential for precious metals,
mainly gold, silver and Platinum-Group Elements
(PGE), this region has been largely explored since
pre-hispanic and colonial times.
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Western Colombia is characterized by the occur-
rence of several ultramafic bodies (Figure 1A),
some of them interpreted as: (1) fragments of an
ophiolite mantle sequence (Restrepo and Tous-
saint, 1973; Alvarez, 1987, Bourgois et al., 1987,
Correa-Martinez, 2007) and (2) mantle portions
of the Caribbean-Colombian oceanic plateau
(Nivia, 1987; Kerr et al., 1996; Serrano, 2009). The
main ultramafic body of the Central Cordillera of
Colombia is historically known as the Medellin
Dunite (e.g., Restrepo and Toussaint, 1984; Alva-
rez, 1987). It is located in the western flank of the
Central Cordillera, northeast of Medellin (Depart-
ment of Antioquia; Figure 1A) and is formed by
peridotites metamorphosed at amphibolite facies
conditions (ca. 600 °C, <6 kbar; Restrepo, 2008;
Garcia-Casco et al., 2020 and references therein).

San g
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Alluvial and slope deposits - aij?;;:igrjcélr.:t;gcgzza;)(sneisses

San Jerénimo fault
Silvia-Pijao fault
Cauca-Almaguer fault
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(A) Distribution map of peridotite bodies and mafic-ultramafic rock associations in Colombia (modified from Correa-Martinez,
2007; Gomez et al., 2015). (B) Geological map of the Medellin region (modified from Garcia-Casco et al., 2020 and references therein).
The location of the studied samples is shown in the map.
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This ultramafic body has been interpreted as the 2. Geological setting
mantle section of the so-called Aburra Ophiolite
(Correa-Martinez, 2007). Using a bulk-rock major 2.1. MAFIC/ULTRAMAFIC ROCK ASSOCIATIONS IN

element geochemical approach, Garcia-Casco =~ THE COLOMBIAN ANDES

et al. (2020) inferred that this ultramafic body is
mainly harzburgitic, and that the term Medellin
Metaharzburgitic Unit (MMU) is more appropri-
ate than the historical “Medellin Dunite” term.
The MMU hosts the best-known chromian spinel
mineralization of Colombia, including the large
deposit of Patio Bonito, located in the southern
area of the ultramafic body (Figure 1B). This ore
deposit contains refractory grade chromian spinel
(Al-rich; Proenza et al., 2004a; Correa-Martinez,
2007).

The origin of the MMU and its associated
Cr-PGE mineralization has been a matter of
debate for various decades (eg., Restrepo and
Toussaint, 1973, 1984; Restrepo, 1986, 2008;
Alvarez, 1987; Correa-Martinez and Nilson,
2003; Proenza et al., 2004a; Pereira et al., 2006;
Correa-Martinez, 2007; Garcia-Casco et al., 2020
and references therein). Proenza ef al. (2004a) and
Correa-Martinez (2007) suggested that the MMU
represents a fragment of oceanic lithospheric man-
tle formed in a supra-subduction environment.
Pereira et al. (2006) documented a high PGE con-
tent in two samples of metadunite (up to 1.2 ppm),
mainly of Pt, Pd, and Rh, suggesting a primary
magmatic origin of the PGE content, chromian
spinel and pentlandite. Accessory chromian spinel
in ultramafic rocks provides valuable information
about the petrogenesis of the host rock. Neverthe-
less, to date, there are no detailed studies of the
textural and compositional characteristics of the
accessory chromian spinel of the MMU, as well as
its alteration.

This paper focuses on the study of the chro-
mitite bodies hosted in the MMU. We have
studied mineralogical, petrological and geochem-
ical characteristics of chromitites and associated
metaperidotites from Las Palmas, Patio Bonito
and San Pedro, which cover the southern and
northern sections of the ultramafic body (Figures

1B and 2).

The central part of the Colombian Andes (Central
Cordillera) comprises a metamorphic basement
overlain by Mesozoic and Cenozoic sedimen-
tary successions intruded by plutons of different
ages, ranging from the Triassic to the Neogene
(Feininger et al., 1972; Vinasco et al., 2006). In the
western part of the Central Cordillera, there is an
important tectonic boundary between Cretaceous
oceanic crust to the west and the Paleozoic meta-
morphic continental basement to the east, called
the Romeral Shear Zone (Figure 1A; Case ¢t al.,
1971; McCourt et al., 1984; Nivia, 1996; Vinasco,
2019). This complex shear zone consists of three
main faults (from E to W): San Jerénimo, Silvia-Pi-
jao and Cauca-Almaguer (Maya and Gonzalez,
1995). The Cauca-Almaguer fault is considered
to be the tectonic boundary between the Creta-
ceous rocks of oceanic affinity and the Paleozoic
basement of the Central Cordillera (Nivia, 1996,
2001; Moreno-Sanchez and Pardo-Trujillo, 2003;
Lopez et al., 2009). A series of mafic-ultramafic
bodies of different ages lie on both sides of the
Cauca-Almaguer fault (Figure 1A) (Restrepo and
Toussaint, 1973; Bourgois et al., 1967; Nivia, 1993;
Moreno-Sanchez and Pardo-Trujillo, 2003).

The mafic-ultramafic bodies located to the west
of the Cauca-Almaguer fault are associated with
volcano-sedimentary rocks of oceanic affinity and
are mainly considered to be fragments of a Cre-
taceous oceanic plateau (Nivia, 1987, 1996; Kerr
et al., 1996; Serrano, 2009). Nivia (1993) grouped
these bodies into the Western Cretaceous Litho-
spheric Province. On the other hand, the majority
of the mafic-ultramafic bodies and complexes
located to the east of the Cauca-Almaguer fault
are interpreted as of ophiolitic origin (Restrepo
and Toussaint, 1973; Alvarcz, 1987; Bourgois et
al., 1987; Correa-Martinez and Martens, 2000).

The Aburrd Ophiolite (Correa-Martinez,
2007; Figure 1B) is one of the mafic-ultramafic
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units that crops out to the east of the Cauca-Al-
maguer fault. It lies to the west of the low-grade
metamorphic rocks of the Cajamarca Complex
(Maya and Gonzalez, 1995) that represents the
paleo-continental margin. The Aburra Ophiolite
comprises ultramafic rocks that form the Medellin
Metaharzburgitic Unit (MMU) and several mafic
units, which include the El Picacho Metagabbros
and the Espadera-Chupadero Amphibolites
(Correa-Martinez and Martens, 2000; Cor-
rea-Martinez and Nilson, 2003; Correa-Martinez
et al., 2004, 2005; Correa-Martinez, 2007,
Restrepo, 2008). The contacts between the differ-
ent units of the Aburrd Ophiolite are tectonic and
the MMU overthrusts the Espadera-Chupadero
amphibolites (Figure 1B) (Restrepo and Toussaint,
1973; Rodriguez et al., 2016).

2.2. MEDELLIN METAHARZBURGITIC UNIT (MMU)

The MMU covers approximately 71 km? and
represents the main ultramafic body of ophiol-
itic affinity in the Colombian Central Cordillera
(Figure 1B), which is in fault contact with Jurassic
Sajonia mylontic gneisses and Cretaceous amphi-
bolites (Figure 1B; Restrepo, 2008; Rodriguez e
al., 2016). This unit has been of special interest
for chromium mining and exploration since it is
a host for several small bodies of chromitite that
were exploited over various decades (e.g., Bote-
ro-Restrepo, 1945; Hall, e al, 1970; Alvarez,
1987). Restrepo and Toussaint (1973) interpreted
the ultramafic rocks of the MMU as part of an
obducted ophiolite. Correa-Martinez and Nilson
(2003) considered this unit to have formed in a
subduction zone environment, and suggested
that the origin of the MMU can be related to a
Triassic back-arc basin. However, the age and the
geodynamic setting of the ophiolite formation still
remains a subject of debate (see Rodriguez et al.,
2016; Spikings and Paul, 2019; Garcia-Casco et
al., 2020 and references therein). Correa-Martinez
(2007) obtained an age of 216.6 £ 0.36 Ma (Late
Triassic) in zircons from a plagiogranite dike
intruding the El Picacho metagabbros, which was

e | Boletin de la Sociedad Geoldgica Mexicana | 72 (3) / A120620 / 2020

interpreted as the minimum age for the formation
of the ophiolite oceanic crust. In addition, the
age of emplacement of the Aburrd ophiolite onto
the continent is still unknown, but a minimum
pre-Cretaceous age is constrained by the intrusion
of several apophysis of the Cretaceous Antioquia
Batholith (Figure 1B) (Feininger and Botero, 1982;
Correa-Martinez, 2007; Rodriguez ¢t al., 2016).
The MMU comprises mainly metaharzburgites
and minor metadunites, containing tremolite, talc,
chlorite, fine-grained recrystallized olivine, ser-
pentine group minerals, magnetite, and chromian
spinel, and to a lesser extent, carbonates, antho-
phyllite and relicts of magmatic olivine, chromian
spinel and orthopyroxene (e.g., Alvarez, 1987;
Restrepo and Toussaint, 1984; Correa-Martinez,
2007; Restrepo, 2008), indicating medium-grade
metamorphic conditions (ca. 600 °C). Garcia-Casco
et al. (2020) analyzed two possible geodynamic set-
tings in order to explain the metamorphism of the
MMU and associated metabasites: 1) ocean-floor
metamorphism (e.g., Correa-Martinez, 2007), and
i) intra- back-arc subduction-initiation metamor-
phism, which supposes a new tectonic scenario for

the MMU (Garcia-Casco et al., 2020).

2.3. THE CHROMITITE BODIES

Chromitite bodies occur mainly as centimetric to
metric pods, but also as dikes, lenses, and dissem-
inated schlieren (Alvarez, 1987), showing massive
to disseminated textures. Chromitites usually show
sharp contacts with the enclosing strongly ser-
pentinized dunite (metadunite) and are concordant
to subconcordant with the foliation of the host ultra-
matfic rock (Correa-Martinez, 2007). The ore bodies
are small, containing a maximum tonnage estimate
of ~20000 tons of ore. They were exploited during
the 1970%s-1980’s by metallurgical and glass indus-
tries (Correa-Martinez, 2007). The Patio Bonito
deposit was the largest in the area, with 30 m length
and up to 7 m width (Alvarez, 1987). Artisanal min-
ing activity was reactivated in the 2000’s with the
opening of small mines and quarries in the north-
ern and southern bodies (Correa-Martinez, 2007).
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Field photographs of San Pedro, Patio Bonito, and Las Palmas localities. (A) Metaperidotite outcrop in the San Pedro locality.
(B) Metaperidotite outcrop crosscut by a mafic dike or sill in the Patio Bonito locality. (C) and (D) Metaharzburgite outcrops in the Las
Palmas locality. (E) Chromitite body in the San Pedro locality. (F) Massive chromitite hand-specimen from the San Pedro locality. (G)
General view of the Patio Bonito Mine. (H) Zoom on the massive chromitite in the Patio Bonito locality.
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Table 1. Whole rock analyses of the Medellin Metaharzburgitic Unit (MMU) metaperidotites.

g Las Palmas Las Palmas Las Palmas San Pedro
§ Metaharzburgite — Metaharzburgite Metadunite Metaharzburgite
= 39.59 40.60 31.18 38.93
0.02 0.06 0.30 0.04
0.84 0.96 5.27 0.77
8.61 8.02 10.80 7.58
0.13 0.12 0.12 0.12
41.20 40.36 37.20 39.92
(010} 0.57 0.74 0.07 0.53
Bl bl bl bl
K20 b.d.l b.d.l. b.d.l. b.d.l.
0.01 0.01 0.01 0.01
LOI 8.17 8.63 9.79 11.29
99.14 99.50 94.74 99.19
1.1 0.9 2.3 1.5
“ 0.80 0.37 0.38 0.60
0.071 0.008 0.037 0.027
“ 0.19 0.19 0.19 0.19
% 05 28 T
“ 1.49 0.46 0.47 0.83
2 3 54 4
28.9 122.5 30.5 28.6
2231 12771 1488 1558
101 129 98 109
2241 3593 1927 2260
1.3 113 2.6 19

b.d.l. = below detection limit.
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3. Studied samples and analytical

techniques

A total of 19 representative samples from Las
Palmas, San Pedro and Patio Bonito outcrops
(Figure 2) were selected to be studied on polished
thin sections using optical microscopy (transmit-
ted and reflected light). These include metaharz-
burgites and metadunites from Las Palmas, San
Pedro and Patio Bonito also chromitites at San
Pedro and Patio Bonito. The textural study of the
chromian spinel alteration and the mineralogical

characterization of the fine grain phases was
carried out with Scanning Electron Microscopy
with Energy-Dispersive X-Ray Spectroscopy
(SEM-EDS) using the ESEM Quanta 200 FEI,
XTE 325/D8395 at the Serveis Cientifics 1 Tec-
nologics (CCiTUB), Universitat de Barcelona.
For the mineral chemistry analyses, the JEOL

JXA-8230 electron microprobe was used at the

same institution. Operating conditions were set
to an acceleration voltage of 20 kV and a beam
current of 20 nA. The elements were acquired
using the analyzing crystals: Lil" for Fe, Mn, and
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Table 1. (Continuation) Whole rock analyses of the Medellin Metaharzburgitic Unit (MMU) metaperidotites.

STUDIED SAMPLES AND ANALYTICAL

:
Las Palmas Las Palmas Las Palmas San Pedro a
Metaharzburgite Metadunite Metaharzburgite ~ Metaharzburgite g
44 134 33 42 =
7 53 05 01
0.48 0.08 0.79 0.26
0.45 0.28 0.12 0.09
0.14 0.11 0.11 0.11
8.8 5.8 5.6 7.0
1.1 0.6 4.5 0.6
0.14 0.18 0.13 0.16
0.36 0.34 0.31 0.32
0.005 0.007 0.003 0.004
“ 0.49 0.15 0.19 0.29
0.016 0.008 0.009 0.006
0.203 0.054 0.041 0.024
0.084 0.043 0.080 0.056
0.174 0.078 0.239 0.098
0.027 0.011 0.039 0.014
0.143 0.031 0.183 0.072
0.047 0.007 0.085 0.020
0.019 0.002 0.016 0.006
0.052 0.007 0.088 0.019
0.008 0.001 0.017 0.004
Dy 0.063 0.007 0.124 0.027
“ 0.013 0.002 0.026 0.009
0.043 0.007 0.072 0.023
0.01 0.002 0.017 0.007
0.061 0.016 0.098 0.045
0.008 0.003 0.015 0.008
0.52 0.37 0.39 0.31

Ni; TAP for Mg and Al; PET for Cr, V, and Ti.
The standards used were chromian spinel (Cr, Al,
Fe), periclase (Mg), rhodonite (Mn), nickel oxide
(N1), rutile (11), metallic vanadium (V), albite (Na),
Ca), and orthoclase (Si, K).

Whole rock analyses of peridotite samples were

wollastonite

—~

carried out in the Centro de Instrumentacion

Cientifica (CIC), Universidad de Granada.

—~

Major elements and Zr were analyzed using a
Philips Magix Pro (PW-2440) X Ray Fluores-
cence (XRF). Trace elements abundances (except
Zr) were obtained by ICP Mass Spectrometry
(IGP-MS). Details of the analytic protocols have
been described by Lazaro et al. (2014). Results
are shown in Table 1. Platinum-Group Elements
analyses were performed by ICP-MS method at
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serpentine, secondary chromian spinel, and minor

Table 2. Whole rock platinum group elements (PGE) analyses of
the MMU chromitites (ppb).

carbonates and anthophyllite (Garcia-Casco et al.,
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XPGE 28 41 27 14

b.d.l. = below detection limit.

Genalysis Laboratory Services Pty. Ltd. in Mad-
dington (Australia). The detection limits were |
ppb for Rh and 2 ppb for Os, Ir, Ru, Pt, and Pd.
The details of the analytical procedure can be
found in Gervilla ¢t al. (2005) and the results are
shown in Table 2.

4. Results
4.1. PETROGRAPHY

4.1.1. ULTRAMAFIC ROCKS

The metaperidotite samples (Figure 2) corre-
spond to metaharzburgites (>40% Ol and >5%
Opx) and metadunites (>90% Ol), both partially
serpentinized (Figures 3A to 3D). The preserved
primary textures are typical of mantle tectonites,
predominantly porphyroclastic/granoblastic tex-
tures, and minerals show undulose extinction and
kink-bands. The ultramafic rocks contain relicts
of mantle-derived olivine, chromian spinel, and
minor orthopyroxene. However, much of the min-
eral assemblage is secondary and includes second-
ary fine-grained olivine, tremolite, chlorite, talc,

2020 and references therein).

Metaharzburgites: Metaharzburgites show
pseudomorphic mesh and bastite textures, where
mantle olivine is replaced by serpentine and
iddingsite along rims and fractures, and pyroxene
by serpentine and tremolite (Figure 3A and 3B).
There are two generations of olivine: primary
olivine (Ol1), which forms 100-500 pm porphyro-
clasts, and secondary recrystallized olivine (O12)
that forms smaller (< 20 pm) rounded grains
(Figure 3B). Primary olivine is variably deformed
and oriented, showing undulose extinction and
kink-bands, and is also found as relict inclusions
in pyroxene pseudomorphs. Non-pseudomorphic
textures, characterized by intergrowths of ant-
gorite, tremolite and secondary olivine are also
observed (Figure 3A). Talc and chlorite replace
mainly serpentine.

Chromian spinel (600-800 pm) is a common
accessory phase in the MMU metaperidotites.
Three types of chromian spinel can be distin-
guished petrographically, and can be classified
according to the textural classification proposed by
Gervilla ef al. (2012): type 1 partially altered chro-
mian spinel (Figures 4A and 4B), type II porous
chromian spinel, which is completely altered and
contains abundant chlorite within the porosity
(Figures 4C and 4D), and type III homogeneous
chromian spinel (Figures 4F and 4F). Both types
I and II chromian spinel in the MMU are sur-
rounded by a decussate chlorite corona.

Metadunites: Metadunites are less abundant
than metaharzburgites in the MMU, and have
been observed in Las Palmas and San Pedro local-
ities (Figure 1B). In San Pedro, metadunites occur
as envelopes around chromitite bodies. Metadun-
ites show pseudomorphic mesh textures, where
serpentine replaces primary olivine porphyroclasts
along grain boundaries and fractures (Figure 3C).
Primary mantle olivine forms crystals ~100 pm in
size and secondary olivine forms smaller (~10 to
20 pm) crystals. Tremolite and talc are found as
overgrowths in serpentine and filling thin veinlets
(Figure 3C).
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Accessory chromian spinel (0.6 - 1 mm) shows
unaltered cores surrounded by rims of porous
chromian spinel with chlorite following the altered
chromian spinel (111) crystallographic planes (Fig-
ure 4A and 4B). This partially altered chromian
spinel corresponds to type I spinel according to the
classification of Gervilla ¢t al. (2012). A decussate
chlorite corona surrounds the type II chromian
spinel (Figure 3D). Chlorite crystals reach up to
500 pm in size and neither primary pyroxene nor
pseudomorphs after pyroxene are observed.

4.1.2. CHROMITITES

Chromitite samples from San Pedro and Patio
Bonito localities (Figures 3E to 3H) exhibit mas-
sive (>80% vol. chromian spinel) and semi-mas-
sive (60-80% wvol. chromian spinel) textures.
Massive chromitites consists of large (0.5-0.8 cm)
chromian spinel crystal aggregates, which have
unaltered cores surrounded by thin alteration rims
of ferrian chromian spinel with abundant chlo-
rite inclusions (Figure 3G), also showing typical
pull-apart textures. Semi-massive chromitites are
made up of smaller chromian spinel grains (up
to 0.2 cm) that are strongly fractured and altered
along rims to ferrian chromian spinel (Figure 3H),
locally forming brecciated textures. Chlorite is the
predominant intergranular mineral accompanied
by minor serpentine, rutile, ilmenite, and titanite.
Mineral inclusions observed within chromian spi-
nel include olivine, chlorite, serpentine, ilmenite,
rutile, and amphibole. In both chromitite bodies,
chromian spinel alteration rims are highly porous
and the voids are filled by chlorite and minor sul-
fides. The voids within the alteration rims in the
less altered chromian spinel crystals are rounded
(Figure 3H), whereas the ones in the more altered
crystals have coarse irregular or acicular-shaped
voids (Figures 4A to 4D).

4.2. WHOLE ROCK GEOCHEMISTRY
4.2.1. METAPERIDOTITES

The LOI values of the MMU metaperidotites
range from 8.17 to 11.29 wt% (Table 1). The
AL O, contents (0.84 - 0.96 wt%) are rather low

(except for sample LP-7), SiO, ranges between
31.18 and 40.60 wt%, Fe O, between 7.58 and
10.80 wt%, MgO between 37.20 to 41.20 wt%,
and CaO and TiO, contents are low (0.07 - 0.74
wt% and 0.02 - 0.30 wt% respectively) (Table 1).
One metadunite from Las Palmas (sample LP-7)
shows the lowest contents of SiO, and CaO (31.18
wt% and 0.07 wt% respectively), and the highest
contents of TiO, (0.30 wt%), ALO, (5.27 wt%),
and Fe,O, (10.80 wt%) (Table 1).
Chondrite-normalized rare earth element
(REE) patterns (Figure 5A) are almost flat or
U-shaped. The metaharzburgite sample from San
Pedro (SP-1) shows a positive Ho anomaly and a
negative Er anomaly. One metaharzburgite sample
from Las Palmas (LP-4) is clearly depleted in REEs
when compared to the other samples. The meta-
dunite (LP-7), which is already particular in terms
of major elements, shows a noticeable negative Eu
anomaly, not observed in the other samples.
In the multieclemental diagram normalized to the
primitive mantle (Figure 5B) metaperidotites are
typically depleted in large-ion lithophile elements
(LILE) and slightly enriched in high field strength
elements (HEFSE). All samples show positive Th
and Pb anomalies.

4.2.2. CHROMITITES: PGE GEOCHEMISTRY

Whole rock PGE contents normalized to chon-
dritic values for the massive chromitites associated
with the MMU (Iigure 6) show a general PGE
depletion, around 100 times lower than chondritic
values. The San Pedro chromitites have ZPGE
< 41 ppb, Ru being the most abundant element
(17 - 18 ppb). The Patio Bonito chromitites have
2PGE < 37 ppb, Ru also being the most abundant
clement (7 - 14 ppb), but with a significantly lower
content than in San Pedro. The chondrite-normal-
ized PGE patterns (Figure 6) are characterized by
comparable Os and Ir values, positive Ru anom-
alies, and a negative slope from Ru to Pd, which
is typical for podiform chromitites (¢.g., Leblanc,
1991). These patterns are similar to those from
the Al-rich chromitites from Tehuitzingo, México

(Proenza et al., 2004b).
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RESULTS

’

Microphotographs of metaharzburgites, metadunites and chromitites from the MMU. (A) Metaharzburgite with tremolite (Tr)
and relict olivine (OIT) replaced by serpentine and chlorite (Chl). Transmitted light and crossed nicols. (B) Metaharzburgite with relict
olivine (OIT), secondary olivine (0OI2), chlorite (Chl) and late carbonate veins. Transmitted light and crossed nicols. (C) Metadunite showing
magmatic olivine (OIT) altered to serpentine (Srp) and iddingsite. Talc (T/c) and accessory spinel (Spl) are also observed. Transmitted
light and crossed nicols. (D) Metadunite with olivine (OIT) partially altered to serpentine. Chromian spinel (Spl) is surrounded by a
decussate chlorite (Chl) corona. Transmitted light and parallel nicols. (E) Chromitite with coarse chromian spinel (Spl) crystals in a
chlorite matrix (Chl). Transmitted light and parallel nicols. (F) Same as E in transmitted light and crossed nicols. (G) Chromitite showing
strongly altered and fractured chromian spinel (Spl) crystals surrounded by chlorite (Chl). Reflected light. (H) Chromitite showing
alteration rims in chromian spinel (Spl) crystals in chromitite. Reflected light.
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RESULTS

mBack-scattered electron images (BSE) of the accessory chromian spinel in MMU. (A) and (B) Type | chromian spinel (Spl) (Al-rich)
in metaperidotite. Chlorite (Chl) is present as inclusions within the chromian spinel that follow the (111) crystallographic planes and
as a corona surrounding the spinel. (C) and (D) Type Il chromian spinel (Cr-Fe?-rich, and Al-Mg-depleted) with chlorite inclusions and a
chlorite halo surrounding the spinel. (E) and (F) Type Ill chromian spinel (Fe3*-rich) intergrown with tremolite (Tr).
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A —@— LP-7 (metadunite) —@— LP-4 (metaharzburgite)
—@— LP-1 (metaharzburgite) —@®—— SP-1 (metaharzburgite)

RESULTS

Rock/C1 chondrite

0.01 §
Abyssal mantle Mariana forearc
peridotites (Savov et al., 2005)
(Godard et al., 2008)
0.001 T T T T T T T T T T T T T T
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
100
B —@— LP-7 (metadunite)
—®— LP-1 (metaharzburgite)
© 107
E —@— LP-4 (metaharzburgite)
© —@— SP-1 (metaharzburgite)
= |
o
=
=
£
‘T 0.4
o
2
Q
@]
Y 0.0%

! CSRbBaTh U NbLa CePrPbNd Srom 'EUGd TbDyHo Er Y TmYbLu

m Whole rock geochemistry of the Las Palmas (LP-1, LP-4 and LP-7) and San Pedro (SP-1) metaperidotites. (A) Chondrite-normalized
REE patterns. (B) Multi-elemental diagram normalized to the primitive mantle. The fields for abyssal mantle peridotites (Godard et al.,
2008) and hydrated mantle wedge serpentinites (Tso Morari, Himalaya, Deschamps et al., 2010; Mariana Forearc, Savov et al., 2005) are
projected for comparison. Normalizing values were taken from McDonough and Sun (1995).

4.3. MINERAL CHEMISTRY atomic ratio] ranging from 0.58 to 0.62, Mg#
[Mg/(Mg+Al) atomic ratio] from 0.42 to 0.44,

4.3.1. CHROMIAN SPINEL 3 3 3 . .
Fe’*# [Fe’*/(Fe’*+Cr+Al) atomic ratio] < 0.03,

Accessory chromian spinel in the metaperidotites TiO, < 0.36 wt%, MnO from 0.32 to 0.42
has been divided into 3 textural groups. The com- wt%, and ZnO from 0.68 to 0.87 wt%. This
positional variations regarding the Fe?*, Cr and Al composition is typical of accessory spinel in
contents are directly related to the textural classifi- mantle rocks at supra-subduction zones (Kame-
cation defined petrographically (Figures 7A, 7B.,8 netsky et al., 2001) (Figure 7A).
and Table 3). e Type II chromian spinel (porous) is Al and
* Type I chromian spinel (partially altered) has Mg-depleted and enriched in Cr, Fe**, Ti and
Al-rich cores (Figures 7A and 8A, Table 3) that Mn, when compared to Type I chromian spinel.
represent the primary composition. These The composition is characterized by Cr# that
cores are characterized by Cr# [Cr/(Cr+Al) ranges from 0.84 to 0.96, Mg# from 0.13 to
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0.27, Fe**# from 0.05 to 0.16, TiO, from 0.42 ilar TiO, (0.05 to 0.5 wt%) and NiO (<0.21 wt%o)

to 1.57 wt%, MnO from 0.39 to 0.76 wt%, and but lower Fe*+# (<0.018 wt%) and slightly higher "

ZnO from 0.37 to 0.66 wt% (Figure 7B, Table MnO (0.11-0.49 wt%), V,0O, (<0.26 wt%), and i

3). ZnO (<0.37 wt%) (Figures 7C, 7D and Table 4). 5
*  Type III chromian spinel (homogenous) is Fe**- &

rich (Figures 7B and 8B, Table 3) and has Cr#  4.3.2. OLIVINE
that ranges from 0.98 to 1.00, Mg# from 0.09

to 0.22, Fe’# from 0.30 to 0.79, TiO, from 0.27 Olivine is only present in the metaperidotites and
to 0.45 wt%, MnO from 0.16 to 0.58 wt%, and its composition ranges from Fo,, . to Fo,, . (average
7ZnO from 0.04 to 0.28 wt%. of Fo,,.), and NiO from 0.19 to 0.51 wt%, which
Unaltered chromian spinel cores from San Pedro is within the range of mantle olivine (e.g., Taka-
chromitites has Cr# ranging from 0.43 to 0.58, hashi e/ al., 1987). Even though petrographically
Mg# from 0.54 to 0.68, TiO, from 0.02 to 0.5 wt%, it was possible to distinguish primary mantle-de-
Fe?*# <0.035, MnO < 0.27 wt%, V,0, < 0.22 wt%, rived olivine and secondary metamorphic olivine,
ZnO < 0.17 wt%, and NiO < 0.23 Wt (Figures all the analyzed crystals show similar composition
7C, 7D, Table 4). In contrast, unaltered chromian (Table 5). Figure 9A shows a scattering of olivine
spinel cores from Patio Bonito chromitites exhibit compositions between the abyssal peridotites
higher Cr# (0.51 - 0.63) and Mg# (0.67-0.80), sim- (Moghadam et al., 2015) and the supra-subduction
1 peridotite fields (Ishii et al., 1992).
] Chromitites 4.3.3. TREMOLITE
] ® San Pedro
: @ Patio Bonito Amphibole is only present in the metaharzburgites
and it i3 more abundant in samples that contain
7 Type-1II chromian spinel. The studied crystals g
- long to the calcium subg -alculations fol-
o Tehuitzingo be ong to the calcium subgo_up (calcu atlon? 0 s
= 01 = chromitite lowing Locock, 2014) according to the classifica- =
-8 . (SW Mexico) tion scheme of Hawthorne et al. (2012), and have 3
2 - Mg# [Mg/(Mg+Fe®) atomic ratio] ranging from =
: B 0.95 to 0.99 (Table 6). These calcium amphiboles g
o N (Ca® = 1.196 - 2 a.p.fu; NaP = 0.001 - 0.19) clas- 'E
% - sify as tremolite (Figure 9B). Analyses yielded very £
= low Ti (<0.02 a.p.fu.), Mn (<0.06 a.p.fu.) and g
8 0.01— K (<0.007 a.p.fu.) contents, and have variable E
- Si (7.20 - 8.02), AI™T (0.016 - 0.131), Mg (3.76 - %
- 4.96), Fe™T (0.14 - 0.39), Ca (1.19 - 2.00), and Na =
- (0.001 - 0.19) contents (Table 6). The vacancy in =
7 position A is between 0.69 and 1.00 a.p.fou. a
v
4.3.4. CHLORITE £
S
0.001 I l l I I ] Chlorite composition in the metaharzburgites §
Os Ir Ru Rh Pt Pd corresponds to clinochlore and high-Si pennantite =
IGEMA Chondritenormalized platinum group element (PGE) (Figure 9C) according to the classification by Hey 2
patterns for the San Pedro and Patio Bonito chromitites. 1954). SiO tent oes f 97.91 to 35.21 o
Normalizing chondritic values are from Naldrett and Duke ( ) 51 » COn .en ranges trom = 7. 029 _°
(1980). The field for the Tehuitzingo chromitites (México) is from wt%o (Up to 6.7 Si a-p.f.u-) and FeO from 1.79 to <
Proenza et al. (2004b). 3.37 wt% (up to 0.49 Fe?* a.p.fu.). The Fe/(Fe + )
I
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ot

5]

Mineral chemistry of accessory chromian spinel in the metaperidotites and in the chromitite bodies of the MMU. (A) TiO,
(wt%) vs. Al,O, (wt%) diagram for type | chromian spinel. Fields for supra-subduction zone (S5Z) and MORB-type peridotites are from
Kamenetsky et al. (2001), and the field for the Puerto Rico Peridotite is from Marchesi et al. (2011). (B) Cr, Fe3** and Al compositions for
chromian spinel of the MMU. (C) Cr# [Cr/(Cr+Al)] vs. Mg# [Mg/(Mg+Fe)] diagram for chromian spinel of the San Pedro and Patio Bonito
chromitites, and primary chromian spinel for the metaperidotites. The podiform and stratiform fields are after Irvine (1967) and Leblanc
and Nicolas (1992) respectively, the Moa Baracoa and Sagua de Tanamo (Cuba) fields are from Proenza et al. (1999), Tehuitzingo (México)
is from Proenza et al. (2004b), Los Guanacos (Argentina) is from Proenza et al. (2008), and Cerro Colorado (Venezuela) is from Mendi et
al. (2020). (D) Cr# vs. TiO, (wt%) for the San Pedro and Patio Bonito chromitites, and type | chromian spinel in the metaperidotites. Fields
for boninites and MORB are from Arai (1992), references are the same as in (C).
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Table 3. Representative electron microprobe analyses of accessory chromian spinel in the metaperidotites.

,

|_

Las Las Las Las Las San Pedro Patt:o Pan:o Patl:o 5'

Palmas Palmas Palmas Palmas Palmas Bonito Bonito Bonito A

LP-7 LP-7 LP-7 LP-7 LP-7 SP-001 COL-6 COL-7 COL-6 5
0.05 b.d.l 0.07 b.d.l. 0.10 0.07 0.08 0.08 0.05
0.29 0.35 0.30 0.78 0.88 1.13 0.29 0.31 0.29
19.97 19.03 18.29 6.82 3.67 2.19 0.24 0.10 b.d.l
41.91 42.76 44.09 52.42 54.54 53.73 28.67 17.49 11.03
0.16 0.17 0.14 0.25 0.33 0.33 0.16 0.16 0.11
5.37 5.77 5.26 - - - 39.22 50.72 56.79
21.44 21.54 21.86 32.69 34.88 38.16 27.40 28.17 28.92
0.34 0.36 0.32 0.58 0.62 0.70 0.58 0.32 0.26
0.87 0.68 0.79 0.50 0.57 0.63 0.24 0.07 0.08
8.44 8.39 8.10 5.08 3.54 2.55 2.19 1.81 1.18
0.12 0.05 0.05 0.04 b.d.L 0.09 0.48 0.66 0.81
98.96 99.11 99.27 99.15 99.14 99.58 99.55 99.89 99.52

Type 1 Type 11 Type 111
0.01 0.01 0.01 0.02 0.02 0.03 0.01 0.02 0.02
0.80 0.76 0.73 0.28 0.15 0.09 0.02 0.01 0.00
1.12 1.15 1.19 1.44 1.54 1.53 1.34 1.00 0.73
0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
0.06 0.06 0.05 0.24 0.24 0.31 0.60 0.94 1.22
0.55 0.55 0.57 0.72 0.80 0.84 0.76 0.77 0.80
0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.02
0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.00
0.43 0.43 0.41 0.26 0.19 0.14 0.19 0.20 0.15
0.00 0.00 0.00 0.00 - 0.00 0.02 0.04 0.05
Type 1 Type I1 Type 111

0.58 0.60 0.62 0.84 0.91 0.94 0.99 0.99 1.00
0.44 0.43 0.42 0.27 0.19 0.14 0.20 0.20 0.16

_ 0.03 0.03 0.03 0.12 0.12 0.16 0.30 0.48 0.63

b.d.l. = below detection limit.

Mg) ratio ranges between 0.03 and 0.05, also the 4.3.5. SERPENTINE

Cr,O, content is low (<3.2 wt%) (Table 6).

Chlorite in the chromitites corresponds to
clinochlore (Figure 9C), with SiO, ranging from
27.07 to 32.61 wt%, FeO from 1.22 to 1.79 wt%
and Fe/(Fe + Mg) ratio between 0.02 and 0.03.
These values are lower than those from chlorite
found in metaperidotites. The Cr,O, content is
also low (<2.61 wt%).

Serpentine composition (Figure 9D) ranges from
41.54 to 45.98 wt% of SiO,, FeO from 2.85 to
4.51 wt%, ALO, from 0.53 to 2.50 wt%, and
Cr,O, from 0.03 to 0.47 wt% (Table 6). The high-
est SiO,, values are observed in serpentine from
metaperidotites with type III accessory chromian
spinel, where chlorite is rare.
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Table 4. Representative electron microprobe chromian spinel analyses from the chromitite bodies in the MMU.
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0.67 0.66 0.66

0.15 0.11 0.12

b.d.l. = below detection limit.

5. Discussion

5.1. TECTONIC SETTING OF THE MMU
PERIDOTITES

Ophiolitic peridotites are spatially and temporally
related with first-order tectonic and magmatic
global events, which, together with mantle pro-
cesses, control the development of different types
of oceanic lithosphere (“ophiolites”) in various
tectonic settings (Dilek and Flower, 2003; Dilek
and Furnes, 2014 and references therein). In gen-

0.66
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0.13 0.19 0.10 0.19 0.12 0.11 0.15 021 0.14
2.63 1.87 2.15 226 0.82 3.13 2.64 0.95 1.85
- 13.40 13.54 13.92 13.89 14.02 13.11 8.65 11.98 12.89 9.74
0.20 0.19 0.16 0.18 0.17 0.11 0.20 0.19 0.13
0.02 0.05 0.15 0.08 b.d.l. 0.05 0.07 0.12 0.11
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0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
0.04 0.05 0.05 0.00 0.02 0.02 0.01 0.01
0.34 0.34 0.34 0.33 0.19 0.28 0.32 0.23
0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.66 0.66 0.66 0.67 0.81 0.71 0.68 0.77

0.67 0.81 0.72 0.68 0.77

0.05 0.25 0.17 0.06 0.15

eral, oceanic ultramafic rocks of ophiolitic affinity
can be classified as: (1) subduction zone (supra-sub-
duction zone or volcanic arc) related ophiolites,
which might be influenced by the dehydration of
the subducting plate, associated metasomatic pro-
cesses, and repetitive episodes of partial melting
of metasomatized peridotites, and (ii) subduction
unrelated ophiolites (oceanic ridges, MOR or
plumes), which are linked to mantle diapirism,
heat advection and melting in the asthenospheric
mantle and/or at deeper levels.
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m (A) NiO (wt%) vs. Forsterite content (Fo) in olivine from the metaperidotites of the MMU. Fields for mantle olivine are from
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Al, Fe + Mg distribution diagram for serpentine of the MMU metaperidotites.

The MMU protoliths are predominantly harzbur-
gites and dunites with tectonite textures and are
similar to abyssal ocean ridge and supra-subduc-
tion zone peridotites. The Cr# of the accessory
chromian spinel in metaperidotites (0.58 - 0.62,
unaltered cores from Type-I chromian spinel)
from the MMU overlap those of supra-subduction
peridotites from ophiolites (Figure 7A; Pearce et al.,
2000; Marchesi et al., 2016 and references therein).

The REE patterns of the studied metaper-
idotites compare well with those related with
supra-subduction zone peridotites (Savov et al.,
2005; Marchesi et al., 2006; Deschamps et al.,
2010) and differ from those of abyssal peridotites
(MOR-type) (Godard et al., 2008), characterized by
positive LREE to HREE slopes (Figure 5A). The
REE patterns (almost flat or U-shaped) are consis-
tent with melt percolation reactions, common in
supra-subduction zones due to volatile-rich fluid

infiltration produced by slab dehydration (Proenza
et al., 1999; Pearce et al., 2000; Marchesi et al.,
2006, 2016). Also, primitive mantle-normalized
trace element patterns (Figure 5B) of the studied
MMU metaperidotites are similar to supra-sub-
duction zone peridotites from the Tso Morari
fore-arc (Savov et al., 2005).

On the other hand, the MMU hosts the major
chromian spinel deposits described for Colombia.
Several authors have suggested that podiform
chromitites are predominantly formed within
supra-subduction zone settings (Pearce et al., 1984;
Roberts, 1988; Proenza et al., 1999; Gonzélez-
Jiménez et al., 2012, 2014a and references therein).
Consequently, the ultramafic rocks in Medellin
probably formed in a supra-subduction zone
setting, where ophiolites show typical island arc
signatures but have oceanic crust structures clearly
formed by expansion processes related to a sub-



http://dx.doi.org/10.18268/BSGM2020v72n3a120620

Boletin de la Sociedad Geoldgica Mexicana | 72 (3) /| A120620 / 2020 / e

duction zone (e.g.,: fore-arc, intra-arc, and back- MgO)_ ., = 0.72 wt%, and plot overlapping the >
arc basins). This interpretation agrees with the field described for tholeiitic magmas (MORB o
work by Correa-Martinez (2007), who considers or BABB) in the FeO/MgO (melt) vs. ALO, Q
the Aburra Ophiolite an oceanic back-arc basin (melt) binary diagram (Figure 10). These types S
formed during the Triassic and later tectonically of MORB/BABB magmas are characteristic =)
emplaced during Jurassic time. for back-arc basins, a geodynamic environment
consistent with the previously proposed geolog-
5.2. ORIGIN OF THE CHROMIAN SPINEL ical setting of the MMU by other authors that
MINERALIZATION

1s based on the study of the host peridotites
(Correa-Martinez, 2007; Restrepo, 2008; Garcia-
and San Pedro deOSitS are Al-rich (Figurcs 7C Casco et al., 2020) The low PGE content in the

and 7D) and strongly PGE-depleted (Figure 6). chromitites is also consistent with the MORB/
BABB composition of the parental magmas. PGE

The studied chromitite samples from Patio Bonito

Al-rich chromitites are usually found within the

mantle-crust transition zone, or Moho Transition content in chromitite is strongly related with the

Zone (MTZ), near levels of layered gabbros at the parental magma composition: PGE-rich Cr-rich

base of the crust in ophiolite complexes (Leblanc chromitites usually crystallize from boninitic

and Violette, 1983; Proenza ¢t al., 1999, Gonzalez- magmas, whereas PGE-poor Al-rich chromitites

Jiménez et al., 2014a; Mendi ef al., 2020). The pri- (g, Colombian chromitites) crystallize from
mary cores of chromian spinel forming the chro- tholeiitic magmas. This is related to the fact that
mitite bodies associated with the MMU exhibit boninitic magmas are S-undersaturated and have
higher PGE-contents than tholeiitic magmas,
for chromian spinel from mid-ocean ridge basalts which are S-saturated (Hamlyn et al., 1985; Zhou

(MORB; Dick and Bullen, 1984) and boninite-like et al., 1998; GonzdlezJiménez el al., 2014b).
The mechanism of crystallization of the

compositions that plot between the fields defined

lavas (Figure 7D) (Arai, 1992). These compositions

are similar to other Al-rich ophiolitic chromitites in chromitites within the supra-subduction back-

arc mantle may be related with the mingling of
region (Figures 7C and 7D) such as Moa-Baracoa, MORB/BABB melts with different degrees of
Cuba (Proenza et al., 1999), Tehuitzingo, México fractionation within dunite channels (Arai and
(Proenza et al., 2004b), Los Guanacos, Argentina Yurimoto, 1995; Melcher et al., 1997; Zhou and

(Proenza et al., 2008), and Cerro Colorado, Vene- Robinson, 1997; Proenza et al., 1999, 2004b;
zuela (Mendi et al., 2020). Gonzalez-Jiménez et al., 2011, 2014a). In this

central and southern America and the Caribbean

The composition of the melt in cquilibrium model, inﬁltrating melt reacts with the host
harzburgite, generating secondary dunite in
equilibrium with a more differentiated MORB/

BABB melt, while the necessary Cr for chromi-

with unaltered (magmatic) chromian spinel cores
of the Patio Bonito and San Pedro chromitites

has been calculated using the following equations

(Maurel and Maurel, 1982; Zaccarini ef al., 2011): tite formation is provided by the dissolution of
Cr-rich pyroxene from the host peridotite. Mix-

+2.2828 [1] ing/mingling of melts with different SiO, drives
supersaturation in Cr in order to crystallize chro-

(ALO, )= 4.1386 1n (ALO,

3 spin(‘l>

(1O, ) = 0.708 In (T10O, spincl> + 1.6436 2] mian spinel (Arai and Yurimoto, 1995; Melcher e/
In(FeO/MgO) | = 047 LOTAWE,,  + :ll., 1997)., W}}lllCh rlna'y ble a}tlczumulate(i bi/[ bubble
0.64Fc# -+ In(FeO/MgO) . 3] otation in the re atw? y hydrous me t (Matveev

spine met and Ballhaus, 2002), in a self-sustained process
The calculations give average values of ALO, to form massive bodies (Gonzalez-Jiménez et al.,

= 15.75 wt%, TiO, . = 0.41wt% and (FeO/ 2011, 2014a and references therein).
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Textural and compositional variations observed
in the chromian spinel of the MMU cannot be
explained by magmatic/metamorphic processes
at mantle temperatures or pressures. Instead,
these variations suggest an origin related to the
post-mantle metamorphic evolution of the ultra-
mafic bodies. The metamorphic mineral associa-
tions in the metaperidotites (chlorite + tremolite +
talc + forsterite) indicate temperatures of 550-700
°C, at medium pressures up to 6 kbar (Garcia-
Casco et al., 2020).

Compositional and textural variations of the
studied chromian spinel could be attributed to
cooling associated with a metamorphic cycle
during the Permian-Triassic period in the Meso-
zoic paleomargin of South America. The first
transformation of chromian spinel, which forms
porous chromian spinel (type II), can be explained
by chromian spinel dissolution and chlorite precip-
itation. Chlorite coronas surrounding chromian
spinel and the systematic presence of secondary
recrystallized olivine, tremolite and talc indicate
medium-1T metamorphic imprint (amphibolite
facies) during cooling (Garcia-Casco et al., 2020).
This transformation is characterized by a decrease
in Al and Mg coupled with an increase in Cr and
Fe™. At this stage, the residual chromian spinel
is enriched in Cr, whereas the Fe** content stays
invariable. The porous chromian spinel (type II)
composition (Mg# vs. T10,, MnO, ZnO) is typical
of chromian spinel metamorphosed at amphib-
olite facies (Barnes, 2000; Saumur and Hattori,
2013; Colas et al., 2014, 2019). The formation of
this secondary chromian spinel can be represented
with the following reaction proposed by Gonzalez-
Jiménez et al. (2015):

4Mg, Fe ,)CrAlO, + 4Mg,SiO, + 25i0,(aq.)
+8H,0 2Mg AlSi,AlO, (OH), + 2(Fe, Mg, ,)
Cr,0, (4]

According to these authors, at temperatures
between ~ 700 and ~ 400 °C and in the presence
of SiO,-rich fluids, primary Al-rich chromian spi-

5.3. CHROMIAN SPINEL ALTERATION nel reacts with forsterite to produce chlorite and

residual porous type II chromian spinel, enriched
in Cr and Fe**.

Homogeneous chromian spinel (type III) is Fe**-
rich in comparison to the other two chromian spi-
nel types (Figure 7B). The Fe**# values vary from
0.3 to 0.79, and, therefore, this chromian spinel can
be classified as ferrian chromian spinel. The for-
mation of ferrian chromian spinel has been inter-
preted as the reaction product between chromian
spinel and secondary magnetite (Barnes, 2000), or
between chromian spinel and antigorite (Merlini et
al., 2009) during prograde metamorphism. On the
other hand, it has also been interpreted as the reac-
tion product between primary chromian spinel and
olivine (Gervilla e al., 2012) or between chromian
spinel and lizardite (Mellini ez al., 2005) during the
cooling of an ultramafic body.

20 Chromitites

® San Pedro
@ Patio Bonito

MORB/BABB

1.5 Boninite

1.0 %

FeO/MgO (melt)

0.59 Komatiite @

0.0 I I

15 20
ALO, Wt% (melt)

m Composition diagram [(FeO/MgO), .. Vvs. (AL,0,) ..
(wt%)] of the parental melt in equilibrium with the San Pedro and
Patio Bonito chromitites. Melts in equilibrium were calculated
using the equations by Maurel and Maurel (1982) and Zaccarini
et al. (2011). Fields are from Moghadam et al. (2015).
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The homogenous chromian spinel forma-
tion implies the dissolution of already formed
Cr-rich spinel, probably at oxidizing conditions
through the addition of magnetite to the porous
Al-Mg-depleted chromian spinel (type 1I) during
a late hydrothermal process starting at tempera-
tures close to 600 °C and evolving to temperatures
lower than 500 °C (Gervilla et al., 2012) or 350
°C (Colas et al., 2019). The composition (Mg# vs.
Ti0O,, MnO, and ZnO) of homogeneous chromian
spinel (type III) from the MMU is also typical for
metamorphosed chromian spinel in amphibolite
facies (Barnes, 2000; Saumur and Hattori, 2013;
Colas et al., 2019) with similarities to chromian
spinel metamorphosed at greenschist facies.

6. Conclusions

The petrological and geochemical characteristics
of the metaperidotites from the MMU indicate
that these represent shallow levels of the suboce-
anic lithospheric mantle related to a supra-sub-
duction zone setting (back-arc basin/incipient arc
scenario). The chromian spinel mineralization
associated with the MMU is Al-rich (refractory
grade) and is strongly depleted in PGE. The most
favorable geodynamic setting for such chromitite
formation is a back-arc basin, where the chromian
spinel crystallizes from a BABB-type tholeiitic
magma. Accessory chromian spinel in the meta-
peridotites is classified as: (i) partially altered
chromian spinel with Al-rich cores, (i) porous
Cr-Fe**-enriched and Al-Mg-depleted chromian
spinel, and (iii) homogeneous Fe**-rich chromian
spinel. Textural and compositional variations of
accessory chromian spinel in the metaperidotites
of the MMU give evidence of the superimposed
metamorphic processes of the MMU, which has
reached amphibolite facies and later retrograded
to the greenschist facies conditions.
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