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Abstract
Background: Celastraceae is a morphologically heterogeneous family. For this reason, the inclusion of some taxa within this group is contro-
versial. Recently this problem has become significant since its fossil record is recognized as an important source of information for evolutionary 
studies, especially those using molecular clocks which require a robust, reliable fossil record.
Questions: What are the most reliable fossil records of Celastraceae? What morphological characters are used to assign fossils in the family? 
Study site and dates: Compilation of records contained in paleontological databases, and paleobotanical literature, covering publications from 
1869 to 2018.
Methods: Published information on the Celastraceae fossil record was compiled and analyzed using the most recent classification system and 
specialized literature on the family. 
Results: A total of 168 fossil records were examined, of which nine are proposed for use as molecular clock calibration points. Each specimen 
has a description based on a character set used for its identification, a photograph and/or illustration, their geological age is well supported, their 
geographic origin is known, and the specimens are in accredited home institutions with publicly accessible collections.
Conclusions: The identification and establishment of relationships between fossil and extant taxa have important limitations that depend on 
the critical interpretation of morphology in a phylogenetic context. Therefore, it is essential to incorporate only those morphological studies in 
Celastraceae that help clarify its fossil record. 
Keywords: fossil plants, morphology, reliable record. 

Resumen	
Antecedentes: Celastraceae es una familia morfológicamente heterogénea. Por esta razón, la inclusión de algunos taxones actuales dentro de 
este grupo es controversial. Recientemente, este problema se ha acentuado en su registro fósil, considerado como una fuente importante de in-
formación para estudios evolutivos, como es el caso del reloj molecular, que requiere de un registro fósil confiable y robusto.
Preguntas: ¿Cuáles son los registros fósiles más confiables de Celastraceae? ¿Cuáles caracteres morfológicos son usados para asignar fósiles 
en la familia? 
Sitio de estudio y fechas: Recopilación de registros contenidos en bases de datos paleontológicas y literatura paleobotánica, abarcando publi-
caciones de 1869 hasta el 2018. 
Métodos: Se compiló y analizó la información publicada del registro fósil de Celastraceae usando el sistema de clasificación más reciente de la 
familia, así como literatura especializada del grupo.
Resultados: De un total de 168 registros fósiles examinados, sólo nueve son considerados como puntos de calibración confiables. Cada uno de 
los especímenes incluye una descripción del órgano de la planta a través del cual se identificó, una fotografía y/o ilustración, edad geológica y 
provincia geográfica, así como su acreditación en una institución de resguardo con colecciones públicas accesibles.
Conclusiones: La identificación y el establecimiento de las relaciones entre los taxones fósiles y actuales son limitantes importantes, y ambas 
dependen fundamentalmente de la interpretación de los caracteres morfológicos en un contexto filogenético. Por esta razón, es fundamental 
realizar estudios morfológicos profundos en Celastraceae, estos podrían permitir el esclarecimiento de su registro fósil. 	
Palabras clave: morfología, plantas fósiles, registros confiables.
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Celastraceae sensu lato is a subcosmopolitan family com-
posed of ca. 98 genera and 1,211 species. The most re-
cent classification of Celastraceae proposed by Simmons 
(2004) is strongly supported by molecular data (e.g., Sim-
mons & Hedin 1999, Simmons et al. 2001a, b, Islam et al. 
2006, Zhang & Simmons 2006, Coughenour et al. 2010, 
2011). It recognizes three monophyletic subfamilies: Hip-
pocrateoideae, Salacioideae and Stackhousioideae, each 
one derived independently from Celastroideae, which is 
paraphyletic.

Traditionally, Celastraceae has been recognized as a 
morphologically variable group where the inclusion of 
some taxa is controversial. This problem has been particu-
larly highlighted in its fossil record (Estrada-Ruiz et al. 
2012, Bacon et al. 2016, Zhu et al. 2020). Since fossils 
rarely are preserved as complete plants or in organic con-
nection their identification and classification is restricted 
and doubtful in comparison to extant plants (Nixon 1996, 
Crepet 2008). Despite its inherent limitations, the fossil 
record has become highly relevant in supporting or refut-
ing evolutionary scenarios including the dating of clades 
(Donoghue & Benton 2007, Parham et al. 2012, Magallón 
et al. 2015). Therefore, the availability of a reliable fossil 
record is crucial since errors in phylogenetic analyses have 
resulted from incorrect identifications and/or incorrect age 
assignments to fossil material (Parham et al. 2012).

According to the most recent revision of Celastraceae 
by Bacon et al. (2016), the family has an extensive fossil 
record. However, many of the fossils do not show diag-
nostic characters or their descriptions lack enough detail 
to consider them as reliable reports. Nevertheless, several 
newly published records are relevant for the history of the 
family (e.g., Chambers & Poinar 2016, Franco 2018). 

Therefore, our objective is to build on previous work 
by providing a review of the Celastraceae fossil record in 
order to establish reliable reports, which can potentially be 
used to calibrate molecular clocks.

Material and Methods

Revision of literature. We evaluated a total of 168 reports 
of fossils with affinity to Celastraceae or referred to the 
family, covering publication dates from 1869 to 2018. The 
reports of this revision were published in specialized lit-
erature and include the original descriptions (see Supple-
mentary Material, Table S1). 

The consistency of the identification of the Celastra-
ceae fossils was determined considering the criteria pro-
posed by Martínez-Millán (2010), which are mentioned 

in order of decreasing reliability: (1) inclusion of the fos-
sil in a phylogenetic analysis, (2) discussion of key char-
acters to place fossils in the group, (3) list of characters 
to include the fossil in a certain group, (4) complete de-
scription and diagnosis of the fossil, (5) photographs of 
the specimen, (6) drawings, diagrams and reconstructions 
of the fossils, (7) specimen information, home institution, 
collection number, and holotype designation, (8) collec-
tion information; locality, formation, and age. Manches-
ter et al. (2015) indicated that the system proposed by 
Martínez-Millán (2010) is questionable since criteria (2) 
and (3) include similarities without indicating if they are 
unique and/or constitute a synapomorphy. For this reason, 
we included a discussion of these points. Furthermore, the 
selected fossils correspond to the oldest ones within the 
linage (Donoghue & Benton 2007, Parham et al. 2012), 
which is based on the Global Stratigraphic Chart 2020 
(Cohen et al. 2020). Finally, the phylogenetic position of 
each fossil was established according to its comparison 
to extant taxa, recognizing that their similarity suggests 
a relationship between them (Wiens 2003, Sauquet et al. 
2012).

Results

A total of 168 records were found, of which 139 are vege-
tative, with 120 leaves and 19 woods. They have a tempo-
ral range that extends from the Cenomanian (Cretaceous) 
to the Pliocene (Neogene). Likewise, the record of re-
productive structures that includes pollen (19), fruits and 
seeds (6), as well as inflorescences and flowers (4) have 
been recognized from the Maastrichtian (Cretaceous) to 
the Pliocene (Neogene) (Figure 1A, B).

In the next paragraphs, we discuss fossil taxa identi-
fied through vegetative and reproductive organs. Each 
one of them has a brief introduction and a discussion of 
the character or character set that supports their inclu-
sion in Celastraceae. The results are summarized in Table 
1 with nine fossil record recognized here as reliable (see 
Supplementary Material, Table S2). Figure 2 displays the 
phylogenetic positions of each one based on the topology 
reported by Coughenour et al. (2010). 

Leaves. Leaves are the most abundant fossil record of 
Celastraceae (Bacon et al. 2016). These have been related 
to extant members of Celastroideae (Simmons 2004) and 
they are widespread in strata of Cretaceous and Paleogene 
(Figure 1A). The fossil leaves of Celastraceae represent 
artificial forms because they had been described under 
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Figure 1. A. Abundance of leaves, woods, fruit-seeds, pollen, inflorescences, and flowers fossils assigned to Celastraceae by geologic time. B. Map show-
ing the distribution of fossilized organs of plants identified as a member of Celastraceae.
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strictly morphological criteria (Dilcher 1974). Celastro-
phyllum (Gӧppert 1854) and Celastrinites Saporta (Sapor-
ta 1865) represent extinct genera of Celastraceae that had 
been compared with Celastrus. They are mainly distrib-
uted in Europe (e.g., Vachrameev 1952, Samylina 1968, 
1984) and high latitudes in America (e.g., Lee & Knowlton 
1917, Knowlton 1919, 1922, Berry 1925). Doweld (2017) 
noted that there are two more descriptions associated with 
Celastrophyllum: Celastrophyllum Ettingsh. ex Saporta & 
Marion, and Celastrophyllum Ettingsh. ex Schimp. 

Upchurch & Dilcher (1990) suggested that the type 
species of the genus should be Celastrophyllum attenu-
atum Göpp. It was described as a leaf with an entire mar-
gin and distinctive petiole, causing the expansion of the 
Celastrophyllum concept to include entire and toothed 
leaves, an apparently logical aspect since Celastrus has 
extreme foliar variation (Upchurch & Dilcher 1990, Mu 
et al. 2012, Liang et al. 2016). These include for example, 
the shape of the lamina ranging from elliptical to oblong or 
broadly ovate to orbicular; apex acute to obtuse or round 
and base rounded to acute (Bacon et al. 2016); however, 
morphologies overlap at intra and interspecific levels (Mu 
et al. 2012). 

Recently, Herendeen (2020) suggested that Celastro-
phyllum obtusum Heer. is the species that validates the 
name Celastrophyllum, but its typification is necessary. 
Unfortunately, none of the three reports of Celastrophyl-
lum are valid. Several of these reports are probably part 
of other families or genera since they have no diagnos-
tic characteristics of the group (Doweld 2017, Herendeen 
2020). Other members of Celastraceae have been reported 
from the Paleogene, including Maytenus (Berry 1938, 
Rüffle & Litke 2008) and Euonymus (Berry 1924, Brown 
1937). Despite this, these records are also unresolved, be-
cause they are morphologically indistinguishable (Mu et 
al. 2012).

A diagnosis based on the foliar architecture of Celas-
traceae was proposed by Hickey & Wolfe (1975). Based 
on this, the leaves of Celastraceae sensu stricto typically 
have a theoid tooth, which has a median vein. This vein 
runs toward the apex and expands on the tooth, so that 
the apex is covered by an opaque deciduous seta. More-
over, brochidodromous secondary veins as well as percur-
rent tertiary veins are common in the group (Hickey & 
Wolfe 1975). Subsequently, Upchurch & Dilcher (1990) 
indicated that all these characters are enough evidence to 
establish the identification of fossil leaves to Celastrus. 
More recently, Liang et al. (2016) indicated that the sec-
ondary venation of Celastrus varies from camptodromous 

to craspedodromus and semicraspedodromus types. Fossil 
leaves of the middle Eocene from the Green River Flora, 
USA, described by Hollick (1936) and reexamined by 
Wolfe (1977) are considered reliable records of Celastrus 
(Upchurch & Dilcher 1990).

Woods. Celastraceae often has woods with small, numer-
ous and solitary vessels with simple or scalariform per-
foration plates; alternate bordered intervascular pits; and 
parenchyma variable in type and quantity, that sometimes 
can have scattered or even absent (Metcalfe & Chalk 
1983). Additionally, the presence or absence of scalari-
form perforation plates is an informative character for the 
generic delimitation within the family (Archer & van Wyk 
1993). 

Family has few reports of fossil woods with Cretaceous 
age, and most of them are from Africa, Egypt, Ethiopia, 
and North America (Figure 1). As well as fossil leaves, the 
fossil record of woods have been related to extant genera 
of Celastroideae. For example, Celastrinoxylon (Schenk) 
Kräusel was identified by Schenk (1888) and reexamined 
by Kräusel (1939) (e.g., Kräusel 1939, Schӧnfeld 1955, 
Poole 2000, Kamal El-Din et al. 2006). It was recognized 
as a fossil wood with simple perforation plates, small ves-
sels and rays composed entirely of square or erect cells, 
nevertheless, it has doubtful records. Such is the case of 
a fossil wood of Celastrinoxylon from India (Ramanujam 
1960), which was reexamined and reassigned to Ailan-
thoxylon (Simaroubaceae) by Awasthi (1975). Addition-
ally, Kamal El-Din (2003) described Celastrinoxylon as a 
wood with scalariform perforation plates from the Creta-
ceous of Egypt, but it contrasts to the diagnosis proposed 
by Kräusel (1939). 

According to Poole & Wilkinson (1999) Celastrinox-
ylon has more resemblance to Catha because both have 
small vessels, simple perforation plate, tiny intervascu-
lar pits with an opposite arrangement, thin-walled fibers, 
and uniseriate rays with erect cells. This combination of 
characters differs from Celastrus, which has vessel di-
morphism, broad rays, and other forms of the parenchy-
ma commonly present in scandents and lianas (Carlquist 
1988).

Other fossil taxa that have a simple perforation plate 
are Lophopetalumoxylon (Mehrotra et al. 1983) and May-
tenoxylon (Franco 2018). The first one is characterized by 
the presence of diffuse porosity, solitary vessels, bordered 
and alternate intervascular pits, thin apotracheal bands of 
parenchyma, uniseriate homocellular rays, non-septate 
thick-walled fibers, and intercellular canals. Lophopeta-
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lumoxylon was compared closely to Lophopetalum, which 
commonly has multiple radial vessels (Mehrotra et al. 
1983). Wheeler et al. (2017) suggested that Lophopetalu-
moxylon probably belongs to Sapindales since its features 
occur in other families. 

On the other hand, Maytenoxylon is a wood with dif-
fuse porosity, mainly solitary vessels, intervascular pits 
that vary from alternate to opposite, bands of fiber resem-
bling parenchyma that alternate with ordinary fibers, both 
non-septate and septate ones, diffuse and scanty parenchy-
ma, homocellular rays with some perforated cells (Franco 
2018). The identification of Maytenoxylon is supported by 
the presence of perforated ray cells, which are restricted to 
Maytenus (Joffily et al. 2007). 

Scalariform perforation plates have been rarely re-
ported in the family (Metcalfe & Chalk 1983, Archer & 
van Wyk 1993), such is the case of Elaeodendroxylon 
(Gottwald 1992). It has been closely compared to extant 
Elaeondrendron because both have growth rings and nu-
merous isolated or multiple radial vessels. Baasia (Estra-
da-Ruiz et al. 2012) is another taxon with a scalariform 
perforation plate. It has been considered as the most reli-
able record of Celastraceae until now, but its relationship 
to an extant taxon has not been established (Bacon et al. 
2016). 

Pollen. Celastraceae has spheroidal oblate or prolate radial-
ly symmetrical, isopolar, tricolporate pollen grains, and en-
doaperturate monads that are generally elongated and some-
times oblong (Bogotá & Sánchez 2001). Typically, three 
types of pollen grains have been recognized in the family: 
(1) polyads in groups of four tetrads, (2) simple tetrads and 
(3) monads (Erdtman 1952, Campo & Hallé 1959, Hallé 
1960, Hou 1969, Lobreau-Callen 1977). All types have been 
recognized in the fossil record. 

According to Ding Hou (1969) polyads and/or tet-
rads are common in Hippocrateoideae, Salacioideae, and 
Lophopetalum. For example, Salard-Cheboldaeff (1974) 
described Polyadopollenites macroreticulatus, P. mi-
croreticulatus and P. micropoliada from the Miocene of 
Cameroon as polyads of sixteen pollen grains, each one of 
them lacking an annulus and cross-linked exine, charac-
ters that are comparable to Hippocratea volubilis and H. 
myriantha. However, Polyadopollenites is a morphogenus 
assigned to circular and oval polyads, variable symmetry 
accounts for the aggrupation of sixteen monads, but it has 
been related with Fabaceae (Barreda & Caccavari 1992). 

Furthermore, tetrads identified as Triporotetradites 
campylostemonoides, T. hoekenii, T. letouzeyi, and T. sca-

bratus (Hoeken-Klinkenberg 1964, Salard-Cheboldaeff 
1974, 1978, 1979) have been related to Campylostemon; 
however, similar tetrads are common in other families 
(Copenhaver 2005). Retitricoporites is another tetrad de-
scribed by Salard-Cheboldaeff (1974) based on its tricol-
porate pollen grains with apparent endexin, whose mor-
phology is close to Loseneriella. 

Finally, Muller (1981) reported tricolporate monads 
recognized as Microtropis and Peritassa from the Oligo-
cene of France (Lobreau-Callen & Caratini 1973). Addi-
tionally, Ramanujam (1966) assigned tricolporate pollen 
grains with elongate ectoapertures to Hippocrateace-
aedites, it was latter recognized from the Eocene of India 
by Venkatachala & Kar (1969).

Fruits and seeds. Celastraceae exhibits a substantial mor-
phological variation in fruits and seeds. Traditionally these 
have been used to subdivide the family taxonomically (e.g., 
Loesener 1942, Takhtajan 1997, Cronquist 1981). Accord-
ing to Simmons et al. (2001a) the fruits can be capsules 
(with great variability in forms and types of dehiscence), 
schizocarpal mericarps (Stackhousiaceae), berries (e.g., 
Cassine, Maurocenia), drupes (e.g., Acanthothamnus, 
Elaeodendron), walnuts (e.g., Mortonia, Pleurostylia) or 
samaras (e.g., Rzedowskia, Tripterygium). Seeds are 1-12 
in number, smooth or occasionally furrowed, albuminous 
or exalbuminous, sometimes winged, and the wing may be 
membranous or basal, exarillate or aril basal to completely 
enveloping the seed, and this can be membranous, fleshy, 
or rarely mucilaginous (Ma et al. 2008). 

Reproductive organs have diagnostic characteristics, for 
this reason they have a high degree of reliability in taxo-
nomic work and are highly useful for plant identification 
(Tiffney 1990, Wiens 2004). Berry (1930) described a locu-
licidal capsule with three rough leaflets as Celastrocarpus 
from the Eocene of Tennessee. As well as, Euonymus was 
tentatively assigned to a dehiscent capsule with four round 
lobes and separated by a sinuate sulcus (Berry 1930). Like-
wise, Euonymus moskenbergensis a fruit with five lobes 
from the Miocene of Australia was reported by Ettingshau-
sen (1869). Fruits with seeds from the early Eocene (52-49 
Ma) were reported by Reid & Chandler (1933) in the Lon-
don Clay Formation (United Kingdom). These reproduc-
tive structures were described as small, subovoid and lo-
bate fruits, containing seeds with a winged extension. In the 
same work, Canthicarpum celastroides was recognized as a 
loculicidal capsule with three leaflets and seeds whose testa 
has three layers, the outermost composed of large polygonal 
cells, and a fourth layer interpreted as a possible aril.
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Figure 2. Assignment of Celastraceae fossils as molecular clock calibration points based on topology of Coughenour et al. (2010). 1. Baasia armendari-
sense (Estrada-Ruiz et al. 2012), 2. Cathispermum pulchrum (Reid & Chandler 1933), 3. Celastrus comparabilis (Wolfe 1977), 4. Elaeodendroxylon sp. 
(Gottwald 1992), 5. Hippocrateaceaedites sp. (Venkatachala & Kar 1969), 6. Lobocyclas anomala (Chambers & Poinar 2016), 7. Maytenoxylon perfora-
tum (Franco 2018), 8. Salacia lombardii (Hernández-Damián et al. 2018), 9. Wuyunanthus hexapetalus (Wang et al. 2001). 
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Tripterygium kabutoiwanum from the Pliocene of Ja-
pan (Ozaki 1991) was described as composed of winged 
fruits and leaves closely comparable with Tripterygium 
regelii. We were not able to obtain the original publica-
tion; however, other fossil records of the genus have been 
reexamined and assigned to Craigia (Malvaceae) (Kvaček 
et al. 2005, Manchester et al. 2009).

Flowers. The flowers are generally bisexual, with a con-
spicuous nectarial disk, five or fewer stamens immersed 
in the ovary (Stevens 2001). However, this general pat-
tern is modified within the lineage, because the number 
of parts of the floral whorls, or merism, has been changed 
in some members (Matthews & Endress 2005). For ex-
ample, flowers with a pentamerous perianth and a trim-
erous androecium are common in Hippocrateoideae and 
Salacioideae. It has been considered as a distinctive pat-
tern in Celastraceae (Ronse De Craene 2010, 2016). Even 
more, modifications in the number of stamens have been 
reported in Salacioideae. Flowers with five (e.g., Cheilo-
clinium anomalum) or two (e.g., Salacia annettae and S. 
lebrunii) (Hou 1969, Hallé 1986, 1990, Coughenour et al. 
2010) stamens are well known, and each type had an inde-
pendent origin (Coughenour et al. 2010).

There are few records of fossil flowers of Celastraceae, 
among them the oldest one is Celastrinanthium hauche-
cornei, a cymose inflorescence preserved in Baltic am-
ber (Conwentz 1886). According to Conwentz (1886) it 
includes bisexual flowers with a differentiated perianth 
with four sepals and petals, a disk, and an ovary with four 
locules. Other flower reports include Wuyunanthus hexa-
petalus from the Paleocene of China (Wang et al. 2001), 
Lobocyclas anomala (Hippocrateoideae) preserved in 
Miocene amber from the Dominican Republic (Chambers 
& Poinar 2016), and Salacia lombardii (Salacioideae) 
from Miocene of Simojovel de Allende, Mexico (Hernán-
dez-Damián et al. 2018). All these records have the gen-
eral structural pattern of the family as they are bisexual 
flowers with a biseriate perianth and a conspicuous disk 
(Stevens 2001, Simmons 2004).

Discussion

Fossil record of Celastraceae has been recognized in the 
early scientific literature. It has abundant and diverse fos-
sil evidence, but only a few records have enough informa-
tion to be recognized as credible records. They are rel-
evant in comparative analysis as dated phylogenies since 
these provide important information for the inference of 

the origin and diversification of a lineage. Different origin 
ages of the crown group Celastraceae have been estimated 
as 71.6 Ma (Magallón & Castillo 2009), (89) 76-71(60) 
Ma (Bell et al. 2010) and (109.85) 92.61 (76.98) (Maga
llón et al. 2015), but none of these analyses had as their 
main objective the family Celastraceae.

The most recently dated phylogeny of Celastraceae 
was proposed by Bacon et al. (2016). This work is rel-
evant because it includes a revision of the fossil record 
of Celastraceae. But does not include newly reported fos-
sil taxa that can change the phylogenetic interpretations 
when considering such taxa as Maytenoxylon perforatum 
(Franco 2018), Lobocyclas anomala (Chambers & Poinar 
2016), and Salacia lombardii (Hernández-Damián et al. 
2018). 

In this revision, we recognize nine fossil records of 
Celastraceae as potential calibration points as each one 
represents the oldest age recognized for a lineage to date 
(Table 1). Most of these fossils have an age established 
through correlation rather than direct dating. Therefore, it 
is necessary to consider that these could change in the fu-
ture. These nine fossil records have most of the criteria es-
tablished by Martínez-Millán (2010) (see Supplementary 
Material, Table S2), but their acceptance for calibrating 
points needs to be carefully evaluated. The first criterion 
of Martínez-Millán (2010) refers to the inclusion of the 
fossils in a phylogenetic analysis, but none of the fossil 
records of Celastraceae have been subject to this type of 
study since the use of morphological data has been limited 
in a phylogenetic context (Simmons & Hedin 1999, Sim-
mons et al. 2001a, b).

On the other hand, the second and third criteria refer 
to the character or character set that supports the identi-
fication of the fossil as a member of Celastraceae. This 
information requires an interpretation within a phyloge-
netic context (Manchester et al. 2015), because the mor-
phological synapomorphies are considered critical data to 
establish the relationship between fossil and extant taxa 
(Parham et al. 2012). Unfortunately, few morphological 
characters have been identified as synapomorphies in the 
lineage (e.g., Simmons & Hedin 1999), and most of them 
are restricted to reproductive structures. For example, Hip-
pocrateoideae is easily recognized by the synapomorphies 
of transversely, flattened, deeply lobed capsules and seeds 
with membranous basal wings or narrow stipes, while Sa-
lacioideae is identified by berries with mucilaginous pulp 
(Coughenour et al. 2010, 2011).

Due to the above, the phylogenetic position of the nine 
fossil taxa is supported through morphological compari-
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son with extant taxa (Figure 2). Morphological similarity 
recognized in fossil and extant taxa suggests a relationship 
between them, but this situation may change drastically as 
more in-depth morphological studies are integrated into a 
phylogenetic context. Such is the case of Cathispermum 
pulchrum Reid & Chandler (1933) a five-lobed fruit with 
winged seeds that have been interpreted as a potential aril. 
However, presence of an aril is difficult to discern among 
extant plants and even more difficult in the fossil material. 
The definition of an aril is complicated to establish (Sim-
mons & Hedin 1999, Simmons 2004, Zhang et al. 2012, 
2014). Nevertheless, it typically has been defined for the 
family as a structure that derives from the funiculus dur-
ing development (Loesener 1942, Corner 1976). Thus, C. 
pulchrum, while morphologically like Celastraceae, needs 
a closer morphological comparison of the aril as discussed 
in the next paragraph.

According to Simmons (2004), winged seeds have been 
interpreted as homologues to arilated seeds, as in the case 
of Catha edulis, which was compared to Cathispermum 
pulchrum. However, Zhang et al. (2012, 2014) recognized 
that the tissue surrounding the seed in Catha edulis de-
rives from the micropyle, not from the funiculus. For this 
reason, it is necessary to consider that the interpretation of 

C. pulchrum could change as new morphological data or 
interpretations become available. The biased, incomplete 
nature of the fossil record is a limitation for its interpreta-
tion. In the same way, the lack of detailed morphological 
studies of extant taxa limits the identification of the fos-
sil record. In Celastraceae, the study of the development 
of the winged seed is essential to interpret the evolution 
of this structure (Zhang et al. 2014), as well as the fossil 
record.

In general, the fossils of reproductive structures are 
considered reliable records, such is the case of fossil flow-
ers of Celastraceae. All of them are bisexual flowers, with 
biserial perianth and nectarial disk. Nevertheless, Wuyu-
nanthus has been considered a doubtful record due to its 
merosity, or the number of parts of the perianth (6 vs. 4-5, 
Friis et al. 2011). The meristic pattern within the group 
has modifications that have been little explored (Ronse De 
Craene 2016). 

Identification of fossil flowers could be supported with 
higher reliability through the recognizing of potential 
morphological synapomorphies, these include a bulge in 
the dorsal part of the ovary with an apical septum, and the 
presence of calcium oxalate druses in floral tissue (Mat-
thews & Endress 2005), but the type of fossilization is 

Fossil name Plant part Geological 
Age (Ma) System Series Provenance Reference Relationship-

Compared to

Baasia armendarisense wood 73.5* Upper Cretaceous McRae Formation, 
USA Estrada-Ruiz et al. 2012 Cassine

Cathispermum pulchrum fruit and 
seeds 33.9 Eocene London Clay,  

England Reid & Chandler 1933 Catha edulis

Celastrus comparabilis leaves 33.9 middle Eocene Kushtaka Forma-
tion, USA Wolfe 1977 Celastrus

Elaeodendroxylon sp. wood 33.9 Eocene Braunkohlen-Tage-
bau, Germany Gottwald 1992

Elaeodendron

Hippocrateaceaedites sp. pollen 33.9 Eocene Laki Basin, India Venkatachala & Kar 
1969 Loseneriella

Lobocyclas anomala flower 23-30* middle Oligocene-
lower Miocene

Dominican  
Republic 

Chambers & Poinar 
2016

Prionostemma, 
Hippocratea

Maytenoxylon perforatum wood 5.3 Miocene Ituzaingó Forma-
tion, Argentina Franco 2018 Maytenus

Salacia lombardii flower 23-15* middle-early  
Miocene

Simojovel de  
Allende, Mexico

Hernández-Damián  
et al. 2018 Salacia

Wuyunanthus hexapetalus flower 66.0-61.6* lower Paleocene Wuyun, China Wang et al. 2001 Euonymus,  
Celastrus

Table 1. Fossils records proposed as molecular clock calibration points arranged in alphabetic order.*Absolute age is available.
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a limiting factor for what anatomical characters get pre-
served. Flowers preserved in amber such as Lobocyclas 
anomala and Salacia lombardii are exceptional records 
because they are in three dimensions with relatively little 
distortion. Access to anatomical characters of plant inclu-
sions in amber has been documented through non-destruc-
tive techniques such as microtomography (e.g., Moreau et 
al. 2016). Further observations on these fossil flowers will 
help to add support to our suggestion of good calibration 
point fossils.

Pollen is the most abundant part of the plant fossil re-
cord. It is generally identified with relatively low taxo-
nomic resolution (Sauquet et al. 2012). According to 
Hallé (1960) the characters of pollen have a higher value 
at the infrageneric level, but these require the integration 
of information from other organs of the plant for a reliable 
taxonomic determination. 

Tetrads and polyads have been considered as diagnos-
tic characters of Hippocrateoideae, but these are not ex-
clusive to the group. For example, Triporotetradites sp. 
was related to Campylostemon, but this record has been 
reexamined and related to other taxa. Such is the case of 
Triporotetradites letouzeyi from the lower of Miocene of 
Cameroon (Salard-Cheboldaeff 1978), which is compa-
rable to the pollen of species of Gardenia (Muller 1981). 
Additionally, unlike in extant plants, it is often difficult 
to determine in fossil pollen taxa their range of morpho-
logical variation (Cleal & Thomas 2010), as in the case of 
Lophopetalum an extant genus that has both polyads and 
tetrads (Hou 1969).

Macrofossils are abundant in the fossil record of Celas-
traceae (Bacon et al. 2016). Specifically, the leaves have 
been rejected in taxonomic work because they are plastic 
organs that respond to environmental pressures (Hickey 
1973, Hickey & Wolfe 1975). Furthermore, leaf dimor-
phism is a factor that complicates the taxonomic deter-
mination in Celastraceae (Simmons 2004). For instance, 
Elaeodendron orientale has lanceolate leaves with an en-
tire margin, but when it is a mature plant, its leaves are 
elliptical with a serrated margin (Simmons 2004). In addi-
tion, the lack of a precise description and diagnosis, such 
is the case of Celastrophyllum, has generated a highly 
doubtful abundant record in North America and Europe 
(Doweld 2017, Herendeen 2020). Despite of these limi-
tations, the presence of Celastrus based on fossil leaves 
can be considered a reliable record based on consistent 
characters, such as the theoid tooth and camptodromous, 
craspedodromus or semicraspedodromus venation (Liang 
et al. 2016).

Woods are recognized as the second organ most abun-
dant in the fossil record of Celastraceae. Their structure 
and cellular organization under fossilization preserves well 
providing detailed anatomical data for their identification 
(Poole 2000). A combination of characters that includes 
small to medium-sized vessels, apotracheal bands of pa-
renchyma, fine homogeneous rays, and non-septate fibers 
strongly indicate its affinities with the family Celastraceae 
(Mehrotra et al. 1983). Moreover, the scalariform perfora-
tion plate has been considered diagnostic for the group; 
however, the phylogenetic context of anatomical data has 
changed the interpretation of some records. For example, 
Perrottetioxylon mahurzari (Chitaley & Patel 1971) and 
Gondwanoxylon (Saksena 1962) were closely compared 
to Perrottetia, a genus traditionally considered an atypi-
cal member of Celastraceae. Its inclusion within Celas-
traceae was supported by anatomical characters, such as 
the presence of scalariform perforation plate, paratracheal 
parenchyma and absence of fiber tracheids (Metcalfe & 
Chalk 1983, Simmons & Hedin 1999). However, Zhang 
& Simmons (2006) determined the exclusion of Perrotte-
tia from this family through a phylogenetic analysis using 
molecular characters. 

Although the fossil record of Celastraceae is scarce as 
point calibration according to criteria proposed by Mar-
tínez-Millán (2010), their geographic distribution suggest 
the dispersion between North America, Europe and Asia 
during the early Paleogene to the Pliocene (Wolfe 1975, 
Tiffney & Manchester 2001, Graham 2018). This hypoth-
esis is supported by Magallón et al. (2019) that suggested 
that the diversification of the lineage was as a relevant 
event for angiosperms during the Paleogene ca. (68.40) 
51.1 (42.83) Ma. 

The selection of reliable fossils as calibration points 
is critical for reconstructing robust phylogenies. Unfor-
tunately, the inherent fragmentary nature of fossil plants 
limits access to molecular characters and other sources 
of information, with morphology and anatomy being the 
most frequent source of information available for study 
(Wiens 2004). Consequently, an in-depth study of the 
morphological characters in a phylogenetic context in 
Celastraceae is essential (e.g., Simmons & Hedin 1999), 
since only through this will it be possible to generate a 
better interpretation and evaluation of their fossil record. 
It is also necessary to increase the value of fossils through 
the reconstruction of complete plants, as this work will 
significantly complement the understanding of plants in 
terms of variability and distribution of characters over 
time. After detailed evaluation and discussion, we propose 
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nine fossil reports of Celastraceae as reliable and well sup-
ported to be used as calibration points. However, further 
studies need to be conducted towards phylogeny of the 
family.
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