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Abstract
Background: Plants take up various species of reactive nitrogen and their different physiological responses to the increase of nitrogen avail-
ability can be useful in biomonitoring. 
Questions: Does atmospheric nitrogen deposition affect the physiology of ruderal weeds? Which species are most responsive to nitrogen de-
position?
Studied species: Eleven ruderal weeds.
Study site and dates: Morelia, Michoacán, Mexico. 2019.
Methods: Under scenarios of 10, 20, 40 and 80 kg N ha-1year-1, we quantified plant responses of biomass production, nitrate reductase activity, 
chlorophyll content, photosynthetic efficiency, δ15N, nitrogen and carbon content. 
Results: Total biomass production increased with the rate of nitrogen deposition for Bidens pilosa, Chloris gayana, Lepidium virginicum, and 
Pennisetum setaceum, as chlorophyll content in B. pilosa, C. gayana, and L. virginicum. In turn, the below- to above-ground biomass ratio de-
creased for B. pilosa and C. gayana, as photosynthetic efficiency in C. gayana, L. virginicum, and Chloris pycnothrix. Nitrate reductase activity 
was only affected in L. virginicumm, C. gayana, and T. officinale.
With the exception of C. pycnothrix, the nitrogen content increased, while the carbon augmented in C. gayana, C. pycnothrix, and P. setaceum. 
The C/N ratio was reduced in B. pilosa, C. gayana, Chloris virgata, P. setaceum, and T. officinale. The δ15N was increased in B. pilosa, C. 
gayana, C. virgata and P. setaceum.
Conclusions: Bidens pilosa, C. gayana, L. virginicum, and P. setaceum were the species with more affected variables to nitrogen deposition, 
which could be useful in the biomonitoring. 
Keywords: Atmospheric pollution, biomass, chlorophyll, nitrate reductase, plant nutrition, stable isotopes

Resumen
Antecedentes: Las plantas asimilan formas reactivas de nitrógeno y sus respuestas fisiológicas al incremento en la disponibilidad de nitrógeno 
pueden ser de utilidad en el biomonitoreo.
Preguntas: ¿Cómo responde la fisiología de malezas ruderales al depósito de nitrógeno atmosférico? ¿Cuáles especies son sensibles al depósito 
de nitrógeno?
Especies de estudio: Once malezas ruderales 
Sitio y años de estudio: Morelia, Michoacán, México. 2019.
Métodos: Se cuantificó la producción de biomasa, actividad de la enzima nitrato reductasa, contenido de clorofila, eficiencia fotosintética, δ15N, 
contenidos de N y C bajo escenarios de 10, 20, 40 y 80 kg N ha-1año-1:
Resultados: La biomasa total incrementó con el depósito de nitrógeno en Bidens pilosa, Chloris gayana, Lepidium virginicum y Pennisetum 
setaceum, al igual que la clorofila en B. pilosa, C. gayana y L. virginicum. La relación biomasa subterránea/aérea se redujo en B. pilosa y C. 
gayana, así como la eficiencia fotosintética en C. gayana, L. virginicum y Chloris pycnothrix. La actividad de la enzima nitrato reductasa se 
afectó en L. virginicum, C. gayana y Taraxacum officinale. 
A excepción de C. pycnothrix, el contenido de nitrógeno aumentó, mientras el carbono incrementó en C. gayana, C. pycnothrix y P. setaceum. 
La relación C/N se redujo en B. pilosa, C. gayana, Chloris virgata, P. setaceum y T. officinale. El δ15N se incrementó en B. pilosa, C. gayana, 
C. virgata y P. setaceum. 
Conclusiones: Bidens pilosa, C. gayana, L. virginicum y P. setaceum, las especies con más variables afectadas por el depósito de nitrógeno, 
podrían ser útiles en el biomonitoreo. 
Palabras clave: Biomasa, clorofila, contaminación atmosférica, isótopos estables, nitrato reductasa, nutrición vegetal.

mailto:delabarrera@unam.mx
https://doi.org/10.17129/botsci.2789
https://orcid.org/0000-0002-5927-4781
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-0073-3410


Ruderal weed nitrogen deposition biomonitors

574

The amount of reactive nitrogen (Nr) species available on 
the planet has increased as a result of human activities, 
such as fossil fuel combustion and the utilization of ni-
trogenous fertilizers (Galloway et al. 2003, 2004). Indeed, 
the release of Nr to the environment increased from 33 
Tg N year-1 in 1860 to 156 Tg N year-1 in 1990, and it is 
anticipated that this rate will double by 2050 (Galloway et 
al. 2004). Such alterations to the nitrogen biogeochemi-
cal cycle are a major component of global environmental 
change and a principal threat to the planet’s biodiversity 
(Sala et al. 2000, Rockström et al. 2009). In particular, giv-
en that many plants evolved in environments with limited 
nitrogen availability (Lee & Caporn 1998), the increase 
of this macronutrient has enabled those species capable of 
attaining rapid growth rates and of tolerating the ensuing 
toxic ion buildup to become better ecological competitors 
(Bobbink et al. 1998, 2010, Stevens et al. 2004, Farrer et 
al. 2013). In addition, the deposition of reactive nitrogen 
species is related to eutrophization, soil acidity, and cation 
leaching (DeHayes et al. 1999, Kronzucker et al. 2001, 
Britto & Kronzucker 2002, Galloway et al. 2003, Conk-
lin 2005, Gruber & Galloway 2008, Bobbink et al. 2010, 
Persson et al. 2010, Tian et al. 2016). However, nitrogen 
deposition is not only linked with ecosystem and environ-
mental problems, as it also has noxious effects on human 
health, such as intoxication by a high concentration of 
NO3

- and NO2 in drinking water that affects the early de-
velopmental stages of our development (Carpenter et al. 
1998, WHO 2003). Reactive nitrogen is thus an important 
component of pollution, which leads to 16 % of premature 
deaths worldwide (Landrigan et al. 2018, Yeo et al. 2019). 

Given the multiple noxious effects of environmental 
pollution, it becomes necessary, and in some instances 
required by law, to monitor and control the levels of pol-
lutants that are released to the environment. However, for 
the case of atmospheric pollution, the deployment, opera-
tion, and maintenance of monitoring systems is compli-
cated and can be cost-prohibitive for local governments 
(SEMARNAT 2012, Díaz-Álvarez et al. 2018). In this 
respect, the utilization of naturally occurring biomonitors 
has been proposed as an alternative for localities where air 
quality monitoring systems are lacking (Arróniz-Crespo 
et al. 2012, Felix et al. 2016, Díaz-Álvarez et al. 2018). 
Indeed, various ecophysiological traits can be utilized to 
characterize nitrogen deposition in regions of interest, in-
cluding an increase in tissue nitrogen content and a sub-
sequent imbalance in the C/N ratio, as well as changes 
in the activity of enzymes related to the nitrogen metabo-
lism, such as nitrate reductase, and the rate of 15N isoto-

pic discrimination (Sutton et al. 2004, Arróniz-Crespo et 
al. 2008, Felix et al. 2016, Díaz-Álvarez & de la Barrera 
2018, Díaz-Álvarez et al. 2015, 2019, 2020). In general, 
an increase in nitrogen availability from atmospheric de-
position can improve biomass accumulation and reduce 
the allocation to below-ground tissues relative to aerial tis-
sues (Li et al. 2015). Additional nitrogen can be stored in 
the inorganic form within organelles or as Rubisco, lead-
ing to an increase of chlorophyll content and the plant’s 
photosynthetic capacity (Arróniz-Crespo et al. 2008, Jin 
et al. 2015, Tegeder & Masclaux-Daubresse 2018). How-
ever, when nitrogen reaches a species-specific threshold, 
plants manifest symptoms of stress, such as changes in 
pH, membrane function and integrity, and energy defi-
ciencies, which can be reflected in the maximum quantum 
yield of photosystem II (Fv/Fm) and the chlorophyll a/b 
ratio (Kronzucker et al. 2001, Britto & Kronzucker 2002, 
Arróniz-Crespo et al. 2008). 

Plant species that rely exclusively or predominantly on 
atmospheric sources of mineral nutrition are particularly 
suited for biomonitoring. Such is the case for the brome-
liad Tillandsia recurvata L. that can track dry nitrogen 
deposition, especially NOx and particulate matter (Díaz-
Álvarez & de la Barrera 2018), and various bryophytes 
that, in turn, are useful biomonitors of wet nitrogen depo-
sition (Arróniz-Crespo et al. 2008, Díaz-Álvarez & de la 
Barrera 2018, Díaz-Álvarez et al. 2019, 2020). However, 
these so called “atmospheric biomonitors” cannot be uti-
lized in all localities for various reasons, including that 
the abundance of epiphytes decreases away from the hu-
mid tropics (Zotz & Bader 2009), that mosses require high 
humidity environments to maintain physiological function 
(Glime 2017a), and that the prevalent pollution can be too 
high for certain species, as it occurs for T. recurvata in cer-
tain regions of Mexico City (Díaz-Álvarez & de la Barrera 
2018). 

Ruderal weeds are a group of plants that successfully 
establish in high-pollution environments, such as those 
found in cities, at least seasonally. These plants have also 
been utilized as pollution biomonitors, despite that their 
root system is anchored to the ground, having access to 
existing nutrients from sources different from atmospheric 
deposition (Norra et al. 2005, Wang & Pataki 2010).

Based on the hypothesis that plant physiological at-
tributes will respond to an increase in the availability of 
reactive inorganic nitrogen species, we conducted a dose-
response greenhouse experiment to screen some ruderal 
weeds as potential biomonitors of nitrogen deposition 
based on their physiological responses to nitrogen deposi-
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tion. We expect that higher nitrogen availability will lead 
to increased biomass accumulation, tissue nitrogen and 
chlorophyll content, as well as higher rates of isotopic dis-
crimination of 15N, due to the fertilization effect. Also, the 
BS/BA and C/N ratios, and the nitrate reductase enzyme 
activity are expected to decrease. In turn, as responses to 
stress due to an increase in the availability of N and its 
toxicity, the chlorophyll a/b ratio, and the Fv/Fm are ex-
pected to decrease.

Material and methods

Experimental setup. Seeds of eleven ruderal weeds that are 
common in the city of Morelia, Michoacán, México (Table 
1) were collected in October 2017 and 2018. The seeds 
were placed in paper envelopes (8.8 × 16.4 cm) and stored 
in the laboratory (in the dark, air temperature of 23 ºC, and 
relative humidity of 40 %) until they were utilized in Febru-
ary 2019.

The experiment was conducted in a greenhouse at the 
Escuela Nacional de Estudios Superiores, Unidad More-
lia, Universidad Nacional Autónoma de México, Morelia, 
Michoacán, Mexico, where the plants were exposed to an 
air temperature averaging 17 ºC throughout the experi-
ment (range of 2 to 36 ºC), a relative humidity of 59 % 
(5-97 %), and a daily photosynthetic photon flux (wave-
lengths of 400 to 700 nm) of 18.6 mol m–2 day–1. Plants 
were exposed to four treatments that simulated nitrogen 
deposition rates of 10, 20, 40, and 80 Kg N ha-1 year-1 over 
120 days after sowing. Each treatment had six replicates 
per species. The experimental units of all species were 

randomly distributed on a greenhouse bench (dimensions 
of 15 × 1.5 m) to avoid blocking effects on individual spe-
cies. For each experimental unit, at least three seeds were 
sown in plastic pots (volume of 1.5 liters) containing agro-
lyte. Following germination, the most vigorous individual 
was kept for the experiment, while the remaining seed-
lings were removed. Two sets of each experimental unit 
were prepared, considering that part of the experiment 
involved destructive sampling of plant material. 

Nitrogen deposition. Because ruderal weeds are predomi-
nantly active during the rainy season, the experiment eval-
uated responses to wet deposition simulated with aqueous 
solutions of NH4NO3. In particular, the total amount of 
nitrogen that would deposit under rates of 10, 20, 40, and 
80 Kg N ha-1 year-1, were administered over four months, 
the typical duration of the rainy season in the study region 
(Morelia has a C(w) climate, i.e., temperate, subhumid, 
with summer rains, INEGI 2017). Taking into consider-
ation an opening area of 9.5 × 10–3 m2, each pot was wa-
tered daily, during 120 days, with 140 ml of 0.0161, 0.032, 
0.64, or 0.128 mM NH4NO3. Additionally, the plants re-
ceived weekly irrigations with 140 ml of a modified 0.1 
Hoagland solution lacking nitrogen, in order to avoid nu-
trient deficiencies (Nobel & de la Barrera 2002). At the 
end of the 120-days, the biological material was harvested 
and analyzed.

Biomass. The plants were harvested at the end of the ex-
periment and dried at 45 ºC in a gravity convection oven 
until reaching constant weight. Below-ground (BS) and 

Species Family Class Origina

Amaranthus hybridus L. Amaranthaceae Magnoliopsida Native

Bidens pilosa L. Asteraceae Magnoliopsida Native

Chloris gayana Kunth Poaceae Liliopsida Exotic

Chloris pycnothrix Trin. Poaceae Liliopsida Exotic

Chloris virgata Sw. Poaceae Liliopsida Exotic

Lepidium virginicum L. Brassicaceae Magnoliopsida Native

Melinis repens L. Poaceae Liliopsida Exotic

Pennisetum ciliare (L.) Link Poaceae Liliopsida Exotic

Pennisetum setaceum (Forssk.) Chiov. Poaceae Liliopsida Exotic

Sporobolus indicus (L.) R. Br. Poaceae Liliopsida Native

Taraxacum officinale (L.) Weber ex F.H.Wigg. Asteraceae Magnoliopsida Exotic

Table 1. Ruderal weeds common in Morelia, Michoacán, México, whose biomonitoring potential was evaluated.

a Rzedowski & Rzedowski 2005, Vibrans 2021.



Ruderal weed nitrogen deposition biomonitors

576

above-ground (BA) dry mass were determined separately, 
in order to calculate the BS/BA ratio, as well as the total 
biomass accumulation for each individual.

Elemental and isotopic analyses. Plant material was har-
vested, dried to constant weight in the gravity convection 
oven at 60 ºC, and ground to a fine powder prior to sub-
mission to the Stable Isotope Facility, University of Wyo-
ming for elemental and isotopic analyses that were con-
ducted with a Costech 4010 elemental analyzer (Costech 
Analytical Inc., Valencia, California, USA) attached to a 
continuous flow isotope ratio mass spectrometer (Finni-
gan Delta Plus XP, Thermo Electron Corp, Waltham, Mas-
sachusetts, USA). The analytical precision was 0.4 ± 0.03 
(SD) for the δ15N.

Chlorophyll. Chlorophyll content was determined col-
orimetrically (Lichtenthaler 1987). Freshly harvested leaf 
samples were macerated with cold acetone (80 % v/v in 
distilled water), and brought to a final volume of 3.0 ml. 
The absorbance of filtered aliquots was measured with an 
EZ 301 Spectrometer (Perkin Elmer, Waltham, Massachu-
setts, USA). 

The maximum quantum yield of photosystem II (Fv/Fm; 
Maxwell & Johnson 2000), was measured with a FluorPen 
FP 100 hand-held fluorometer (Photon Systems Instru-
ments, Drasov, Czech Republic), for plants that had been 
dark acclimated for 20 min by covering the entire pot with 
a brown paper bag that lined with aluminum foil (DeEll & 
Toivonen 2011). 

Nitrate reductase activity (NR). The enzymatic activity of 
the nitrate reductase was quantified by colorimetry, based 
on the Greis-Ilosuay reaction (Díaz-Álvarez et al. 2019). 
Leaf samples were incubated in a 3 mM KNO3 solution 
during 12 hr, followed by the addition of 5 ml of a potas-
sium buffer solution (50 mM KH2PO4, 100 mM KNO3, 
100 mM potassium acetate, and 1.5 % v/v propanol-1-ol). 
After 1-2 min, the vials were emptied and incubated in an 
orbital shaker at 30 ºC during 30 min, before reading ab-
sorbance at 540 nm with the EZ 301 Spectrometer. 

Data analyses. Plant survival throughout the experiment 
was analyzed with Friedman repeated measures ANOVAs, 
followed by post hoc Tukey tests (P ≤ 0.05). For the rest 
of the parameters, i.e., biomass production, BS/BA, NR 
activity, chlorophyll content, chlorophyll a/b ratio, Fv/Fm, 
δ15N, C/N ratio, N, and C content, plant responses were 
analyzed one-way ANOVAs followed by post hoc Tukey 

or Student’s t tests (P ≤ 0.05). When the normality and 
variance homogeneity requirements were not fulfilled, 
data were analyzed with Kruskal-Wallis tests followed by 
Tukey or Dunn tests (P ≤ 0.05). Data are shown as mean 
± 1 S.E. (n = 6). Statistical analyses were conducted with 
SigmaStat 3.5 (Systat Software Inc., San Jose, California).

Results

Survival for the weeds considered in the present work had 
different responses to the experimental treatments over 
120 days after sowing (Figure 1; Supplementary mate-
rial). In particular, the lowest dose of 10 kg N ha–1 year–1 
led to the highest survival for Pennisetum ciliare (L.) Link 
(Figure 1C) but to the lowest survival for Chloris pycno-
thrix Trin. (Figure 1G), and Melinis repens (Willd.) Zizka 
(Figure 1B). In turn, the survival for Amaranthus hybridus 
L. (Figure 1A), Lepidium virginicum L. (Figure 1I), and 
Pennisetum setaceum (Forssk.) Chiov. (Figure 1J), was 
the highest under some of the intermediate scenarios of 
nitrogen deposition, and the lowest survival for Sporobu-
lus indicus (L.) R. Br. (Figure 1D). The highest dose of 80 
Kg N ha–1 year–1 led to the lowest survival for P. setaceum 
(Figure 1J), but to the highest survival for Chloris virgata 
Sw. (Figure 1H) and Taraxacum officinale (L.) Weber ex 
F.H.Wigg (Figure 1K). Finally, the survival for Bidens pi-
losa L. (Figure 1E; P = 0.029) and Chloris gayana Kunth 
(Figure 1F) did not respond to the experimental treatments 
and it was very low throughout the experiment.

Given that only seven out of the eleven species that 
were evaluated had a final survival of at least 33 % after 
120 days, i.e., Bidens pilosa (Figure 1E), Chloris gayana 
(Figure 1F), C. pycnothrix (Figure 1G), C. virgata (Figure 
1H), Lepidium virginicum (Figure 1I), Pennisetum seta-
ceum (Figure 1J) and Taraxacum officinale (Figure 1K), 
the remaining four species were excluded from further 
physiological screening. 

Similar to the case for survival, the sensitivity of the 
various physiological parameters evaluated responded dif-
ferently for each species under the different nitrogen doses 
(Figure 2; Supplementary material). Biomass accumula-
tion tended to increase under the higher nitrogen doses for 
Bidens pilosa (Figure 2A), Chloris gayana (Figure 2B), 
Lepidium virginicum (Figure 2E), and Pennisetum seta-
ceum (Figure 2F), with an ensuing decrease in the BS/BA 
ratio for the former two. In addition, the tissue carbon con-
tent increased with the nitrogen dose for C. gayana and P. 
setaceum, but it decreased for C. pycnothrix (Figure 2C).

In general, the nitrogen content of the seven weeds 
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tended to increase with the nitrogen dose, except for C. 
pycnothrix, which did not respond to the experimental 
treatment, and for L. virginicum, for which the tissue ni-
trogen content was maximal under the intermediate dose 
of 40 kg ha–1 year–1. The higher tissue nitrogen content 
was followed by a decrease in the C/N ratio for B. pilo-
sa, C. gayana, C. virgata (Figure 2D), P. setaceum, and 
T. officinale (Figure 2G). In turn, the δ15N values tended 
to become less negative under the higher nitrogen doses 
for B. pilosa, C. gayana, C. virgata, and P. setaceum, but 
remained unaffected for the other three species. The ac-
tivity of the nitrate reductase tended to decrease with the 
nitrogen dose for C. gayana and T. officinale, it reached 
its maximum under 40 kg ha–1 year–1 for L. virginicum and 
remained unaffected for the other species.

The total chlorophyll content tended to increase with 
the nitrogen dose for B. pilosa, C. gayana, and L. virgini-
cum. The chlorophyll a/b ratio decreased for C. gayana 
under the nitrogen doses above 10 kg N ha–1 year–1, and 
for L. virginicum growing under 80 kg N ha–1 year–1. Fi-
nally, Fv/Fm for dark-adapted leaves did not respond to ni-

trogen deposition, except for C. pycnothrix, for which it 
decreased under 80 kg N ha–1 year–1.

Discussion

While most of the species screened here responded to the 
experimental nitrogen deposition, a generalized pattern 
was not observed, neither for the sensitivity of the physi-
ological parameters that were measured nor by groups of 
species. For instance, one could have expected that exotic 
species, especially those reported as invasive would have 
fared better than the natives at higher nitrogen doses (van 
der Maarel 2005, Perry et al. 2010). However, this was not 
the case, as the survival of some of the weeds, i.e., Bidens 
pilosa and Chloris gayana, were insensitive to nitrogen 
addition, others, i.e., Chloris pycnothrix and Taraxacum 
officinale, had a decreased mortality with increasing fertil-
ization, while Pennisetum ciliare, a very noxious invasive 
weed, succumbed under all the treatments. Even C. pyc-
nothrix, an alien species, showed stress effects due high 
nitrogen deposition (a reduced Fv/Fm) than some of the na-

Figure 1. Survival over 120 days for 11 potential ruderal weed biomonitors under experimental nitrogen deposition. Data are shown as mean ± 1 standard 
error (n = 6). Please refer to the Supplementary material for data analyses. 
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tive species. Such an idiosyncratic response to nitrogen 
deposition is prevalent in nature: while the survival of spe-
cies such as the grass Deschampsia flexuosa (L.) Trin., the 
shrub Calluna vulgaris (L.) Hull, and the trees Fraxinus 
americana L., Malus coronaria L., and Schima superba 
Gardner & Champ. are insensitive to nitrogen addition 
(van den Berg et al. 2005, McWhirter & Henry 2014, Han 
et al. 2019), plant mortality decreases with nitrogen avail-
ability for Elaeagnus umbellata Thunb., Erodium oxyrhin-
chum M. Bieb., and Robinia pseudocacia L. (McWhirter 
& Henry 2014, Horn et al. 2018, Chen et al. 2019a), but it 
increases for species such as Succisa pratensis L., Anten-
naria dioica L., Pinus massoniana D. Don, Pouteria torta 
(Mart.) Radlk., and 39 species of trees (van den Berg et 
al. 2005, Cárate-Tandalla et al. 2015, Horn et al. 2018, 
Han et al. 2019). Such an increased mortality in nitrogen-
rich environments has been attributed to a low tolerance to 
NH4

+, whose accumulation leads to acidification (Britto & 
Kronzucker 2002, van den Berg et al. 2005), as well as to 
energy deficits resulting from the cost of extruding excess 
NH4

+ out of the cell (Kronzucker et al. 2001, Britto & Kro-
nzucker 2002, van den Berg et al. 2005). The responses 
of individual species lead to changes in their distribution, 
which combined alter the composition of plant communi-
ties (Gotelli & Ellison 2002, Horn et al. 2018). 

Some of the responses observed here, however, could 
simply be attributed to each species’ habitat preference. 
For instance, Melinis repens and Taraxacum officinale 
have been found to establish successfully in urban envi-
ronments, as long as the ground has sufficient amounts of 
litter or nurse plants are available (Cavieres et al. 2005, 
David & Menges 2011). Also, a high mortality is inherent 
of species that produce a large number of propagules with 
a low investment of maternal resources (Ricklefs 2009), 
especially considering the high vulnerability of plants dur-
ing early developmental stages (de la Barrera et al. 2009). 
This could be the case, for example, of Pennisetum ciliare, 
whose mortality reached 100 % in the present study, but 
which becomes insensitive to nitrogen fertilization once it 
has become established (Lyons et al. 2013).

As expected, a higher nitrogen availability increased 
biomass accumulation for some of the weeds, i.e., Bidens 
pilosa, Chloris gayana, Lepidium virginicum, and Pennis-
etum setaceum, a response that has also been documented 
for Agropyron cristatum (L.) Gaertn., Anthoxanthum odo-
ratum L., Avena fatua L., Centaurea stoebe L., Hordeum 
murinum L., Lolium perenne L., Medicago lupulina L., 
Plantago lanceolata L., Poa annua L., Prunella vulgaris 
L., Stipa pulchra Hitchc., and Trifolium repens L. (Jiang 

et al. 2005, Tian et al. 2012, Stevens & Gowing 2014, 
Peng et al. 2016, Tulloss & Cadenasso 2016, Shen et al. 
2019). Such an improvement of primary productivity in 
response to fertilization is common when plants develop 
in nutrient-limited soils (Azcón-Bieto & Talón 2008, van 
der Valk 2009, Taiz et al. 2014). As additional nitrogen 
becomes available, biomass accumulation can increase 
linearly until a threshold is reached, either by a satura-
tion of the response, an intrinsic limitation of the plant, 
the intracellular buildup of toxic ions, or by a co-limitation 
of other nutrients (Azcón-Bieto & Talón 2008, Taiz et al. 
2014, J. Mao et al. 2018a). This was probably the case for 
Chloris pycnothrix, C. virgata, and Taraxacum officinale, 
whose dry mass accumulation did not respond to nitro-
gen fertilization. Insensitivity of growth to fertilization 
has also been documented for species such as Amaranthus 
spinosus L., Elaeagnus umbellata, Elymus caput-medusae 
L., Eremopyrum orientale (L.) Jaub. & Spach, Fraxinus 
americana, Malus coronaria, Plantago virginica L., Rhus 
typhina L., and Schima superba (Jiang et al. 2005, Mc-
Whirter & Henry 2014, Tulloss & Cadenasso 2016, Chen 
et al. 2019b, Han et al. 2019).

Resource allocation to belowground biomass that in-
creases the BS/BA ratio is also a response of plants that 
grow in nutrient-poor soils, as a higher root surface area 
improves the ability to take up nutrients (Litton et al. 
2003, Taiz et al. 2014). In turn, a higher nitrogen availabil-
ity usually leads to a reduction of BS/BA, a response that 
has been observed in species such as Nepeta micrantha 
Bunge, Oriza sativa L., and that is common in forest spe-
cies (Li et al. 2015, Mao et al. 2018b, Chen et al. 2019b, 
Wang et al. 2019). Despite that a reduction in BS/BA was 
only significant for two of the weeds, the remaining five 
displayed an apparent trend in the same direction, similar 
to what occurs for Amarathus spinosus, Eremopyron ori-
entale, Lolium perenne, Medicago lupulina, Poa annua, 
Prunella vulgaris, and Trifolium repens (Jiang et al. 2005, 
Stevens & Gowing 2014, Chen et al. 2019a). However, a 
lack of response of BS/BA can be attributed to limitation 
of other soil nutrients, such that an investment in root tis-
sue still improves soil exploration, potentially conferring 
a better competitive capacity (Tulloss & Cadenasso 2016). 

The nitrate reductase enzyme reduces the oxidation 
level of NO3

- to NO2
-, catalyze one of the early steps in 

the nitrogen assimilation (Azcón-Bieto & Talón 2008, 
Tegeder & Masclaux-Daubresse 2018). This enzyme was 
affected by the nitrogen deposition in Chloris gayana and 
Taraxacum officinale, where the increase of nitrogen de-
position rate reduced their activity, as also we can see in 
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Figure 2. Physiological effects of experimental nitrogen deposition on the ruderal weeds (A) Bidens pilosa, (B) Chloris gayana, (C) C. pycnothrix, (D) C. 
virgata, (E) Lepidium virginicum, (F) Pennisetum setaceum, and (G) Taraxacum officinale. For each species, the nitrogen dose increases outwards. Blue 
indicates that a given parameter had a direct response to the dose utilized, red indicates an inverse response, and grey indicates a lack of response to the 
different nitrogen doses. For each parameter, different color intensities indicate statistical differences in the magnitude of the response (P < 0.05). Please 
refer to the Supplementary material for the specific responses and data analysis of each parameter.
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Acer saccharum Marshall and the bryophytes Braunia se-
cunda (Hook.) Bruch & Schimp., Leptodontium pungens 
(Mitt.) Kindb., Racomitrium lanuginosum (Hedw.) Brid., 
and Rhytidiadelphus squarrosus (Hedw.) Warnst. (Pearce 
& van der Wal 2002, Arróniz-Crespo et al. 2008, Tang et 
al. 2012, Díaz-Álvarez et al. 2019). This reduction in the 
NR activity, under ascending scenarios of nitrogen deposi-
tion, is due to the increase of reduced nitrogen compounds 
in the tissues that inhibit their synthesis and activity 
(Downs et al. 1993, Arróniz-Crespo et al. 2008, Coelho & 
Romão 2015, Glime 2017b). In bryophytes, the decrease 
in activity is attributed to the available NH4

+ satisfying 
the nitrogen demand, while in vascular plants it is attrib-
uted to intrinsic properties of species as growth rate and 
state of development (Downs et al. 1993, Arróniz-Cres-
po et al. 2008, Tang et al. 2012, Glime 2017b). Species 
that kept their NR activity constant under the scenarios 
of nitrogen deposition as Bidens pilosa, Chloris pycno-
thrix, Chloris virgata and Pennisetum setaceum, perhaps 
the NH4

+ amount, that contributed the NH4NO3 with the 
treatments of nitrogen deposition, plus the NO3

- reduced 
were enough to satisfy the nitrogen demand keeping the 
NR enzyme activity constant. The null effect of the ni-
trogen deposition in the NR enzyme has also been seen 
in Acer rubrum L., Ardisia quinquegona Blume, Betula 
alleghaniensis Britton, Blastus cochinchinensis Lour., Fa-
gus grandifolia Ehrh., Pinus strobus L., P. rigida Mill., 
Tillandsia recurvata L., and the bryophytes Pleurochaete 
squarrosa (Brid.) Lindb. and Pseudoscleropodium purum 
(Hedw.) M. Fleisch. (Downs et al. 1993, Pearce & van der 
Wal 2002, Pearce et al. 2003, Arróniz-Crespo et al. 2008, 
Tang et al. 2012, Ochoa-Hueso & Manrique 2013, Liu et 
al. 2018b, Díaz-Álvarez et al. 2020).

The higher nitrogen content measured under higher 
doses for six of the weeds has also been reported for the 
mosses Pseudoscleropodium purum and Rhytidium rugo-
sum (Hedw.) Kindb., and for the vascular plants Calluna 
vulgaris L., Eucalyptus urophylla S. T. Blake × E. grandis 
Hill ex Maiden, Laelia speciosa (Kunth) Schltr, Oxytro-
pis kansuensis Bunge, and Pinus resinosa L. (Throop & 
Lerdau 2004, Arróniz-Crespo et al. 2008, Bobbink et al. 
2010, Du et al. 2014, 2015, Díaz-Álvarez et al. 2015, Lü 
et al. 2016). The nitrogen level in plant tissues is driven 
by vacuolar accumulation of reduced nitrogen species 
and hydrosoluble proteins, such as Rubisco (Zhang et al. 
2016, Tegeder & Masclaux-Daubresse 2018). Nitrogen 
fertilization can also increase the PEPcarboxilase activ-
ity for C4 and CAM species, leading to a concurrent in-
crease of tissue carbon content, as it was observed here for 

Chloris gayana, C. pycnothrix, and Pennisetum setaceum 
(Jin et al. 2015, Flexas et al. 2016, Tegeder & Masclaux-
Daubresse 2018, Zhou et al. 2020).  

The decrease in the C/N ratio in response to nitrogen 
fertilization that we found for Bidens pilosa, Chloris 
gayana, Chloris virgata, Taraxacum officinale, and Pen-
nisetum setaceum, which also occurs for Schizolobium 
amazonicum Ducke, Zea mays L, as well as for various 
species in the Cleistogenes and Stipa genera, is a direct 
result of the nitrogen buildup described above (Chen et al. 
2009, Luo et al. 2017, Vieira et al. 2018). In turn, the fact 
that the C/N ratio did not change for Lepidium virginicum 
and Chloris pycnothrix appears to be a consequence of 
the development of new plant tissue, which has also been 
documented for Betula pendula Roth, Agrostis capillaris 
L., and Galium saxatile L. (Stevens et al. 2011, Harmens 
et al. 2017).

The increased δ15N values in response to higher nitro-
gen deposition rates such as those observed for Bidens pi-
losa, Chloris gayana, Chloris virgata, and Pennisetum se-
taceum, are opposite to those reported for species such as 
Laelia speciosa and Pinus massonia Lamb., whose leaves 
become increasingly impoverished in 15N under higher 
nitrogen availability (Jiang & Zhang 2009, Díaz-Álvarez 
et al. 2015). An isotopic impoverishment of plant tissues 
indicates an enhanced discrimination of 15N under an 
abundance of nitrogen resulting from increased enzyme-
mediated processes (Yoneyama et al. 1991, Santiago et al. 
2005, Xiao et al. 2011). In the present work, however, the 
negative δ15N values found under the lower nitrogen doses 
can be an indication of high enzymatic activity, as it was 
the case, for instance, for Chloris gayana whose lowest 
δ15N values occurred concurrently with its highest nitrate 
reductase activity. Thus, our results could be an indica-
tor of enzyme saturation that prevented further nitrogen 
uptake. In addition, the observed isotopic enrichment may 
also be reflecting an increased loss of excess nitrogen in 
the plant by NH4

+ volatilization or NO3
- leaching (Hög-

berg & Johannisson 1993, Dijkstra et al. 2003, Jiang & 
Zhang 2009, Ma et al. 2012). 

The higher chlorophyll content found for Bidens pilo-
sa, Lepidium virginicum, and Chloris gayana, in response 
to increasing nitrogen availability is common in nature, 
and has been observed for species such as Ardisia quin-
quegona, Camellia japonica L., Fraxinus mandshurica 
Rupr., Lindera aggregata (Sims) Kosterm., Pleurochaete 
squarrosa, and Populus cathayana Rehder. (Arróniz-Cre-
spo et al. 2008, Wang et al. 2012, Yuan et al. 2017, C. 
Liu et al. 2018a). However, in other cases the chlorophyll 
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content is insensitive to the prevalent nitrogen availabil-
ity, as it occurs for species like Calamagrostis angustifolia 
Kom., Quercus acutissima Carruth., Blastus cochinchi-
nensis, Cryptocarya chinensis (Hance) Hemsl., C. con-
cinna Hance, Randia canthioides Champ. ex Benth., and 
Populus deltoides W. Bartram ex Marshall, or as found 
here for as found for Chloris pycnothrix, C. virgata, Pen-
nisetum setaceum, and Taraxacum officinale (Dou et al. 
2009, Li et al. 2018, Liu et al. 2018b, Liu et al. 2018c, 
Mao et al. 2018b, Xu et al. 2018). For these cases, chloro-
phyll content may be driven by other environmental fac-
tors, especially the prevalent photon flux density, which 
was relatively high in our experimental setup, or that the 
luxury nitrogen be allocated for chlorophyll production in 
new tissue (Azcón-Bieto & Talón 2008, Taiz et al. 2014). 
A decrease in the chlorophyll a/b ratio, such as what we 
observed for Lepidium virginicum and Chloris gayana, 
is an indication of an increased resource allocation to the 
light harvesting complex than to the photosystem reaction 
centers, leading to a reduced photosynthetic capacity, as 
it has been described for Pseudoscleropodium purum and 
Rhytidiadelphus squarrosus (Arróniz-Crespo et al. 2008, 
Lambers et al. 2008, Ochoa-Hueso et al. 2014). 

The lack of response of Fv/Fm to nitrogen that was ob-
served for most of the weeds suggests that its increased 
availability did not have a fertilization effect on photo-
synthesis, but, conversely, it did not impose stress either, 
including at the higher doses (Maxwell & Johnson 2000, 
DeEll & Toivonen 2011). The lack of response to high 
rates of N deposition can be associated with a more com-
petitive behavior and greater tolerance of plants, as it has 
been found for invasive alien species (Lyons et al. 2013). 
In contrast, for the case of C. pycnothrix, the significant 
decrease of Fv/Fm for plants under 80 kg ha–1 year–1 was 
concurrent with the lowest carbon content for this species. 
This indicates a decreased use of light energy and photo-
synthesis under high N deposition rates, a stress that can 
lead to the decline of plant populations (Arróniz-Crespo 
et al. 2008).

Three conditions are required for developing an ad-
equate biomonitor of environmental pollution: that the 
species has an ample distribution, that it is tolerant to an 
ample range of concentrations of the pollutant of inter-
est, and that at least one physiological trait is sufficiently 
sensitive to respond in a “predictable” fashion to differ-
ent levels of said pollutant (Markert et al. 2003). Indeed, 
the eleven ruderal weeds that were screened in the pres-
ent study were selected based on their ample geographic 
distribution, their abundance in the region of interest, and 

their apparent preference, or at least tolerance, for the ele-
vated amounts of anthropogenic reactive nitrogen that are 
common in cities. In turn, the physiological parameters 
that were utilized have been shown to respond to nitrogen 
deposition both under experimental and field conditions. 
However, while most of the weeds displayed at least some 
biomonitoring potential, the mortality of four species was 
such that it precluded further physiological evaluation. 
This appeared to be more related to inherent character-
istics of the plants, such as their ecological strategy of 
producing numerous seeds or low tolerance of the experi-
mental handling, despite their successful proliferation in 
urban environments.

A field validation of the biomonitoring potential for 
Bidens pilosa, Chloris gayana, C. virgata, and Pennisetum 
setaceum is thus recommended, as 5-9 physiological traits 
of these species adequately responded to the experimental 
nitrogen deposition. All in all, the use of ruderal weed bio-
monitors, which are be abundant in urban environments ap-
pears to be promising for characterizing nitrogenous pollu-
tion for consideration in integrative biomonitoring efforts.
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