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Resumen

Antecedentes: Nitrogeno (N) y Fosforo (P) son los nutrientes mas limitantes en plantas y su eficiencia de reabsorcion sugiere estrategias de
conservacion. La reabsorcion ademas afecta los cocientes estequiométricos en la hojarasca, modificando las interacciones ecologicas y los ciclos
biogeoquimicos en gradientes de aridez.

Hipétesis: Existira mayor eficiencia de reabsorcion de nutrientes en especies de sitios con mayor aridez, por lo que esperamos que los cocientes
estequiométricos de C:N y C:P sean mayores en hojas senescentes.

Especies de estudio: lpomoea arborescens, Fouquieria macdougalii, Cercidium microphyllum, Encelia farinosa, Mimosa laxiflora, Jatropha
cardiophylla, Cenchrus ciliaris, Olneya tesota, Prosopis velutina, Cercidium floridum, Fouquieria splendens, Brongniartia minutifolia, Jatro-
pha cordata, Colubrina viridis, Larrea tridentata'y Cercidium praecox.

Sitio de estudio y fechas: Tres sitios en un gradiente de aridez del Desierto Sonorense, en la region central de Sonora. Agosto - noviembre 2017
y 2018.

Meétodos: Se obtuvieron la eficiencia de reabsorcion de N y P, y cocientes estequiométricos C:N, C:P y N:P en hojas verdes y senescentes de
especies, comparando tipos funcionales y sitios.

Resultados: La eficiencia de reabsorcion disminuy6 con el incremento de aridez asi como los cocientes estequiométricos C:N y C:P en hojas
senescentes y N:P en leguminosas.

Conclusiones: La eficiencia de reabsorcion no sugiere una estrategia de conservacion de recursos, sin embargo, las diferencias entre tipos fun-
cionales permitieron diferenciar estrategias ecoldgicas y estequiométricas, en particular las leguminosas, que ayudan a resaltar su influencia en
la biogeoquimica de las zonas aridas Sonorenses y posiblemente del pais.

Palabras clave: eficiencia de reabsorcion, suficiencia de reabsorcion, estequiometria ecoldgica, biogeoquimica, zonas aridas.

Abstract

Background: Nitrogen (N) and Phosphorus (P) are the most limiting nutrients in plants and their resorption efficiency suggest conservation
strategies. Resorption also change litter stoichiometry and affect ecological interactions and biogeochemical cycles along aridity gradients.
Species nutrient resorption efficiency will be higher in sites at the arid extreme, such that resorption proficiency and stoichiometry for C:N and
C:P will be higher in senescent leaves.

Studied species: Ilpomoea arborescens, Fouquieria macdougalii, Cercidium microphyllum, Encelia farinosa, Mimosa laxiflora, Jatropha car-
diophylla, Olneya tesota, Prosopis velutina, Cercidium floridum, Fouquieria splendens, Brongniartia minutifolia, Jatropha cordata, Colubrina
viridis, Larrea tridentata and Cercidium praecox.

Study site and years of study: Three sites along an aridity gradient in the Sonoran Desert, Central Region in Sonora. August to November
2017 and 2018.

Methods: We obtained N and P reabsorption efficiency, as well as stoichiometric proportions for C:N y N:P from green and senescent leaves to
compare species, functional types and sites.

Results: N and P reabsorption efficiency decreased with aridity and C:N and C:P stoichiometry of senescent leaves, as well as N:P for legumes.
Conclusions: Reabsorption efficiency does not suggest a resource conservation strategy, however different functional types allowed us to dif-
ferentiate ecological and stoichiometric strategies, in particular legumes, that help enhance their role in the biogeochemistry of Sonoran and
Mexican arid lands.

Keywords: reabsorption efficiency, resorption proficiency, ecological stoichiometry, biogeochemistry, drylands.
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Reabsorcion de Ny P

Las plantas requieren diferentes elementos quimicos para
cumplir sus multiples funciones bioldgicas y ecoldgicas
(Pefiuelas et al. 2019). Algunos se constituyen en nutrien-
tes, de los cuales los mas limitantes para la productividad
son el nitrogeno (N) y el fosforo (P), pues estan relaciona-
dos con la sintesis de proteinas, acidos nucleicos, coenzi-
mas, clorofila, fosfolipidos, moléculas de transferencia de
energia, entre otras. La estequiometria ecologica estudia
las proporciones entre los elementos y como afectan el
funcionamiento bioldgico, sus interacciones y la biogeo-
quimica en las comunidades y ecosistemas (Sterner & Elser
2002). Asi, muchos de los atributos de las plantas estan
relacionados con la concentracion de N y P foliar, y sus
cocientes estequiométricos. Es conocido que las plantas
al realizar sus funciones basicas como crecer, fotosinteti-
zar y reproducirse, utilizan los nutrientes mas limitantes
de manera eficiente para mantener un balance de carbono
positivo (Bloom et al. 1985), y asi modifican y afectan el
tiempo de vida de las hojas, y la calidad de la hojarasca en
la senescencia (Sterner & Elser 2002).

La senescencia es el ultimo proceso de la ontogenia
en el que ocurre el desmantelamiento celular, y con la
reabsorcion (redistribucion) de nutrientes desde las hojas
hacia otros o6rganos de la planta, culmina con la muerte
celular (Martinez et al. 2008). Con ello podemos entender
la eficiencia y la suficiencia de reabsorcion; la primera
refiere el porcentaje de nutrientes de la hoja que regresa
a la planta mientras que la segunda, la concentracion de
nutrientes que queda en la hoja senescente después de la
reabsorcion (Killingbeck 1996). La eficiencia de reabsor-
cion se ha relacionado con procesos fisiologicos como la
maximizacion de la fotosintesis durante el desarrollo fo-
liar en el dosel (Franklin & Agren 2002), su longevidad
(Eckstein et al. 1999) o con los sumideros de carbono y
nutrientes en frutos cercanos (Chapin & Moilanen 1991).

reservorios solubles y estructurales (McGroddy et al.
2004). La disimilitud en la estequiometria de C:N y N:P
como consecuencia de la reabsorcion durante la senescen-
cia puede estar relacionada con funciones de optimizacion
nutrimental para la planta (Chapin & Kedrowski 1983), y
al mismo tiempo con procesos troficos y biogeoquimicos
de los ecosistemas (Mooshammer ef al. 2011, Zechmeis-
ter-Boltenstern et al. 2015). Sin embargo, ninguno se ha
abordado suficientemente.

Un niimero importante de estudios han mostrado que la
proporcion N:P se incrementa en la hojarasca después de
la reabsorcion, particularmente bajo condiciones de mayor
temperatura y aridez (Wright & Westoby 2003, Giisewell
2004, See et al. 2015, Prieto & Querejeta 2020), o en sue-
los pobres en P (Drenovsky et al. 2019). Las diferencias
en la reabsorcion entre especies y formas de vida sugieren
que la composicion de la vegetacion y sus cambios, pue-
den tener efectos importantes en la biogeoquimica de N y
P (Giisewell 2004, Giisewell & Gessner 2009). Por ejem-
plo, en el caso de las plantas fijadoras de nitrogeno se ha
reportado que suelen reabsorber mas P que N (Killingbeck
1996, Tateno 2003, Stewart et al. 2008, He et al. 2011),
debido a que la fijacion del nitrogeno es un proceso ener-
géticamente costoso que requiere fosforo. Por otro lado, el
hecho de tener hojas senescentes ricas en nitrogeno hace
mas facil su degradacion y asimilacion por los microor-
ganismos del suelo (Freschet et al. 2013, Mooshammer
et al. 2014). Sin embargo, poco se conoce de la estequio-
metria N:P en la hojarasca y las posibles limitaciones o
desbalances de P después de la reabsorcion en especies de
zonas aridas y semiaridas.

Aun cuando las zonas aridas son conocidas por una
baja disponibilidad y gran heterogeneidad de N y P en el
suelo (Schlesinger et al. 1996, Cross & Schlesinger 1999
Celaya-Michel et al. 2015), se han encontrado altas con-

Igualmente, se ha relacionado con la disponibilidad de nu-
trientes en el suelo (Killingbeck 1996, Coté et al. 2002,
Tully et al. 2013, See et al. 2015, Yuan & Chen 2015)
y factores ambientales como precipitacion y temperatura
(Gerdol et al. 2000, Yuan & Chen 2009, 2015, Zhao et
al. 2017), afectando multiples funciones biogeoquimicas
y del ecosistema (Reed et al. 2012).

Los cocientes estequiométricos C:N y N:P en las hojas
pueden o no modificarse por la reabsorcion de nitrogeno
(N) y fosforo (P) durante la senescencia foliar. Diversos
estudios han encontrado eficiencias de reabsorcion simi-
lares para N y P (Aerts 1996, Vergutz et al. 2012), mien-
tras que otros, rangos muy amplios (Giisewell 2005, Zhao
et al. 2017), posiblemente debido a las diferencias en sus

500

centraciones de nitrogeno foliar en especies del Desierto
Sonorense (Castellanos et al. 2018). En algunos estudios
se han asociado con su mayor eficiencia de reabsorcion en
algunos estudios (Campanella & Bertiller 2011) y menor
en otros (Yuan et al. 2005). Es claro que las diferentes
correlaciones entre la concentracién de N y P foliares, y
su reabsorcion sugiere estrategias fisioldgicas y ecoldgi-
cas, asi como consecuencias biogeoquimicas contrastan-
tes (Chavez-Vergara et al. 2015), las que son aun poco
conocidas en las regiones aridas. Estudios previos en la
region arida Sonorense, han mostrado que diferencias en
los cocientes estequiométricos de N y P estan relacionados
con el potencial invasivo de las especies (Castellanos et
al. 2018), atin cuando previamente se ha considerado el
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aguay no los nutrientes, como el principal factor selectivo
en las estrategias ecologicas de plantas desérticas (Austin
2011).

Dado lo anterior, este trabajo contribuye a entender
algunos de los procesos que determinan la concentracion
de N y P en tipos funcionales y comunidades del Desierto
Sonorense. En particular como la eficiencia y suficiencia
de reabsorcion de N y P modifica la estequiometria foliar
durante la senescencia y consecuentemente en la hojarasca.
Se plantea que como estrategia de conservacion, la eficien-
cia de reabsorcion del nitrégeno serd mayor en el extremo
mas arido, dada su importancia en la fotosintesis, como se
ha sugerido en otros estudios. Como consecuencia, en ese
extremo del gradiente, las hojas senescentes tendran menor
concentracion de nutrientes y mayores cocientes este-
quiométricos de C:N y C:P, no asi de N:P. Se discuten las
estrategias de reabsorcion y estequiometria ecoldgica en
diferentes tipos funcionales y leguminosas a la luz de nues-
tra hipotesis, asi como las consecuencias en las dinamicas

biogeoquimicas de la hojarasca en las comunidades vege-
tales del gradiente en donde son dominantes.

Materiales y métodos

Sitios de estudio. Se seleccionaron tres areas en la parte
central de Sonora, ubicados dentro del Desierto Sono-
rense. El primero pertenece al municipio de La Colorada,
donde se encuentra el Rancho El Churi (CH) ubicado a
28° 42’ 6.77” N y -110° 32’ 15.64” O, la precipitacion
media anual (PMA) es 476.0 mm y la temperatura media
anual (TMA) 22.8 °C, el indice de aridez de Martonne (IA
=P/T+10)esde 14.51 (arido) y el tipo de vegetacion es
matorral subtropical y pastizal inducido (Hinojo-Hinojo et
al. 2019; Figura 1). El segundo sitio corresponde al Ran-
cho Shangai-Santa Rosalia (SR) ubicado a 29° 04’ 11.94”
Ny -110° 34’ 00.78” O, en el municipio de Hermosillo;
la PMA es de 438 mm, la TMA de 24.1 °C (CONAGUA
2019), con un IA de 12.87 (arido), con vegetacion de

Figura 1. Localizacion de los sitios de estudio en la region central de Sonora, Noroeste de México.
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mezquital. El tercer sitio, el Rancho San Judas (SJ), se en-
cuentra también en Hermosillo, a 29° 17° 50.1” Ny -111°
10’ 8.6” O. La PMA es de 385.2 mm, la TMA de 25.1 °C
(CONAGUA 2019), el A de 10.97 (arido) y vegetacion de
matorral desértico. Todas las muestras se colectaron entre
agosto y noviembre de 2017 y 2018.

Las especies dominantes por sitio de estudio se ob-
tuvieron mediante tres transectos de 150 m de longitud,
utilizando un método al azar estratificado segin su forma
de vida en arboles y arbustos respectivamente. Posterior-
mente fueron identificadas y diferenciadas segun su tipo
funcional basado en sus atributos de perennacion foliar
(caducifolias o perennifolias) y la facilidad de adquisicion
de nitrégeno (fijadoras y no fijadoras). En el grupo de las
especies fijadoras de nitrégeno se incluyeron también
otras leguminosas no fijadoras, dadas sus caracteristicas
funcionales comunes como las altas tasas fotosintéticas y
la concentracion de nitrégeno foliar reconocidas para todo
el taxon (Adams et al. 2016). Por lo tanto, a este grupo
funcional lo denominamos como Leguminosas.

Para todas las especies estudiadas se obtuvieron
muestras de hojas verdes de cinco individuos (en un par
de especies solo cuadruplicado) durante el pico de su de-
sarrollo a mediados de agosto y de sus hojas senescentes
en los mismos individuos a finales de septiembre-octubre,
para obtener los promedios en cada una de las determina-
ciones. Con el fin de facilitar las comparaciones de este es-
tudio con otros realizados en la region, todos los nombres
cientificos siguen los establecidos en Shreve & Wiggins
(1964), atn aquellos con modificaciones taxonémicas re-
cientes (Tabla 1).

Tratamiento de las muestras. En cada uno de los sitios se
colectaron hojas verdes maduras y senescentes sin sefiales
de herbivoria o enfermedad. Las hojas verdes provenian
de la parte externa del dosel. En el caso de las hojas senes-
centes, se colocaron trampas de hojarasca, las cuales con-
sistian en mallas de nylon amarradas entre las ramas del
individuo, revisadas cada 7 a 15 dias (Cornelissen 1996).
Las muestras fueron depositadas en sobres de papel rotu-

Tabla 1. Especies dominantes de los sitios de estudio. Las especies fueron diferenciadas por la persistencia de la hoja (caducifolias y

perennifolias) y su forma de vida (arbol, arbusto y pasto) asi como si son especies de leguminosas (*).

Sitio Tipo de hoja Arbol

Arbusto Pasto

El Churi Caducifolia Ipomoea arborescens

Fouquieria macdougalii

Cercidium microphyllum*

Perennifolia Olneya tesota*

Prosopis velutina*

Encelia farinosa Cenchrus ciliaris

Mimosa laxiflora*

Jatropha cardiophylla

Santa Rosalia ~ Caducifolia Cercidium microphyllum* Fougquieria splendens Cenchrus ciliaris
Jatropha cordata Mimosa laxiflora*
Colubrina viridis
Perennifolia Olneya tesota*® Brongniartia minutifolia*
Prosopis velutina*®
San Judas Caducifolia Cercidium praecox* Jatropha cardiophylla
Mimosa laxiflora*
Perennifolia Olneya tesota*® Larrea tridentata

Prosopis velutina*
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ladas (especie, numero de individuo, fecha de colecta y
tipo de hoja). En hojas senescentes, se limpiaron de po-
sible contaminacion (hojas de otras especies, ramas, par-
tes de insectos, etc.) y en ambos casos se transportaron y
almacenaron en frio hasta su analisis.

El muestreo de suelo se realizé solo en uno de los si-
tios de estudio (CH) durante el afio 2017. Durante este
muestreo se colectd el suelo bajo cinco individuos de las
mismas especies arboreas dominantes con ayuda de una
pala, después de retirar la capa superficial de materia
organica. Las muestras tomadas de los primeros 5 cm de
profundidad se colectaron en bolsas de papel debidamente
rotuladas. Las muestras de hojas se secaron en un horno
FelisaR FE 243 durante 72 h a 60 °C y después se molie-
ron en un molino Wiley; las muestras de suelo se tami-

zaron con una malla de 2 mm y luego secadas de igual
forma que las hojas.

Area foliar. El area foliar se midié en hojas verdes y se-
nescentes con un escaner HP Deskjet 2510 y el programa
“Image-J” (NIH, EU), colocadas de manera individual
junto a una referencia conocida, mantenidas dentro de
sobres de papel debidamente identificados, y secadas por
72 h a 60 °C. Después se pesaron individualmente en
una balanza analitica y se obtuvo el area foliar especifica
(AFE = Area foliar/Peso seco). Se midieron tres hojas por
individuo de cada una de las especies.

Nitrogeno y carbono total. Se pesaron 3 mg para hojas y 20
mg para suelo; posteriormente en el analizador elemental

Tabla 2. Media de las concentraciones de N y P para hojas verdes y senescentes de diferentes tipos funcionales en cada sitio. Diferencias

estadisticas (P <= 0.05) entre tipos funcionales en cada sitio se representan con letras (mayusculas = diferencias de medias entre sitios;

mintsculas = diferencias entre tipos funcionales). NA = No aplica, dada su ausencia en el sitio.

Churi Sta Rosalia Sn Judas Churi Sta Rosalia Sn Judas
Nitrégeno (mgN g™) Fosforo (mgP g')
Hojas verdes Hojas verdes
Media 26.7+7.1 B 26.5+58B 33.6+45A 1.9+0.7B 1.3+04C 20+0.5A
Arbol 2891+5.7a 2881 +44a 3584+39a 1.72+0.5b 1.26£0.2b 1.64+02b
Arbusto 2746+ 5.6a 25.6 £6.5ab 31.58+4.0b 1.78 0.6 b 1.13+£0.2¢ 228+0.6a
Pasto 13.68 £0.6 b 21.22+39b NA 338+04a 229+06a NA
Caducifolia 2491+6.8b 24.09+52b 3531+44a 2.03+0.8b 131+05¢ 223+0.6a
Perennifolia 32.73+4.1a 3143+3.6a 31.53+3.7a 1.58+0.3b 1.33+02¢c 1.70+0.2 a
Leguminosa 3126+43b 29.67+4.6b 3438+43a 1.61+0.5b 1.26+0.2¢ 1.80+03a
Otras 2530+5.0b 23.1+5.1b 32.07+4.6a 1.82+0.5b 1.08+0.2 ¢ 233+0.7a
Hojas senescentes Hojas senescentes
Media 128+8.7B 134+7.6B 21.8+8.1A 1.0+£04B 0.6+03C 1.5+£0.7A
Arbol 1578+ 1042 a 1748 +833 a 2838+ 6.53 a 1.10+£0.48 a 0.82+0.39a 1.54+054a
Arbusto 11.18+3.59 a 11.63 +£4.45b 16.15+3.78 b 0.97+0.37 ab 0.54+0.15b 1.54+0.81 a
Pasto 44+065 b 43+2.16¢ NA 0.63+0.09c 0.39+0.08 ¢ NA
Caducifolia 9.16+39b 10.02+6.0b 192+63a 0.88+0.31b 0.54+0.18 ¢ 1.74+0.7 a
Perennifolia 2682+7.6a 20.2+55b 24.86+9.1b 146+0.52a 0.87+0.42b 1.32+0.7 ab
Leguminosa 20.07+9.2b 18.33+6.2b 25.62+75a 1.31+£0.5b 0.80+0.4c¢ 1.79+0.7 a
Otras 845+1.7b 826+3.4b 15.00+29a 0.83+0.2a 047+0.1b 1.10+ 04 a
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Figura 2. Relacion de la eficiencia de reabsorcion de A) nitrogeno (ERN) y B) fosforo (ERP) en hojas de diferentes especies y la concentracion de N
o Pen el suelo (ERN =-4.836 x N + 80.826; R?=0.17 y ERP=-101.16 * P+ 71.881; R*> = 0.12). Datos son para el sitio menos arido del gradiente de

estudio (CH) en 2017.

PerkinElmer 2400 serie 11 mediante la combustion com-
pleta de la muestra (950-1300 °C y atmosfera de oxigeno
puro) para convertir los elementos en gases simples (C y
N), separarlos y medirlos, para obtener la concentracion
de cada elemento en la muestra.

Fosforo total. Para hojas se requirio de 150 mgy 10 g para
suelo. Las muestras secas fueron digeridas en una mez-
cla de acido sulftrico y sulfato de potasio, mediante la
reaccion con molibdato de amonio y acido ascorbico, y
después medido a 660 nm en el analizador AA1 (SEAL)

rapido de fluidos (Murphy & Riley 1962).

Eficiencia de reabsorcion. Se determino la reabsorcion de
nutrientes (N y P) mediante la formula (Van Heerwaarden
et al. 2003):

Reabsorcion de Nutrientes (%) = [(1 —(Nu__/Nu, ) x (FCPM)] x 100

donde Nu_ y Nu _son las concentraciones de nutrien-
tes en la hoja senescente y la hoja verde respectivamente.
Los valores de reabsorcion de nutrientes consideraron la
correccion por pérdida de masa (FCPM), que puede in-
ducir errores en el calculo ante un cambio significativo
de masa foliar en la senescencia (Vergutz et al. 2012). Sin
embargo, otros estudios recientes no consideran dicho fac-
tor de correccion (See et al. 2015, Sohrt et al. 2018), por lo
que es importante seflalarlo para comparar los resultados
con la mayor cantidad de estudios recientes.

Los cocientes estequiométricos se obtuvieron a partir
de las concentraciones de nutrientes foliares totales, con
los valores obtenidos en base a peso (g Nutriente g hoja)
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de cada individuo por especie estudiada. Las relaciones de
C:N, N:P y C:P se determinaron tanto en hojas verdes
como senescentes.

Andalisis estadistico. Las especies estudiadas se agruparon
por sitio, los que se compararon a lo largo del gradiente
para conocer las diferencias entre las concentraciones
foliares promedio, sus cocientes estequiométricos en las
hojas maduras verdes y las senescentes, asi como su efi-
ciencia y suficiencia de reabsorcion. Los analisis estadisti-
cos se realizaron utilizando el programa JMP v14.0.0 de
SAS. Se realizaron pruebas de normalidad a los datos, sin
que algunos pudieran ajustarse aun después de ser trans-
formados con funciones logaritmicas, por lo que los datos
se analizaron mediante pruebas no paramétricas y con-
trastadas con un intervalo de confianza al 95 %.

Se realizaron ANOVAs con la prueba de Wilcoxon /
Kruskal-Wallis para muestras independientes y de Wil-
coxon para mediciones repetidas, al comparar las concen-
traciones foliares de nutrientes, su eficiencia y suficiencia
de reabsorcion, los cocientes estequiométricos en hojas
verdes y senescentes entre sitios, y luego entre los tipos
funcionales. Para las correlaciones en el suelo en cuanto a
la eficiencia de reabsorcion de N y P con su concentracion
total en el suelo, se realizd una regresion lineal simple,
con la estimacion M de Huber de ajuste robusto.

Resultados

Relacion de las concentraciones de nutrientes entre las ho-
Jjasy el suelo. Se compararon las eficiencias de reabsorcion
de nutrientes foliares (N y P) de todos los individuos de
las especies dominantes estudiadas con la concentracion
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del nutriente en el suelo para el sitio CH y se encontrd
una relacion inversa entre la eficiencia de reabsorcion de
nitrogeno (F,,,, = 8.75, P = 0.005, R*= 0.17) y fosforo
(F 4 =06.11,P=0.017, R?=10.12) de las hojas con la con-
centracion total del mismo nutriente en el suelo (Figura 2).

Nutrientes en hojas verdes y senescentes. Se encontraron
diferencias significativas en las concentraciones de ni-
trogeno foliar entre las hojas verdes y senescentes entre
los sitios. En todos los casos las mayores concentracio-
nes de nitrogeno (N) y de fosforo (P) correspondientes a
San Judas (SJ), el sitio mas arido en el estudio (Tabla 2).
Por otro lado, la concentracion de nitrégeno en hojas de
arboles fue mayor que las de otras formas de vida en los
tres sitios, tanto en hojas verdes como senescentes, aunque
solo en San Judas las diferencias fueron significativas con
arbustos (Tabla 2). En contraste, las concentraciones de P
en hojas verdes fueron mayores en herbaceas y pastos, y
menores en arbustos y arboles respectivamente. Sin em-
bargo, los arbustos en SJ presentaron las concentraciones
mas altas en hoja verde (Tabla 2).

Segun sus atributos funcionales, las concentraciones
promedio de N en hojas verdes fueron mayores para espe-
cies perennifolias que caducifolias en los sitios CH y SR,
pero no en el sitio mas arido de SJ (Tabla 2). En contraste,
la concentracion de P en hojas verdes fue mayor en espe-
cies caducifolias de ambos extremos del gradiente, CH y
SJ. Ademas, en SJ se encontraron las mayores concentra-
ciones de P en hojas senescentes de especies caducifolias,
es decir menor suficiencia, mientras que en los otros sitios,
el P fue mayor en especies perennifolias (Tabla 2).

Las leguminosas definidas como tipo funcional (ver
método) tuvieron mayor concentracion de nitrégeno foliar
(N) en hojas verdes y senescentes que las otras especies.
Las concentraciones de N mas altas en hojas verdes se pre-
sentaron en SJ, lo mismo que en las hojas senescentes, al
igual que para las otras especies (Tabla 2). Las concentra-
ciones foliares de P en hojas verdes y senescentes fueron
menores en el sitio intermedio (SR) comparado con ambos
extremos del gradiente, CH y SJ, en donde una diferencia
importante fue que las leguminosas tuvieron significativa-
mente menor concentracion de P en hojas verdes (Tabla
2). De manera importante encontramos que las mayores
concentraciones de P en hojas senescentes (menor sufi-
ciencia) correspondieron al tipo funcional de leguminosas
en todos los sitios (Tabla 2).

Eficiencia de reabsorcion. No se observaron diferencias
significativas entre los promedios de las eficiencias de re-

Figura 3. Graficas de cajas mostrando los cuartiles y medianas de los
cocientes estequiométricos de A) C:N, B) N:P y C) C:P en hojas verdes
(gris oscuro) y senescentes (gris claro) para cada sitio de estudio. Letras
muestran diferencias significativamente mayores a P = 0.005 entre sitios

para hojas verdes (minusculas) y senescentes (mayusculas).
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Tabla 3. Eficiencia (%) y suficiencia (mgNutriente g') de reabsorcion en tres sitios en un gradiente de menor (CH) a mayor (SJ) aridez.

Valores representan la media + d.s. Diferencias estadisticas (P <= 0.05) se sefialan con letras.

Sitio Eficiencia de reabsorcion Suficiencia de reabsorcion
N N P
El Churi 53.6+22.8a 422 +30.7a 12.8+87b 1.0£04b
Santa Rosalia 51.7+20.7a 48.7+239a 134+£7.6b 0.64+03¢
San Judas 35.1+20.8b 204+339b 21.8+8.1a 1.5+£0.7a

absorcion de nitrogeno de las especies muestreadas en los
sitios menos aridos (SR = 51.7 £ 0.7 % N y CH = 53.6
+ 22.8 % N), y solo fueron significativas al compararlas
con el sitio mas arido (SJ, xz(z’wz) =10.21; P=0.006) dada
la menor reabsorcion en SJ (35.1 + 20.8 % N). Las dife-
rencias en la reabsorcion de fosforo apenas fueron sig-
nificativas entre sitios (XZ(Z,IOO) = 8.62, P = 0.01), por las
diferencias entre el sitio con especies que presentaron el
mayor promedio en su eficiencia de reabsorcion del nu-
triente (SR =48.7 + 23.9 %) y el sitio con menor promedio
en sus especies (SJ=20.4 £33.9 %; Tabla 3).

Las diferencias en la reabsorcion de N y P entre sitios
estuvieron fuertemente influenciadas por las tasas de re-
absorcion especificas. Hubo tendencias importantes entre
las especies que conforman las comunidades vegetales en
los tres sitios que fueron determinantes en la gran variabi-
lidad encontrada. Por ejemplo, en SJ la diferencia entre la
mayor (J. cardiophylla = 64.7 + 8.1) y menor (O. tesota
= 8.76 + 17.7) eficiencia de reabsorcion fue de casi un
orden de magnitud (Tabla 4). En el extremo menos arido
(CH) las diferencias en la eficiencia de reabsorcion de ni-
trogeno (ERN) fueron también significativas entre las es-
pecies (X2(7,34) =22.28, P <0.002), pero la variaciéon en la
eficiencia entre especies fue menor (solo cinco veces entre
el valor mas alto en 7. arborecens y el menor en O. fesota).
Esta variacion fue similar a la encontrada en las especies
en el sitio intermedio (SR), en donde la mayor ERN (J.
cordata y F. splendens) fue casi cuatro veces la menor (P,
velutina; Tabla 4).

De la misma manera, las variaciones en la eficiencia
de reabsorcion de fosforo (ERP) fueron atin mayores en-
tre las especies de cada sitio; algunas con un aumento en
la concentracion del nutriente durante la senescencia y
como consecuencia valores negativos. La mayoria de las
especies que incrementaron su concentracion durante la
senescencia se ubicaron en el sitio de mayor aridez (SJ),
destacando M. laxiflora en SJ como la especie con mayor
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incremento del nutriente en sus hojas senescentes, al igual
que otras especies de leguminosas como P. velutina (SJ) y
O. tesota (en SJ y SR) (Tabla 4).

Cocientes estequiométricos. Los cocientes C:N, N:P y
C:P foliares fueron analizados entre los diferentes sitios
del gradiente de aridez. El cociente C:N en hoja verde
(€ 5,105 = 20.86, P < 0.0001) y senescente (XZ(Z,I(B) =19.94,
P < 0.0001) mostro diferencias entre los sitios, pero en
ambos casos fue significativamente menor en el sitio mas
arido (SJ = 13.59 + 1.99 y 22.97 + 7.7 en hojas verdes
y senescentes respectivamente) (Figura 3a). En cambio,
las diferencias en el cociente N:P en hojas verdes (X2(27103)
= 32.84, P <0.0001) y senescentes (;(2(2!101) =2642, P<
0.0001), mostraron mayor variabilidad y solo fueron dife-
rentes entre el sitio intermedio, pero no entre los extremos
del gradiente (Figura 3b). El cociente C:P mostr6 también
gran variabilidad (Figura 3c), aunque las diferencias entre
los sitios fueron estadisticamente significativas. Los co-
cientes estequiométricos C:N y C:P aumentaron en hojas
senescentes, mientras que N:P disminuyeron.

Discusion

En este estudio se buscd caracterizar las estrategias de con-
servacion de recursos, mediante la eficiencia de reabsor-
cion de nutrientes, entre los diferentes grupos funcionales
de las especies vegetales dominantes en tres comunidades
del Desierto Sonorense. El andlisis de las concentracio-
nes de N y P, su eficiencia y suficiencia de reabsorcion,
y las relaciones estequiométricas durante la senescencia
de las hojas en diferentes grupos funcionales, se utilizo
para entender algunas de las caracteristicas que permiten
prefigurar su nicho biogeoquimico (sensu Pefiuelas et al.
2008, 2019). Nuestro estudio aporta mayores elementos
al esclarecimiento de los procesos estequiométricos y
ecologicos que afectan las relaciones biogeoquimicas e
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Tabla 4. Eficiencia de reabsorcion (%) considerando el factor de correccion de las especies estudiadas en cada uno de los sitios. Valores

representan la media + d.s y letras las diferencias estadisticas. # denota que la especie no fu¢ incluida en los analisis estadisticos.

Especie San Judas Santa Rosalia El Churi

Eficiencia de reabsorcion de nitrogeno

B. minutifolia
C. ciliaris

C. microphyllum
C. praecox

C. viridis

E. farinosa

F. macdougalii
F. splendens

1. arborescens
J. cordata

J. cardiophylla

L. tridentata

36.41 +£15.02 abe

6472+ 11.6a

61.65+11.71 ab

56.64 +14.29 ab

87.29+526%

48.54 + 24.74 abc

57.74 +11.32 ab

69.28 +£12.80a

78.04+2.83 a

7123 +£3.01%

58.65 +16.04 ab

67.37+£2.94 ab

67.23 +7.64 ab

78.59+3.56 a

43.86 £20.7 be

M. laxiflora 31.48+17.81 be 58.88 £13.62 ab 56.62 +17.45 ab
0. tesota 876 +17.7¢c 27.7+14.6 bc 13.74+9.79 ¢
P. velutina 11.58+15.5¢ 14.75+30.5¢ 36.30 £27.13 be
Eficiencia de reabsorcion de fosforo

B. minutifolia - 58.2+13.4 ab -

C. ciliaris - 88.52 £3.70* 83.11£2.20%

C. microphyllum
C. praecox

C. viridis

E. farinosa

F. macdougalii
F. splendens

1. arborescens

J. cardiophylla

J. cordata

L. tridentata
M. laxiflora
0. tesota

P. velutina

20.83 £19.17 be

50.90 £ 9.63 ab

73.69+69a

-25.28+19.29d

-1.99 £25.63 cd

-7.21+£16.5cd

43.02 +26.4 abc

54.85+13.1 abc

5871+ 159 ab

67.05+29a

56.56 +13.2 abc

-29+3738¢

3.7+£61.3 bc

31.29+£26.26 ab

53.47+8.18a

5643 +£11.57a

65.22+5.04a

38.69 £ 14.51 ab

33.75+27.12 ab

2.19+6.55b

22.87 £ 36.50 ab
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interacciones ecoldgicas por diferentes grupos funciona-
les en el Desierto Sonorense.

Concentraciones foliares en el gradiente de aridez. En el
extremo mas arido del gradiente (SJ), se encontraron las
concentraciones mas altas para N foliar de los tres sitios
estudiados. Diversos autores correlacionan de manera
positiva la concentracion de N en las hojas y la aridez
(West & Skujins 1978, Wright & Westoby 2002). De
mayor a menor aridez, las concentraciones foliares de ni-
trogeno en hojas verdes fueron decreciendo y aumentando
en su variabilidad. Las concentraciones foliares que se han
reportado en metaanalisis globales, incluyendo 753 espe-
cies a lo largo de China, son cercanas a 18.4 £ 0.5 mgN g
(Han et al. 2005, Vergutz et al. 2012), lo que significan va-
lores menores que los promedios encontrados para los tres
sitios en este estudio. Al igual que en hojas verdes, también
en senescentes encontramos una mayor concentracion de
N que el promedio global de 9.74 + 0.33 mgN g' (Han et
al. 2005, Vergutz et al. 2012), atn en el sitio menos arido
que promedid la menor concentracion (12.8 + 8.7 mgN g!
en CH).

Los patrones de concentracion fueron diferentes con
el P. En hojas verdes la mayor concentracion promedio
ocurrié en ambos extremos del gradiente, que resultaron
mayores al promedio global de 1.4 £ 0.01 mgP g' (Han et
al. 2005, Kobe et al. 2005, Vergutz et al. 2012). Una alta
concentracion de P se ha relacionado con hojas de rapido
crecimiento y caducifolias (Drenovsky et al. 2019), tal
como se presento en el gradiente estudiado (Tabla 2). De
manera similar, el P en hojas senescentes fue mayor en el
extremo mas arido (1.5 + 0.7 mgP g'en SJ), también mas
alto al promedio global de 0.8 + 0.01 mgP g reportado
previamente (Han er al. 2005, Kobe et al. 2005, Vergutz
etal. 2012).

El hecho de que las concentraciones foliares sean altas
en los grupos funcionales en un sitio puede deberse a una
alta concentracion inicial por diversos mecanismos de asig-
nacion de recursos, incluida una mayor eficiencia de reab-
sorcion de nutrientes, mayor disponibilidad del nutriente
en el suelo, 0 a mecanismos de incorporacion que faciliten
su absorcion como puede ser el establecimiento con aso-
ciaciones simbioticas y/o micorricicas (Bonfante & Genre
2010). Sin embargo, una mayor concentracion de P en hojas
senescentes, puede no resultar en mayor aprovechamiento
por las comunidades microbianas o las mismas plantas,
dadas las condiciones impredecibles de la precipitacion. La
estrategia de estas especies ante las condiciones ambien-
tales en las que se desarrollan debe ser estudiada con mayor
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detalle, para comprender mejor los mecanismos que con-
trolan las interacciones entre la concentracion de nutrientes
en la hojarasca, la eficiencia de reabsorcion y las estrategias
biogeoquimicas e interacciones ecoldgicas con los microor-
ganismos en el suelo (Brant & Chen 2015).

Eficiencia de reabsorcion. Se observo una disminucion en
la eficiencia de reabsorcion de N y P en promedio para las
especies en sitios con condiciones de mayor aridez. En lo
que respecta a N, la menor eficiencia de reabsorcion en
condiciones de mayor aridez fue significativamente dife-
rente (SJ = 35.1 + 20.8 %; Tabla 3). De manera similar,
la eficiencia de reabsorcion de P fue menor en promedio
en especies del sitio con mayor aridez (SJ = 20.4 + 33.9 %j;
Tabla 3). Se ha reportado menor eficiencia de reabsorcion
de N con la aridez, mientras que la concentracion en la
hoja senescente aumenta (Bertiller et al. 2005), acorde
a lo encontrado en este estudio (Tabla 3). Sin embargo,
eso contrasta con las diferencias obtenidas en la eficiencia
de reabsorcion en otros estudios. Por ejemplo, especies de
clima mediterraneo con diferentes ecotipos no mostraron
cambios en la eficiencia de reabsorcidon, aun cuando los
reservorios de nutrientes fueron diferentes entre sitios
(Pugnaire & Chapin 1993), lo mismo que encontré Aerts
(1996) incluso en perennifolias, sugiriendo que la eficien-
cia de reabsorcion no representa una estrategia de conser-
vacion de recursos en las especies estudiadas. Lo anterior
también coincide con este trabajo, dado que encontramos
diferencias en la eficiencia de reabsorcion para las mismas
especies entre los sitios (Tabla 4).

La eficiencia de reabsorcion de N y P se modifica en
las especies y consecuentemente en los sitios a lo largo de
un gradiente de aridez. Sin embargo, nuestros datos coin-
ciden en que no hubo una tendencia hacia la mayor con-
servacion de nutrientes en sitios de mayor aridez, dada la
menor eficiencia de reabsorcion de N y P. Es posible, que
la menor eficiencia de reabsorcion promedio de las hojas
en el sitio de mayor aridez, se compense por su mayor
concentracion foliar inicial, lo que significa que la canti-
dad de nutriente reabsorbido (al menos en el caso del N),
seria muy similar entre los sitios del gradiente, aun cuando
los nutrientes que llegan al suelo a través de la hojarasca
fueran disimiles.

Es claro que la eficiencia de reabsorcion de nutrientes
tiene implicaciones directas sobre la disponibilidad de nu-
trientes y la fisiologia del individuo en las especies (Aerts
1996), mientras que la suficiencia y estequiometria de la
reabsorcion tendra impactos en la tasa de descomposicion
del suelo (Killingbeck 1996, Chavez-Vergara et al. 2018)
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y los ciclos biogeoquimicos. Las especies mas suficien-
tes son aquellas que retienen las menores cantidades de
nutrientes en sus hojas senescentes, cominmente iguales
o menores a 7 mgN g para Ny 0.5 mgP g! para P (Kill-
ingbeck 1996). Las altas concentraciones de nutrientes en
hojas senescentes encontradas en este estudio, particu-
larmente en las leguminosas que incluyen tanto fijado-
ras como no fijadoras (Tabla 2), sugieren la posibilidad
de una reabsorcion incompleta y consecuentemente una
mayor concentracion y disponibilidad regresando al suelo
(Schlesinger & Pilmanis 1998). Una disponibilidad de nu-
trientes mas alta en el suelo puede beneficiar a microor-
ganismos, bacterias y/o micorrizas, que a su vez pueden
incrementar las formas disponibles de N y P para las plan-
tas en la comunidad (Bonfante & Genre 2010, Adams et
al. 2016). Una caracteristica relevante en el area de estu-
dio y en general de la region mas subtropical del Desierto
Sonorense (Shreve & Wiggins 1964, Turner et al. 1995,
Castellanos et al. 2010) es la abundancia de especies de
leguminosas, lo que sugiere su importancia en la biogeo-
quimica de sus comunidades vegetales y muy probable-
mente de igual manera en otras regiones subtropicales y
aridas del pais donde abundan.

Al menos en algunas especies, la menor eficiencia de
reabsorcion de nutrientes pudo haber sido consencuencia
de un mecanismo activo durante la senescencia. En algu-
nas especies se observo un aumento en la concentracion
de P durante la senescencia. El incremento de nutrientes
en la hoja senescente y la consecuente disminucién en la
eficiencia de reabsorcion, particularmente en el caso del
P, suele suceder en sitios donde hay una gran cantidad de
formas disponibles en el suelo (Milla et al. 2006). Otros
han sugerido que este puede ser un mecanismo de conser-
vacion del nutriente en sitios en donde su disponibilidad
edafica es escasa (Pugnaire & Chapin 1993). Es impor-
tante reconocer que al ser mayor la concentracion de N y
P en hojas senescentes de las especies y tipos funcionales
en el sitio de mayor aridez, permitiria reforzar su papel e
importancia como nodrizas y facilitadoras, tal como se ha
propuesto con anterioridad (Bertness & Callaway 1994).

La menor eficiencia y suficiencia de reabsorcion en
el extremo mas arido del gradiente pudiera considerarse
como una estrategia de las plantas para mantener niveles
de facilitacion en el funcionamiento de la microbiota del
suelo, su sobrevivencia y crecimiento, y mayores tasas de
descomposicion, mineralizacion y eventual disponibilidad
(Zechmeister-Boltenstern et al. 2015). Como consecuen-
cia, la hojarasca en este sitio, al ser rica en nutrientes, ten-
dera a descomponerse mas facilmente, aumentar la mate-

ria organica y la fertilidad del suelo, e impactar de manera
positiva la biogeoquimica del ecosistema (Austin 2011).
El papel facilitador (Callaway 1995, Franklin et al. 2016)
y la posible diferenciacion de nichos biogeoquimicos en
las plantas (Pefiuelas et al. 2008, 2019), debera ser explo-
rado con mayor detalle, pues aqui encontramos que esto
puede estar sucediendo.

Estequiometria ecologica y reabsorcion. El cociente es-
tequiométrico foliar cambié durante el proceso de reab-
sorcion. El cociente brinda una idea de la fisiologia de las
especies en el medio que habitan y de su nicho biogeo-
quimico (Pefiuelas et al. 2008, 2019). El cociente C:N en
la hoja verde hace referencia al tiempo de vida y la tasa
fotosintética, mientras que la relacion N:P y C:P estan re-
lacionadas al crecimiento (Vrede et al. 2004). Las diferen-
cias en el incremento de las proporciones de C:N en las
hojas senescentes, sugiere que una mayor concentracion
de N fue solubilizado y reabsorbido en los sitios menos
aridos, mientras que el C, al formar parte de moléculas
de dificil hidrolisis se reabsorbe en menor cantidad (Mc-
Groddy et al. 2004). Una consecuencia de las altas propor-
ciones de C:N en las hojas senescentes es la baja calidad
en la hojarasca (Aerts 1997, Melillo et al. 1982), lo que
puede sugerir una lenta descomposicion en los sitios me-
nos aridos (CH y SR), asi como mayor calidad y tasas de
descomposicion en el sitio mas arido (SJ), dado su menor
cociente.

En contraste, el cociente N:P disminuy0 en las hojas se-
nescentes respecto de las hojas verdes al compararse en to-
dos los sitios. Las diferencias estequiométricas en N:P no
fueron significativas entre los extremos del gradiente (SJ
y CH), pero si mayor en el sitio intermedio (SR) (Figura
3b). El menor promedio en N:P durante la senescencia
indica que el N fue proporcionalmente mas reabsorbido
que el P, aun cuando su reabsorcion aumento en promedio
en especies de los sitios menos aridos, como lo indica la
mayor proporcion C:P de hojas senescentes (Figura 3c).
Una caracteristica comun fue la gran variabilidad en los
cocientes estequiométricos en todos los sitios, lo que su-
giere la diversidad en las respuestas que pueden ejercer los
individuos y las especies sobre los procesos biogeoquimi-
cos del suelo a lo largo de un gradiente de aridez.

La eficiencia y suficiencia de reabsorcion modificaron
los patrones estequiométricos que se ven reflejados en las
concentraciones de la hoja senescente y posteriormente
en la hojarasca, de manera destacada en las legumino-
sas (aqui diferenciada como tipo funcional), que parecen
no responder a estrategias de conservacion de recursos.
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Las diferencias encontradas durante la senescencia entre
los tipos funcionales, en particular en las leguminosas,
afectaron la estequiometria de la hojarasca, lo que de-
bera influir en los procesos biogeoquimicos de los sitios.
Lo anterior significa que el comportamiento de los tipos
funcionales dominantes en las comunidades, influira de
manera importante en la magnitud y direccion de futuros
desacoplamientos estequiométricos de diferentes niveles
troficos, tal como ha sido descrito en relacion al incremen-
to de aridez regional debido al cambio climatico global
(Delgado-Baquerizo et al. 2017).

Apenas empezamos a vislumbrar la gran importancia
de la integracion entre las respuestas de reabsorcion y
la estequiometria ecoldgica en la porcion verde (por en-
cima del suelo, plantas y relaciones planta-herbivoros) y
café (bajo el suelo, hojarasca-comunidades microbianas
y micorrizicas-suelo), por lo que deberan ser prioritarios
mayor nimero de estudios en estos temas, incluyendo
a las especies, tipos funcionales y ecosistemas aridos y
semiaridos subtropicales del pais y el mundo.
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