

IN SILICO IDENTIFICATION AND EXPRESSION ANALYSIS OF METAL-NICOTIANAMINE TRANSPORTER (YSL_3) AND OLIGOPEPTIDE TRANSPORTER 3 (OPT_3) UNDER Cd STRESS IN *BRASSICA OLERACEA* VAR. ACEPHALA

IDENTIFICACIÓN IN SILICO Y ANÁLISIS DE EXPRESIÓN DEL TRANSPORTADOR DE METAL-NICOTIANAMINA (YSL_3) Y EL TRANSPORTADOR DE OLIGOPÉPTIDOS 3 (OPT_3) BAJO ESTRÉS DE Cd EN *BRASSICA OLERACEA* VAR. ACEPHALA

 JASMIN ŠUTKOVIC*, AJDINA KARIĆ, AHMET YILDIRIM

Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, BiH

*Author for correspondence: jsutkovic@ius.edu.ba

Abstract

Background: Metal-nicotianamine transporter (YSL) family protein belongs to the oligopeptide heavy metal transporter group, as characterized in *Arabidopsis thaliana*. Oligopeptide transporters ($OPTs$) are a group of membrane-localized proteins, involved in different transport mechanisms, contributing to nitrogen mobilization, glutathione transport and long-distance metal distribution. Metal-nicotianamine transporter gene 3 (YSL_3) incorporates the oligopeptide transporter domain, found to transfer several heavy metals in diverse plant species, and among them cadmium transport in *Brassica oleracea*.

Objective: To evaluate and confirm the expression of Metal-nicotianamine transporter (YSL_3) under cadmium stress.

Studied species: *Brassica oleracea* var. *acephala*

Study site and dates: *Brassica oleracea* var. *acephala* samples were collected from Blagaj region, Bosnia and Herzegovina.

Methods: Through a simple bioinformatic approach the interactome partner of Metal-nicotianamine transporter (YSL_3) was discovered and annotated. Oligopeptide transporter 3 (OPT_3) and Metal-nicotianamine transporter (YSL_3) genes were checked for expression levels under cadmium stress.

Results: We have identified a strong interacting partner of YSL_3 , later confirmed as Oligopeptide transporter 3 (OPT_3) protein in *Brassica oleracea*. The *in vitro* expression analysis by using a qRT-PCR revealed a significant upregulation of YSL_3 and OPT_3 , during Cd stress.

Conclusions: These findings indicate that the represented *in-silico* approach, followed by *in vitro* gene expression study, successfully confirmed YSL_3 and identified OPT_3 as a new gene, in correlation to cadmium stress.

Keywords: Bioinformatics, Gene expression, Heavy metals, Uncharacterized protein.

Resumen

Antecedentes: La proteína transportadora de metales quelados con nicotianamina (yellow-stripe-like - YSL) pertenece a la familia de transportadores de oligopéptidos, caracterizada en *Arabidopsis thaliana*. Los oligopéptidos transportadores (TOPs) son un grupo de proteínas localizadas en la membrana, involucrados en movilizar nitrógeno, transportar glutatión y distribuir metales a larga distancia. El gen para el transportador de metal-nicotianamina 3 (YSL_3) incorpora un dominio transportador que ha sido reportado en la transferencia de varios metales en diversas especies, entre ellos el transporte de cadmio en *B. oleracea*.

Objetivo: Evaluar y confirmar la expresión del transportador de metal-nicotianamina (YSL_3) bajo estrés de cadmio.

Especie estudiada: *Brassica oleracea* var. *acephala*

Sitio de estudio y fecha: Las muestras de *B. oleracea* var. *acephala* se recolectaron en Blagaj region, Bosnia y Herzegovina.

Métodos: Mediante un enfoque bioinformático simple se descubrió y anotó el interactoma del transportador de metal-nicotianamina (YSL_3) y se determinaron los niveles de expresión de TOP_3 y YSL_3 por medio de qRT-PCR.

Resultados: Hemos identificado un compañero de interacción fuerte de YSL_3 , más tarde confirmado como proteína transportadora de oligopéptido 3 (TOP_3) en *B. oleracea*. El análisis de expresión *in vitro* mediante el uso de una qRT-PCR reveló una regulación positiva significativa de YSL_3 y TOP_3 , inducida por el estrés de Cd.

Conclusiones: Estos hallazgos indican que el enfoque representado *in-silico*, seguido del estudio de expresión génica *in vitro*, confirmó con éxito YSL_3 e identificó a TOP_3 como un nuevo gen de *Brassica oleracea*, en correlación con el estrés de cadmio.

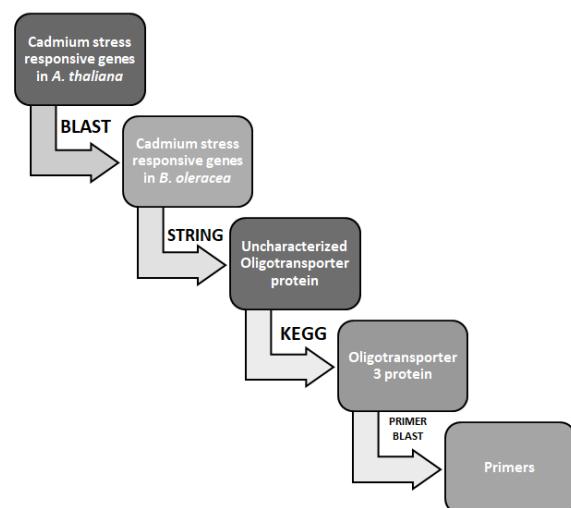
Palabras clave: bioinformática, proteína no caracterizada, expresión génica, metales pesados.

Brassica oleracea is a member of the Brassicaceae family, which according to the recent findings has 341 genera and 3,977 species (Franzke *et al.* 2011). Kale (*Brassica oleracea* var. *acephala*) is one of the oldest forms of the *Brassica oleracea* varieties that originate from the eastern Mediterranean (Balkaya & Yanmaz 2005). It is a diploid species with CC genome type and 9 haploid chromosomes (Sun *et al.* 2019). It has an important place in the diet of the people worldwide and it has been used in traditional medicine due to its anticancerogenic and antioxidant properties (Parkin *et al.* 2014). *Brassica* species, including *Brassica oleracea* var. *acephala*, are considered as potential phytoextraction plants since they are known to accumulate high amounts of toxic heavy metals in their tissues, without visible symptoms (Gall *et al.* 2015).

Cadmium is one of the common toxic heavy metals that exist at low concentrations in soil under natural conditions. It is included in the production of fertilizers, alloys, detergents, batteries, petroleum, and pigments (Raymond & Okieimen 2011). Its toxicity potential effects soil, water, air, and plants, therefore, contaminating the food chains. Cadmium uptake disturbs photosynthesis, enzyme activities, decreases nutrient, and water uptake, inhibiting the growth rate of the plants (Fahad *et al.* 2017).

The key mechanism in the protection and survival of plants under heavy metal stress is regulation of its gene expression (Dutta *et al.* 2018b). YSL3 belongs to Oligopeptide transporter family (OPT), known to be involved in different processes nitrogen mobilization (Koh *et al.* 2002, Cagnac *et al.* 2004, Stacey *et al.* 2008), glutathione transport (Cagnac *et al.* 2004, Zhang *et al.* 2004), heavy metal sequestration (Vasconcelos *et al.* 2008), and long-distance metal distribution (Stacey *et al.* 2008).

According to Feng *et al.* (2017), Metal-nicotianamine transporter 3 (YSL₃) gene expression increased significantly in response to excess cadmium in *Solanum nigrum*. On the other hand, the response of genes to metal-deficient, metal-sufficient or metal-excess conditions is partially depending on the plant species (Morkunas *et al.* 2018). In this regard, the Cd stress-induced expression of YSL₃ in correlation to an *in-silico* predicted oligopeptide transporter 3 (OPT₃), was analyzed. The YSL₃ and OPT₃ expression levels might be an effective approach for understanding cadmium accumulation in *Brassica oleracea* and enhancing heavy metal tolerance.


Material and methods

Sequence prediction and *in-silico* interactome identification of OPT3. The whole genomic sequence of *Brassica oleracea* (B.O) was published in 2013, currently available at the Brassicace database (Cheng *et al.* 2011). This database incorporates an option for Basic Local Alignment Search

Tool (BLAST) from the *Arabidopsis thaliana* genome. Basically, all genes used in this study were annotated from *A. thaliana* genome, extracted from NCBI genome browser, and blasted as FASTA sequences to Brassica database (Cheng *et al.* 2011), to find the homologues genes in *B. oleracea* genome, later used for primer design.

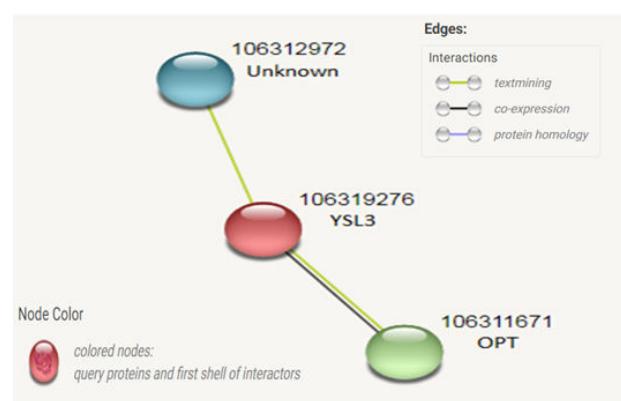
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database was used for Interactome analysis (Franceschini *et al.* 2012). The predicted YSL₃ (NCBI accession number: 106319276) was used as a query for the Interactome analysis. The significance and reliability of the search was kept at high level by the confidence score of 0.7. For additional and detailed genomic information of predicted proteins, the Kyoto Encyclopedia of Genes and Genomes (KEGG) was accessed (Kanehisa & Goto 2000).

Primer design for *Brassica oleracea* genes. The predicted *B. oleracea* gene sequences, later annotated as YSL3 and OPT, were used as template sequences for the prediction of corresponding primers, required for Real-Time PCR analysis. Based on a study from 2014, the housekeeping gene Ubiquitine2 emerged as one of four genes, being very stable across the tested conditions for gene expression analysis (Brulle *et al.* 2014) (see Table 1). For the primer design, an incorporated tool within the NCBI server, called PRIMER-BLAST was used (Ye *et al.* 2012). The selected primers were chosen upon the following parameters: min annealing temperature of 57 °C, maximum of 62 °C and optimum of 60 °C, 50 to 60 % of GC, and the primers should be 18-22 bp in length. In Figure 1 the schematic presentation of all bioinformatics protocols used in this study is shown.

Figure 1. Schematics of the bioinformatic protocol used in this study

Table 1. Oligonucleotides used in the present research

Genes	Sequences (5'>3')
Oligopeptide transporter gene 3 (OPT3)	F AGCTTCCATGGTGGGAAATG R ACCAGCCAGCTAGCAATGTT
Metal-nicotianamine transporter 3 (YSL3)	F TTCCCTGGGAATCATGTGGC R CCCGTCTCCGAGGATCAATG
Ubiquitin2 (UBQ2)	F ATATTCGTGAAGACGCTG R CTCAACTGGTTGCTGTG


Plant growth and root assay analysis under cadmium treatment. In the study, a domestic kale variety, marked as kale 1, was obtained from Blagaj region, near Mostar city - Bosnia and Herzegovina (43° 25' North, 17° 88' East). *Brassica oleracea* var. *acephala* seedlings were grown using Tap of paper method. Seeds were treated with different concentrations of cadmium (50, 100, 200, and 500 µM) and incubated for 5 days at 27 °C in growth chamber where they were exposed to light for 16 hours a day. When plants reached their sufficient growth they were removed carefully from the paper and root length was measured with a ruler. After the root length measurement, the numbers, indicated in centimeters, were entered for statistical analysis. All samples were stored at -80 °C prior RNA isolation.

RNA isolation and RT-qPCR analysis. The total RNA isolation was performed based on a standard CTAB protocol (Márquez 2005), but slightly optimized. New optimized procedure was based on homogenization tissue in CTAB extraction buffer and selective precipitation of RNA with LiCl (see Appendix 1). RNA concentration and purity was determined using Thermo Scientific µDrop Plate and RNA integrity was confirmed by 1 % agarose gel. Isolated RNA was stored at -80 °C. The presence of contaminating genomic DNA can give false positives in qPCR, therefore the isolated RNA was treated with DNase prior to cDNA synthesis. DNase I (RNase-free) kit from Thermo Fisher Scientific was used according to manufacturer's instructions. Complementary DNA (cDNA) is generated from an RNA template by reverse transcription using SCRIPT cDNA Synthesis Kit from Jena Bioscience according to manufacturer's instructions. qPCR amplification was performed on the StepOnePlus system by Applied Biosystems®. The reaction was prepared using the Maxima SYBR Green/ROX qPCR Master Mix by Thermo Scientific™ according to manufacturer's instructions. qPCR Thermal cycle was adjusted under the following conditions: PCR initial activation step 95 °C for 0 min, followed by 35 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s.

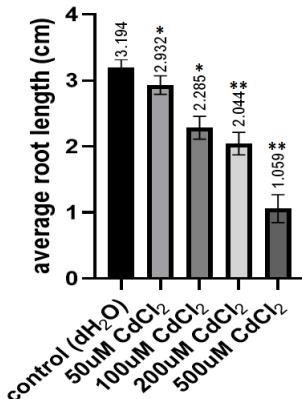
Statistical analysis. Root length data were presented graphically as mean + standard deviation. Descriptive statistical analyses of root length results were performed using GraphPad Prism 18.3.0. Significant difference between each treatment was accepted if $p < 0.05$. Relative expression levels were determined using the $2^{-\Delta\Delta CT}$ method.

Results

In-silico identification of genes involved in Cd stress. The *in-silico* interactome analysis showed that YSL₃, as a known Cd transporter, correlates with OPT and an unknown protein partner for which the annotation is not still available (blue node). (Figure 2). Further, through the additional analysis of uncharacterized OPT protein, with its accession number 106311671, in KEGG online database, we correlated this accession number to oligopeptide transporter 3 (OPT₃) protein. Therefore, its expression under cadmium treatment was further examined, for the first time considering OPT3 as a potential gene correlated to cadmium homeostasis in the *B. oleracea* plant.

Figure 2. YSL₃ interactome analysis by STRING (0.7 confidence level)

Root assay analysis under cadmium treatment. The average root length of kale 1 can be observed in [Figure 2](#). The root length decreased with the increase of CdCl₂ concentrations. In the control group, root length ranged from 2.8 cm to 3.8 cm, while in 500 μM Cd it ranged from 0.6 to 1.7 cm, with an average root length of 1.056 cm. Tukeys multiple comparisons test showed that there was a significant difference in the mean root length between the all concentrations used in the study, $p < 0.0001$ ($p < 0.05$) ([Table 2](#)). In order to summarize and present the whole data features, obtained by the root assay analysis, a descriptive statistics approach is shown in [Supplementary material S. Table 1](#). An example of visual changes in root size is shown with kale 1 (see [Supplementary material S. Figure 1](#)).


Table 2. Tukeys multiple comparisons test for root lenght

Samples	Mean Diff.	Significant?	p-value
control vs. 50 μM	0.2879	Yes	0.0009
control vs. 100 μM	0.9061	Yes	0.0009
control vs. 200 μM	1.179	Yes	< 0.0001
control vs. 500 μM	2.148	Yes	< 0.0001

$p < 0.0001$ ($p < 0.05$)

Genes expression analysis OPT and YSL₃ genes. Real-time PCR was used to determine the relative expression of the OPT₃ and YSL₃ genes, with 5 replicates. In addition, only the results whose melt curve generated a single peak were used, which means that only one product (gene of interest) was produced in the reaction. Melt curve analysis was performed to validate the specificity of the reaction by checking for primer-dimers or nonspecific amplifications. Data are presented graphically where Y-axis in graphs represents $2^{\Delta\Delta Ct}$ which basically analyzes the relative changes in gene expression.

The effect of Cd on YSL₃ and OPT₃ gene expression is shown in [Figure 3](#). Different expression patterns were observed at different concentrations. There is a linear increase in gene expression levels by increasing Cd concentrations. Cadmium stress-induced approximately 4-fold changes of OPT gene expression, and a 2.5-fold change of YSL₃ gene expression when treated with 500 μM Cd. Cadmium significantly increased the YSL₃ gene expression linearly. Our results show that different cadmium concentrations trigger the expression of the YSL₃ and OPT₃ genes in *B. oleracea* var. *acephala*.

Figure 3. Average root length of kale 1. The average root length in *Brassica oleracea* under control-dH₂O, 50, 100, 200, 500 μM of CdCl₂. Vertical lines represent the standard deviation of three biological replicates from root length measurements. Asterisks indicate the mean values that are significantly different between the treatment and control (* $p < 0.05$, ** $p < 0.001$).

Discussion

Using an *in-silico* approach, the YSL₃ gene interactome analysis was performed, initially yielding a strong interaction to an uncharacterized OPT protein (106311671) ([Figure 2](#)). However, through a detailed KEGG pathway analysis, the uncharacterized OPT protein was annotated as Oligopeptide transporter 3 (OPT₃).

By analyzing the root lengths under different CdCl₂ concentrations, an initial effect of cadmium on plant root growth was observed. The results showed that the root length of kale 1 decreased by increasing cadmium concentrations as compared with control ([Figure 3](#)). With the increase of cadmium, further reduction in kales' root length was observed. These observations are in agreement with the results of [Ahmad et al. \(2015\)](#), where Cd affected most of the growth parameters in *Brassica juncea* including decreased shoot and root length. [Nouairi et al. \(2006\)](#) reported that the accumulation of Cd suppresses the growth of root and shoot in *B. juncea* and *B. napus* under cadmium stress. Further, [Dutta et al. \(2018b\)](#) reported also reduced root growth and shoot lengths in *B. juncea* under different heavy metals, including cadmium. Similar results were reported by [Pandey & Ripathi \(2011\)](#) where Cd treatment has an inhibitory effect on the growth of *Albizia proceraas* roots.

Brassica oleracea is known due to its phytoremediation and phytoextraction capabilities (Mourato 2015), especially where high levels of Cd pollution exist. The genome of *B. oleracea* was fully published in 2016 (Lee *et al.* 2016), and its metabolism pathways regulating heavy metal stress still remain unknown. The *B. oleracea* variety used in this study was obtained from Blagaj region (Bosnia and Herzegovina), known to have high contaminated soil with heavy metals, especially the cadmium concentrations exceed limiting values (Sefo *et al.* 2010). Therefore, to specifically target the genes correlated to cadmium ions, the root assay protocol was optimized only to concentrate on cadmium ions. Growing the seed on paper towels with water and CdCl₂ solutions, we avoided any possibility to contaminate the seeds with other metals and conditions as pH, organic matter which is found in natural soil. It is known that the Cd intake is conditioned by its concentration in the soil, and availability of organic matter, pH, redox potential, temperature, and concentrations of other elements (Benavides *et al.* 2005). Roots are more affected in comparison to other organs since they are in direct contact with the toxic elements. The Cd triggers a set of complex changes in root morphology which later on through the apoplastic pathway disrupt the complete metabolism of the plant (Chen *et al.* 2011). This decline in total growth might be due to lowered water potential and nutrient imbalance caused by heavy metal stress (Jibril *et al.* 2017).

The results from qPCR gave insight into the relative gene expression of YSL₃ and OPT₃ genes in *B. oleracea* varieties under a specific level of Cd. In this research, the gene expression results suggest that Cd triggers the expression of the YSL₃ and OPT₃ genes. This is evident for all samples treated with CdCl₂ solution, as a significant decrease in root growth is seen with an increase in Cd concentrations (see Figure 3 and Table 2). The gene expression levels rise linearly with the increase of Cd concentrations, indicating that these genes might play a role in Cd homeostasis in *B. oleracea* (Figure 4). Wang *et al.* (2013) reported that over-expression of YSL in tobacco plants improves metal tolerance of the plant and, more specifically, increases the root-to-shoot translocation of Cd. YSL₃ expression increased significantly in response to excess cadmium in *S. nigrum*, where YSL₃ over-expression decreased cadmium accumulation in *B. oleracea* roots (Feng *et al.* 2017). The expression levels of OPT₃ gene changed similarly as YSL₃ gene. In *Arabidopsis thaliana*, the Oligopeptide Transporter 3 is known to be the main transporter of Fe into the phloem (Khan *et al.* 2018). Besides iron deficiency regulation, studies on OPT3-T-DNA mutants showed that OPT₃ might be involved in embryo *A. thaliana* development (Stacey *et al.* 2008). In regards to cadmium accumulation, until now only one study demonstrated that knocking out the OPT₃ gene in *A. thaliana* led to the over-accumulation of

cadmium in seeds (Mendoza-Cózatl *et al.* 2014). In a recent study conducted in 2019 on peanut plants (*Arachis hypogaea* L.), the OPT₃ gene is verified to be responsible for Cd uptake and translocation (Chen *et al.* 2019). However, this study represents an initial attempt to correlated OPT₃ gene expression with cadmium accumulation in *B. oleracea* species, where a 4-fold overexpression of OPT₃ is noticed if compared to the control (Figure 4).

Figure 4. The effect of Cd on relative expression levels of YSL₃ and OPT₃. The relative gene expression levels in total biomass in *Brassica oleracea* under control-dH₂O, 50, 100, 200, 500 μM of Cd. The gene was quantified by qPCR and normalized with the housekeeping gene Ubiquitin2 transcript. Vertical lines represent the standard deviation of three biological replicates from Ct values of independent experiments. Asterisks indicate the mean values that are significantly different between the treatment and control (*p < 0.05, **p < 0.001).

For the first time, an analysis of the expression of cadmium-related OPT₃ and YSL₃ genes in *B. Oleracea* were performed and correlated. As seen in Figure 1, through a simple *in-silico* approach YSL₃ was determined to be correlated with OPT₃. In essence, the expression level of both genes was in a linear expression pattern with increasing the Cd concentration. Different concentrations triggered a significant over-expression of the YSL₃ and OPT₃ genes in comparison to the control, with a 2.5 to 4-fold change at 500 μM CdCl₂ concentrations. However, further analysis should be undertaken to additionally confirm the correlation of cadmium YSL₃ and OPT₃ gene expression levels.

Literature cited

Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP. 2015. Alleviation of cadmium toxicity in *Brassica juncea* L.(Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. *PloS one*, **10**. DOI: <https://doi.org/10.1371/journal.pone.0114571>

Balkaya A, Yanmaz R. 2005. Promising kale (*Brassica oleracea* var. *acephala*) populations from Black Sea region, Turkey. *New Zealand Journal of Crop and Horticultural Science* **33**: 1-7. DOI: <https://doi.org/10.1080/01140671.2005.9514324>

Benavides MP, Gallego SM, Tomaro ML. 2005. Cadmium toxicity in plants. *Brazilian Journal of Plant Physiology* **17**: 21-34. DOI: <http://dx.doi.org/10.1590/S1677-04202005000100003>

Brulle F, Bernard F, Vandenbulcke F, Cuny D, Dumez S. 2014. Identification of suitable qPCR reference genes in leaves of *Brassica oleracea* under abiotic stresses. *Ecotoxicology* **23**: 459-471. DOI: <https://doi.org/10.1007/s10646-014-1209-7>

Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S. 2004. AtOPT6 transports glutathione derivatives and is induced by primisulfuron. *Plant Physiology* **135**: 1378-1387. DOI: <https://doi.org/10.1104/pp.104.039859>

Chen C, Cao Q, Jiang Q, Li J, Yu R, Shi G. 2019. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. *BMC Plant Biology* **19**: 35. DOI: <https://doi.org/10.1186/s12870-019-1654-9>

Chen X, Wang J, Shi Y, Zhao, M.Q and Chi G.Y. 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. *Botanical studies*, 52(1).

Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X. 2011. BRAD, the genetics and genomics database for *Brassica* plants. *BMC Plant Biology*, **11**: 136. DOI: <https://doi.org/10.1186/1471-2229-11-136>

Dutta P, Karmakar A, Majumdar S, Roy S. 2018a. *Klebsiella pneumoniae* (HR1) assisted alleviation of Cd (II) toxicity in *Vigna mungo*: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. *Euro-Mediterranean Journal for Environmental Integration* **3**: 27. DOI: <https://doi.org/10.1007/s41207-018-0069-6>

Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. 2018b. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. *Plant Signaling & Behavior* **13**: e1460048. DOI: <https://doi.org/10.1080/15592324.2018.1460048>

Fahad S, Bajwa, AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J. 2017. Crop production under drought and heat stress: plant responses and management options. *Frontiers in Plant Sciences* **8**: 1147. DOI: <https://doi.org/10.3389/fpls.2017.01147>

Feng S, Tan J, Zhang Y, Liang S, Xiang S, Wang H, Chai T. 2017. Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in *Solanum nigrum*. *Plant Cell Reports* **36**: 281-296. DOI: <https://doi.org/10.1007/s00299-016-2079-7>

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C, Jensen LJ. 2012. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. *Nucleic Acids Research* **41**: D808-D815. DOI: <https://doi.org/10.1093/nar/gks1094>

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. *Trends in Plant Sciences* **16**:108-116. DOI: <https://doi.org/10.1016/j.tplants.2010.11.005>

Gall JE, Boyd RS, Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs: a review. *Environmental Monitoring and Assessment* **187**: 201. DOI: <https://doi.org/10.1007/s10661/015/4436/3>

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Research* **28**: 27-30. DOI: <https://doi.org/10.1093/nar/28.1.27>

Khan MA, Castro-Guerrero NA, McInturf S.A, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, Mendoza-Cozatl DG. 2018. Changes in iron availability in *Arabidopsis* are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. *Plant, Cell & Environment* **41**(10), pp.2263-2276. DOI: <https://doi.org/10.1111/pce.13192>

Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G. 2002. An oligopeptide transporter gene family in *Arabidopsis*. *Plant Physiology* **128**: 21-29. DOI: <https://doi.org/10.1104/pp.010332>

Lee J, Izzah NK, Choi BS, Joh HJ, Lee SC, Perumal S, Seo J, Ahn K, Jo EJ, Choi GJ, Nou IS. 2016. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (*Brassica oleracea* L.). *DNA Research* **23**: 29-41. DOI: <https://doi.org/10.1093/dnares/dsv034>

Márquez AJ, Stougaard J. 2005. *Lotus japonicus* handbook (pp. 349-355). Dordrecht, The Netherlands: Springer. DOI: <https://doi.org/10.1007/1-4020-3735-X>

Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, Schroeder JI. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. *Molecular Plant* **7**: 1455-1469. DOI: <https://doi.org/10.1093/mp/ssu067>

Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P. 2018. The role of heavy metals in plant response to biotic stress. *Molecules* **23**: 2320. DOI: <https://doi.org/10.3390/molecules23092320>

Mourato P, Moreira N, Leitão I, Pinto R, Sales R, Martins L. 2015. Effect of heavy metals in plants of the genus *Brassica*. *International Journal of Molecular Sciences* **16**: 17975-17998. DOI: <https://doi.org/10.3390/ijms160817975>

Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M. 2006. Comparative study of cadmium effects on membrane lipid composition of *Brassica juncea* and *Brassica napus* leaves. *Plant Sciences* **170**: 511-519. DOI: <https://doi.org/10.1016/j.plantsci.2005.10.003>

Pandey P, Ripathi AK. 2011. Effect of heavy metals on morphological and biochemical characteristics of *Albizia procera* (Roxb.) Benth. seedlings. *International Journal of Environmental Sciences* **1**: 1009-1018.

Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid *Brassica oleracea*. *Genome Biology* **15**: R77. DOI: <https://doi.org/10.1186/gb-2014-15-6-r77>

Raymond AW, Okieimen FE. 2011. Heavy metals in contaminated soils: A Review of sources, chemistry, risks and best available strategies for remediation. *ISRN Ecology* **2011**: 402647. DOI: <https://doi.org/10.5402/2011/402647>

Jibril SA, Hassan SA, Ishak CF, Edaroyati P, Wahab M. 2017. Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (*Lactuca sativa* L.). *Advances in Agriculture* **2017**: 1236830. DOI: <https://doi.org/10.1155/2017/1236830>

Sefo E, Matotan Z, Knežović Z, Karić L. 2010. Evaluation of autochthonous kale (*Brassica Oleracea* L. var. *acephala*) germplasm from Herzegovina region (*Brassica oleracea* L. var. *acephala*). *Sjemenarstvo* **27**: 139-154.

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ. 2017. Crop production under drought and heat stress: plant responses and management options. *Frontiers in Plant Sciences* **8**: 1147 DOI: <https://doi.org/10.3389/fpls.2017.01147>

Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. 2008. The *Arabidopsis* AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. *Plant Physiology* **146**: 589-601. DOI: <https://doi.org/10.1104/pp.107.108183>

Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X, Liu L, Wen Z, Niu G, Shan X. 2019. Draft genome sequence of cauliflower (*Brassica oleracea* L.var. *botrytis*) provides new insights into the CC genome in *Brassica* species. *Horticulture Research* **6**: DOI: <https://doi.org/10.1038/s41438-019-0164-0>

Vasconcelos MW, Li GW, Lubkowitz MA, Grusak MA. 2008. Characterization of the PT clade of oligopeptide transporters in rice. *The Plant Genome* **1**: 77-88. DOI: <https://doi.org/10.3835/plantgenome2007.10.0540>

Wang JW, Li Y, Zhang YX, Chai TY. 2013. Molecular cloning and characterization of a *Brassica juncea* yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. *Plant Cell Reports* **32**: 651-662. DOI: <https://doi.org/10.1007/s00299-013-1398-1>

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* **13**: 134. DOI: <https://doi.org/10.1186/1471-2105-13-134>

Zhang MY, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S. 2004. A novel family of transporters mediating the transport of glutathione derivatives in plants. *Plant Physiology* **134**: 482-491. DOI: <https://doi.org/10.1104/pp.103.030940>

Associate editor: Juan Rodrigo Salazar

Author contributions: JŠ designed the experimental design and wrote the article together with AY. AK performed the experiments, along with JŠ. All the authors read and approved the final manuscript.

Appendix 1

- Frozen samples of plant (0.5 g) were finely grounded using mortar and pestle together with liquid nitrogen.
- Transferred grinded tissues to 15 mL tube containing 2 ml of CTAB based extraction buffer warmed prior to 65 °C at water bath (see [Supplementary material S. Table 2](#)).
- 99 % β -Mercaptoethanol (30 μ L) was added, and samples were placed at 65 °C for 30 min with gentle inversion every 5 minutes.
- An equal volume of Phenol: chloroform: isoamylalcohol (25:24:1) was added (in this case 2ml), mixed vigorously in a vortex for 30 s and incubated for 10 min at room temperature.
- The contents were centrifuged at 13,500 \times g for 15 min at 4 °C.
- The aqueous supernatant was transferred to a new tube, and the Phenol: chloroform: isoamyl alcohol (25:24:1) extraction was repeated.
- To the upper phase, 4 M LiCl (final concentration, 2 M) was added, mixed well, and incubated at -80 °C for 1 h or overnight at -20 °C.
- RNA was pelleted at 12,000 \times g and 4 °C for 20 min.
- The pellets were washed two times with 1 mL 80 % ethanol and air-dried.

The total RNA pellet was resuspended in 100 μ L RNase-free water and stored at -80 °C until use.