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Abstract

Background: Wetlands in Neotropics harbor high fungal diversity, including arbuscular mycorrhizal fungi (AMF) and dark septate endophytes
(DSE). This study describes the interaction of plant roots with AMF and DSE in a freshwater wetland belonging to a hotspot of biodiver-
sity.

Hypothesis: Differential root colonization between arbuscular mycorrhizal and dark septate endophyte fungi is influenced by plant species
and abiotic conditions in a freshwater wetland.

Studied species: Plant species colonized by arbuscular mycorrhizal and dark septate endophyte fungi.

Methods: Properties of soils and the water column, floristic composition, root colonization by AMF and DSE, and molecular identification
of AMF inside roots were studied.

Results: Soils were Gleysol and flooded during the rainy season. Most of identified plant species were herbaceous, with Cyperus articulatus
and Mimosa pigra as the dominant species. Seven of 8 analyzed plant species exhibited differential co-colonization between AMF and DSE.
Repeated sampling for one year under flooding/dry conditions demonstrated that C. articulatus and M. pigra were mainly associated with
DSE and AMF, respectively. A positive correlation between dissolved O, in the water column and fungal colonization was observed in C.
articulatus. Glomerales and Archaeosporales were molecularly identified inside roots containing arbuscules of M. pigra.

Conclusions: Findings highlight differential coexistence between AMF and DSE in plant roots; fungal colonization was influenced by flood-
ing/dry conditions in a neotropical wetland; the community of AMF inside arbusculated roots of M. pigra includes at least four clades.
Keywords: Arbuscular mycorrhizal fungi, Cyperus articulatus, dark septate endophyte fungi, gleysol, Mimosa pigra, Neotropics.

Resumen

Antecedentes: Los humedales del neotropico albergan una alta diversidad fingica, incluyendo hongos micorrizico arbusculares (HMA) y
hongos endofitos septados oscuros (ESO). Se describe la interaccion vegetal con HMA y ESO en un humedal de agua dulce.

Hipotesis: La colonizacion radical diferencial entre HMA y ESO es influenciada por la especie vegetal y por las condiciones abioticas en un
humedal de agua dulce.

Especies en estudio: Especies vegetales colonizadas por HMA y por ESO.

Métodos: Fueron analizadas las propiedades del suelo y de la columna de agua, la composicion floristica y la colonizacion fungica radical;
se identificéd molecularmente la comunidad intrarradical de HMA en una planta.

Resultados: Los suelos Gleysol estuvieron anegados durante la estacion lluviosa. La mayoria de las plantas identificadas fueron herbaceas;
dominaron Cyperus articulatus y Mimosa pigra. Siete especies vegetales exhibieron co-colonizacion diferencial por HMA y ESO. Muestreos
subsecuentes durante un afo bajo condiciones de inundacioén/secas demostraron que C. articulatus y M. pigra estuvieron preferentemente
colonizadas por hongos ESO y HMA, respectivamente. Una correlacion positiva entre el O, disuelto en la columna de agua y la colonizacion
fingica fue observada en C. articulatus. Glomerales y Archacosporales fueron molecularmente identificados en el interior de las raices de M.
pigra conteniendo arbusculos.

Conclusiones: Los hallazgos resaltan una coexistencia diferencial entre HMA y ESO en las raices; la colonizacion fingica estuvo influenciada
por la inundacion/estiaje en el humedal; la comunidad de HMA en el interior de las raices de M. pigra incluye por lo menos miembros de
cuatro clados.

Palabras clave: Cyperus articulatus, gleysol, hongo endofito septado oscuro, hongo micorrizico arbuscular, Mimosa pigra, neotropico.
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Wetlands are ecosystems with shallow water or saturated
soils that possess unique flora and fauna adapted to these
unusual environmental conditions. They share common fea-
tures with both aquatic and terrestrial ecosystems. Wetlands
are distinguished from terrestrial systems because soil is of-
ten anaerobic. Wetlands vegetation is dominated by trees,
shrubs, grasses, and other large plants, in contrast to aquatic
systems (van der Valk 2012). It is estimated a global wetland
area of 135-1,782 x 10° ha in the Neotropics (Ramsar Con-
vention Secretariat 2010). High biodiversity and productivity
are found in wetlands, providing diverse ecosystem services
including fishing, fruits, carbon sequestration, nutrient cy-
cling, and water decontamination, among others. Mexican
neotropical region harbors several freshwater wetlands which
are flooded during the rainy season.

In nature, most plants are colonized by different groups
of fungi; the fungal diversity in the roots of a single plant
species growing in a single sampling location has been re-
ported to cover all phyla (Vandenkoornhuyse et al. 2002).
The most commonly found fungal groups inhabiting plant
roots comprise arbuscular mycorrhizal fungi (AMF) and dark
septate endophytes (DSE). AMF [Phylum Mucoromycota,
Subphylum Glomeromycotina (Spatafora et al. 2016)] as-
sociate with the roots of more than 80 % of vascular plants
under a mutualistic interaction denominated arbuscular my-
corrhiza (AM) (Smith & Read 2008). AMF facilitate the
assimilation of less mobile nutrients, such as phosphorus (P),
through the development of an extended network of hyphae
in the soil (Parniske 2008). DSE are mainly Ascomycota,
which are capable of colonizing the roots of nearly all plant
species (Jumpponen & Trappe 1998). Knowledge on the
roles that the plant root-DSE association plays continues to
be very limited. The roles that have been suggested include
involvement in enhancing plant survival and performance
during periods of stress (Newsham 2011, Mandyam & Jump-
ponen 2015). DSE interact with their host plant and/or other
endophytes, synthesizing bioactive metabolites, which may
play important ecological roles, and may lead to biotech-
nological applications (Kusari et al. 2012). In a tripartite
plant-DSE-AMF interaction, a synergistic relationship has
been hypothesized between both fungal groups in relation to
P availability and uptake by plants: DSE increase the P pool
in the rhizosphere, and AMF are responsible for P transfer
to the host (Della Monica ef al. 2015).

AMF and DSE exhibit aerobic metabolism and have been
reported to co-exist inside the roots of submerged plants in
temperate wetlands (Fuchs & Haselwandter 2004, Sraj-Krzic
et al. 2006, Kohout et al. 2012). However, little information
is available on the diversity and co-colonization of these
two fungal groups and the role that they play in neotropi-
cal wetlands, where the water column exhibits a reduction,
or even the absence of dissolved oxygen. Particularly in
Mexico, there is little information on soil fungi (Sarukhan
et al. 2015).

Based on the species endemism of vascular plants and
terrestrial vertebrates, the southern half of the country cor-
responds to the Mesoamerican biodiversity hotspot, which is
threatened by habitat destruction and land-use change (My-
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ers et al. 2000). Considering the role of plants as umbrella
species, these areas also function as hotspots for other, less
well-studied organisms such as the soil fungi associated with
them (Stork & Habel 2014). Up to 2012, 95 known species
of AMF had been reported in Mexico, considered as a high
AMF diversity reservoir linked with plant and ecosystem
diversity (Montafo et al. 2012). Scarce information exists
on the diversity and roles of DSE in neotropical ecosystems
(Heredia-Acuiia et al. 2014). The aim of the present work
was to describe plant root interactions with AMF and DSE
in a neotropical freshwater wetland characterized by its hy-
poxic or anoxic conditions and belonging to a biodiversity
hotspot region.

Materials and methods

Description of the study area. This work was conducted in
the seasonally flooded La Mixtequilla neotropical wetland in
Veracruz state, Eastern Mexico. La Mixtequilla is located in
the Sistema Lagunar Alvarado, which was designated as the
Ramsar Site 1355 (Matthews 2013). Blanco River traverses
this wetland. The climate is warm, Aw,(i")w” type, with an
average annual temperature of 25.9 °C; in the coldest month,
the temperature reaches 22.6 °C, while in the warmest months,
it rises to 28.3 °C. Average annual rainfall is 1,531.8 mm,
with rain beginning in June and ending in October. Gener-
ally, the dry season runs from January to June (Viccon-Pale
et al. 2016), with the wetland flooded during the remainder
of the year. This region has been negatively impacted by in-
dustrial and domestic pollution, by land-use change, as well
as by livestock, agriculture, and fishing (Rivera-Becerril et
al. 2008, Cejudo-Espinosa et al. 2009, Moreno-Casasola et
al. 2009).

Field work. For soil analysis, two sampling stations were
established at the eastern and western banks of the Blanco
River: Don Rufino (18° 31" 57.9" N, 95° 57" 35.7" W; 2 m
ASL), and El Llanete (18° 31" 40.2" N, 95° 56" 45.9" W; 2
m ASL), respectively. Both sites are employed as livestock
grasslands, and they exhibit differences in plant communi-
ties, particularly, in the abundance of some plant species.
During the dry season, five plots (1 m? each) were randomly
established at each pastureland (El Llanete and Don Rufino).
Three soil samples from each plot were taken from the top
20 cm of soil using a spade. Throughout the whole year,
considering their high abundance, representative plants from
these five plots at each station were collected (roots, shoots,
flowers) for identification. Root fungal colonization was es-
timated once a year in each plant species shown in table 4.
In addition, it was carried out repeated sampling for a year in
order to monitor fungal colonization in Cyperus articulatus
from Don Rufino, and in Mimosa pigra from El Llanete,
because these were the dominant species. An aliquot of each
root system from the top 20 cm of soil was stored at 4 °C to
quantify fungal colonization.

For water quality evaluation, two sampling stations were
also established at each pastureland, Don Rufino, and El
Llanete. During the rainy season, both livestock grasslands
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were flooded. Water depth was determined with a wooden
ruler. Temperature and dissolved oxygen concentration in the
water column were measured with a Hydrolab DS5 multi-
parameter instrument (Hach Company, Loveland, CO, USA)
one day per month, from September 2011 to September 2012,
each hour (36 recordings during 6 min) from 11:00 to 17:00 h.
Additionally, a water sample was collected every two hours
from 11:00 to 17:00 h in plastic bottles and stored at 4 °C
for orthophosphate (PO,*) estimation.

Soil and water chemical analyses. Soil samples (1.5 kg) were
dried at room temperature and sieved through a 2.0 mm-
diameter sieve. Bulk and particle densities were measured
using a pycnometer with the paraffin-coated clod method and
the undisturbed soil core method, respectively (USDA 2004).
Soil porosity was calculated according to USDA (2011). Soil
texture was determined following the Gee & Bauder method
(1986), and soil color, according to the Munsell notation. Soil
pH was measured in water with a glass electrode potentiom-
eter (Orion STR 3) at a 1:2.5 ratio (w/v). Soil organic matter
(SOM) content was determined employing the wet combus-
tion method (USDA 2004); organic carbon (OC) and total
nitrogen (TN) were calculated from these results as follows:
OC = SOM/1.724, TN = SOM (0.05). The concentration of
available P in soils was determined using the USDA method
(2004). Cation-exchange capacity (CEC) was calculated by
saturation with ammonium acetate and analysis with EDTA
(Jackson 1982), the content of exchangeable cations Ca?*
and Mg?" by the Versenate method (USDA 2004), and Na*
and K*, by flame photometry (Corning 400). Orthophosphate
(PO,*) concentration in water was determined following the
4500-P E ascorbic acid method (APHA-WEF 2005).

Root colonization measurements. Identification of plant spe-
cies was conducted according to Lopez-Rios & Rosas-Lopez
(1988) and to Calderén de Rzedowski & Rzedowski (2001).
To estimate fungal colonization, roots from three individual
of each plant species were cleared with 10 % KOH and
stained with 0.05 % trypan blue (Phillips & Hayman 1970)
in lactoglycerol. From each root system, 30, 1-cm root seg-
ments were placed on a slide with glycerol and observed
under a light microscope. The ocurrence of Paris (absence
of intercellular hyphae, presence of intracellular hyphal coils)
and Arum (intercellular hyphal growth, terminal arbuscules
on intracellular hyphal branches) morphotypes of AM was
qualitatively recorded (Dickson et al. 2007). Levels of AMF
colonization were calculated considering the intensity of
mycorrhizal colonization (M %: hyphae, vesicles, and ar-
buscules) and the abundance of arbuscules (A %) in the root
system (Trouvelot et al. 1986). This methodology was also
applied for estimating root colonization by DSE; the same
30, 1-cm root segments that had been previously clarified and
stained were evaluated for estimating intensity of coloniza-
tion (C %: septate hyphae and microsclerotia) and abundance
of microsclerotia (MS %) in the root system.

Molecular identification of arbuscular mycorrhizal fungi.
A composited sample of flooded M. pigra roots containing

arbuscules from El Llanete was washed with tap water, dis-
infected, and rinsed with sterilized water. Extraction of ge-
nomic DNA was carried out following the DNAzol Reagent
kit protocol. DNA was resuspended in ultrapure water; its
concentration was estimated in a NanoDrop 2000c¢ spectro-
photometer (Thermo Scientific, Wilmington, DE, USA). A
nested-PCR protocol was applied for amplifying ribosomal
sequences of AMF (Kriiger ef al. 2009). The first PCR mix
(25 pl total volume) was prepared as follows: buffer 1X
1.5 mM MgCL; 0.2 mM of each deoxynucleotide triphos-
phates (ANTP); 0.2 uM of each primer (SSUmAf1-2 mix,
LSUmArl1-4); 1 U Platinum Tag polymerase (Invitrogen,
Brazil), and 10 ng DNA as template. PCR reactions were
performed in a MultiGene Thermal Cycler (Model TC9600-
G; Edison, NJ, USA) with the following parameters: initial
denaturation at 94 °C/2 min; 32 cycles of denaturation at
94 °C/30 s; annealing at 50 °C/30 s; elongation at 72 °C/2 min,
and a final elongation at 72 °C/10 min. Amplified fragments
were used after a 1:10 dilution in ultrapure water. The second
PCR mix (25 pl total volume) was prepared using primer
mixes SSUmCTf1-3 and LSUmBr1-5. The same PCR condi-
tions were employed, except that the annealing temperature
was reduced to 48 °C, and that Tag polymerase (2 U) and
MgCl, (3 mM) were doubled. Products were visualized by
electrophoresis and stained with ethidium bromide. Ampli-
fication bands of ~ 1.5 kb for SSUmC{/LSUmBr were cut
from the gel and DNA was extracted with the QIAquick
Gel Extraction kit (Qiagen, Oregon, USA). PCR bands were
ligated to pGEM-T vector (Promega, Madison, WI, USA)
and used to transform competent Escherichia coli JM-109
cells (Promega). Plasmid minipreps were conducted (QIA-
prep Spin Miniprep Kit), and the clones were sequenced
with the aid of an ABI Prism 3100 Automated Sequencer
(LANGEBIO, CINVESTAV-Irapuato, Mexico). Sequencing
was unidirectional and conducted using the T7 primer. The
Glomeromycotina origin of the sequences was confirmed by
BLAST-N comparison with sequences deposited in GenBank
(NCBI) and Glomeromycotina dedicated database MaarjAM
(Opik et al. 2010). Multiple alignment was performed using
MUSCLE (Edgar 2004), and the alignment was manually
optimized with Jalview software (Waterhouse et al. 2009).
The evolutionary history was inferred by using the Maxi-
mum Likelihood method based on the Kimura 2-parameter
model (Kimura 1980). The tree with the highest log likeli-
hood (-3,947.04) is shown. The percentage of trees in which
the associated taxa clustered together is shown next to the
branches. The tree was drawn to scale, with branch lengths
measured in the number of substitutions per site. The analysis
involved 54 nucleotide sequences. All positions with less
than 95 % site coverage were eliminated. That is, fewer than
5 % alignment gaps, missing data, and ambiguous bases were
allowed at any position. There was a total of 453 positions
in the final dataset. Evolutionary analyses were conducted in
MEGA7 (Kumar et al. 2016).

Statistical analyses. Data were checked for normal distribu-

tion with the Shapiro-Wilk test. One-way analysis of vari-
ance (ANOVA) at a significance level of 0.05 was performed
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on fungal colonization variables. Whenever there were sig-
nificant differences, Tukey tests were conducted to determine
differences among homogeneous groups of means (p < 0.05).
Comparisons for each soil property between both pasture-
lands, as well as comparisons of AMF/DSE colonization in
plant species, were subjected to a Student’s z-test. Pearson
correlations were carried out between AMF and DSE colo-
nization in M. pigra and C. articulatus, as well as between
properties of water and fungal colonization. These analyses
were computed using Origin 8.6 software.

Results

Soil and water column properties in pasturelands. Concern-
ing soil properties, bulk density was similar in both pas-
turelands under study; particle density and porosity were
significantly higher (»p < 0.05) in El Llanete than in Don
Rufino (Table 1). Soils from both pasturelands were domi-
nated by clay particles (60 and 72 %), with a clay texture; no
significant differences were observed between pasturelands
when comparing concentrations of sand, silt, and clay in
soils. Both soils were dark gray (2.5Y 4/1) when dry, and

Table 1. Physical and chemical properties in soils of the pasturelands
Don Rufino and El Llanete at La Mixtequilla wetland (mean + SE;
n =15, except for sand, silt, and clay, where n = 5).

Don Rufino El Llanete

Physical properties
Bulk density (g cm™) 1.2+0.01 1.2+0.02
Particle density (g cm™) 22+0.04% 23+0.01%*
Porosity (%) 46.1 +£0.89*% 49.1 +0.77*
Sand (%) 155+2.10 11.5+0.82
Silt (%) 12.1+1.76 28.7+11.70
Clay (%) 72.4+093 59.8+12.13
Texture Clay Clay
Color (dry) 2.5Y 41 2.5Y 4/1
Color (wet) Gleyl 3/N Gleyl 3/N

Chemical properties
pH 6.5+£0.04 6.3+£0.15
Organic matter (%) 6.2+0.48 6.9 +0.49
Organic carbon (%) 3.6+0.28 4.0+0.28
Total nitrogen (%) 0.3+£0.02 0.3+0.02
Available phosphorus (mg kg ') 9.9+045* 17.0+2.68*
Cation exchange capacity 40.3+£0.51  39.1+£0.72
(meq 100 g ™)
Ca* (meql00 g") 40.0+1.13  37.0+1.56
Na' (meq 100 g™") 63+031* I11.1+1.20%
Mg? (meq 100 g™) 3.7+0.64*  7.4+1.53*
K*(meq 100 g™) 26+0.19*  35+031*

Asterisks indicate significant differences (p <0.05) between both pas-
turelands, following a Student’s #-test.
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very dark gray (Gleyl 3/N) when wet. Among chemical
properties, there were no statistically significant differences
between pasturelands on the pH, organic matter content, or-
ganic carbon, total nitrogen and CEC. The CEC complex
was dominated by Ca?', which did not show significant dif-
ferences between pasturelands; Na®, Mg*", and K" were sig-
nificantly higher (p < 0.05) at El Llanete. The available P in
soil, measured as orthophosphate, was significantly higher
(p <0.05) at El Llanete than at Don Rufino by nearly two-fold
(Table 1).

During the flood season, the water column was shallow
in both pasturelands (25.1 £ 10.5 c¢cm). The highest water
temperatures were recorded in September at Don Rufino
(34.5 °C) and July at El Llanete (30.6 °C); lowest tempera-
tures were registered during winter at both sites (Table 2).
Higher levels of dissolved oxygen were found during Febru-
ary at Don Rufino (5.5 mg L) and in October at El Llanete
(4.3 mg L"). Orthophosphate in water was higher in Sep-
tember at Don Rufino (0.3 mg L) and in December at El
Llanete (0.3 mg L).

Floristic composition. In both pasturelands, the plant com-
munity known as “popal” was predominant with majority of
herbaceous native species from Mexico (Table 3). At the Don
Rufino pastureland, 18 plant species belonging to 12 families
were identified; some of these, such as Thalia geniculata,
Cyperus articulatus, and Mimosa pigra, are adapted to both
flood and dry conditions; others (Salvinia minima and Eich-
hornia crassipes) exhibit aquatic habits. During the flood
season, the most abundant plant species were C. articulatus,
Echinodorus paniculatus, and T. geniculata, while during
the dry season, the latter predominated. In the El Llanete
pastureland, 23 plant species belonging to 14 families were
identified; some of these, such as 7. geniculata and M. pig-
ra, tolerate both flood and dry seasons; others (Marsilea
crotophora, S. minima, and Nymphaea ampla) demonstrate
aquatic habits. During the whole year, including flood and
dry seasons, the most abundant plant species was M. pigra,
followed by 7. geniculata.

Fungal colonization of roots. As a first insight into the status
of AMF and DSE interactions in the wetland, six plant spe-
cies from both pasturelands were sampled during the flood
or dry seasons and analyzed for the presence of these fungi
(Table 4). Echinodorus paniculatus did not exhibit any fun-
gal colonization, while five plant species were co-colonized
by both fungal groups at different levels. Concerning AMF,
S. herbacea during fructification showed the highest per-
centage of root colonization (M = 53 %), as well as the
highest abundance of arbuscules in the whole root system
(A = 3.5 %). Vesicles were present in all plant species,
with S. herbacea exhibiting the highest abundance. Arum
and Paris-type morphologies of AM were visualized in all
plant roots, but the former predominated. Fimbristylis spadi-
cea demonstrated highest intensity of DSE root colonization
(C = 16 %), while in the remaining plants, this was < 9 %.
The abundance of microsclerotia in the whole root system
(MS) was < 1 % in all cases. In S. herbacea, the percentage
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Table 2. Water column properties during the flood season of the Don Rufino (DR) and El Llanete (EL) pasturelands at La Mixtequilla wetland
(mean + SE; n = 252, except for orthophosphate concentration, where n = 4).

Temperature O, concentration Orthophosphate concentration
(°C) (mg L)
Sampling date DR EL DR EL DR EL
(month/year)
09/11 345+1.7 30.1£04 2.6+0.7 0.5+0.1 0.312+0.22 0.196 +0.09
10/11 29.9+1.5 27.5+0.5 23+0.4 43+0.2 0.145 +0.01 0.028 +0.02
11/11 28.1+1.3 28.0+0.5 33+0.4 24+0.5 0.033 +0.06 0.050 +0.02
12/11 27.7+1.0 24.7+0.3 3.0+0.7 1.7£0.3 0.104 +0.04 0.335+0.28
01/12 249+1.5 214402 33+0.6 1.2+04 0.002 £+ 0.004 0.044 +0.04
02/12 21.7+£1.8 253+14 55+1.1 0.7+0.3 0.117 £0.06 0.042 +£0.03
04/12 — — — — — —
06/12 — — — — — —
07/12 30.9+23 30.6+1.2 1.2+0.5 1.5+0.7 0.179 +£0.09 0.108 = 0.01
09/12 30.6+1.1 29.7+1.0 04+0.2 0.6+0.2 0.163 +£0.01 0.133 £0.03
—, Absence of water column during the dry season.
Table 3. Representative plant species in two pasturelands at La Mixtequilla wetland.

Family Plant species Observations
Don Rufino pastureland
POLYPODIOPHYTA
Salvianiaceae Salvinia minima Baker Aquatic fern, native
MAGNOLIOPHYTA
LILIOPSIDA
Alismataceae Echinodorus paniculatus Micheli Herbaceous, native
Cyperaceae Cyperus articulatus L. Perennial, herbaceous, native
Poaceae Echinochloa crus-pavonis (Kunth) Schult. Perennial, herbaceous, native

Hymenachne amplexicaulis (Rudge) Nees Perennial, herbaceous, native

Paspalum repens P.J. Bergius Perennial, herbaceous, native
Pontederiaceae Eichhornia crassipes (Mart.) Solms Aquatic, herbaceous, exotic
MAGNOLIOPSIDA
Bignoniaceae Crescentia cujete L. Tree, native
Boraginaceae Heliotropium indicum L. Herbaceous, native

H. macrostachyum (DC.) Hemsl. Herbaceous, native
Euphorbiaceae Chamaesyce prostrata (Aiton) Small Herbaceous, native
Fabaceae Lonchocarpus hondurensis Benth. Tree, native

Pithecellobium dulce (Roxb.) Benth. Tree, native

Mimosa pigra L. Shrub, native

Neptunia natans W. Treob. Perennial, herbaceous, native
Maranthaceae Thalia geniculata L. Aquatic, herbaceous, native
Solanaceae Solanum rostratum Dunal Invasive, herbaceous, native
Verbenaceae Phyla nodiflora (L.) Greene Herbaceous, native

El Llanete pastureland
POLYPODIOPHYTA

Marsileaceae

Marsilea crotophora D.M. Johnson

Aquatic fern, native
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Table 3. Continue.

Family Plant species Observations
Salvinia minima Baker Aquatic fern, native
MAGNOLIOPHYTA
LILIOPSIDA
Cyperaceae Cladium jamaicense Crantz Perennial, herbaceous, native
Cyperus articulatus L. Perennial, herbaceous, native
Fimbristylis spadicea (L.) Vahl Perennial, herbaceous, native
Nymphaceae Nymphaea ampla DC. Perennial, herbaceous, native
Poaceae Paspalum fasciculatum Willd. ex Fliggé Perennial, herbaceous, native
Paspalum sp. Perennial, herbaceous
MAGNOLIOPSIDA
Acanthaceae Ruellia geminiflora Kunth Herbaceous, native
R. paniculata L. Herbaceous, native
Alismataceae Echinodorus paniculatus Micheli Herbaceous, native
Arecaceae Sabal mexicana Mart. Arborescent, native
Asteraceae Erigeron aff. heteromorphus Herbaceous, native
Euphorbiaceae Euphorbia marginata Pursh Herbaceous, exotic
Fabaceae Crotalaria pallida Aiton Herbaceous, native
Mimosa pigra L. Shrub, native
Neptunia plena (L.) Benth. Seedling, native
Sesbania herbacea (Mill.) McVaugh Herbaceous, native
Lythraceae Cuphea spp. Herbaceous, native
Maranthaceae Thalia geniculata L. Seedling, native
Onagraceae Ludwigia helminthorrhiza (Mart.) H. Hara Prostrate, herbaceous, native
L. leptocarpa (Nutt.) H. Hara Aquatic, herbaceous, native
Solanaceae Solanum lanceifolium Jacq. Shrub, native

All of the plant species follow the nomenclature of vascular flora by MEXU Herbarium (www.ib.unam.mx/botanica/herbario/), and W3 Tropicos
Missouri Botanical Garden (www.tropicos.org)

Table 4. Root colonization by arbuscular mycorrhizal fungi and dark septate endophytes in plants established at two pasturelands of La Mixtequilla
wetland (mean + SE; n = 3). Evaluation was carried out once in a year.

Arbuscular mycorrhizal fungi Dark septate endophytes
Plant species M (%) A (%) \% C (%) MS (%)
Don Rufino pastureland
Echinochloa cruspavonis® 7.7+4.7 0.1+0.1 + 39+£22 0.5+£03
Echinodorus paniculatus® 0 0 - 0 0
El Llanete pastureland
Sesbania herbacea® (flowering period) 29.9 £ 4.0* 2.6+1.0 + 4.5+1.9*% 0.6+0.4
Sesbania herbacea® (fructification period) 53.4 +1.5*% 35+£1.2 + 8.7+4.1* 0.6+£0.4
Ruellia geminiflora® 174475 1.7£1.0 + 7.1£29 02+0.2
Fimbristylis spadicea® 3.8+2.8 0 + 16.0+4.3 0.6+0.1
Thalia geniculata® 53+1.8 0 + 45+15 03+0.2

M, intensity of mycorrhizal colonization in the root system; A, abundance of arbuscules in the root system; V, vesicles (+, present; —, absent); C,
intensity of colonization by DSE in the root system; MS, abundance of microsclerotia in the root system; *, unflooded plants; > flooded plants;
asterisks indicate significant differences (p < 0.05) between M % and C % in S. herbacea, following a Student’s #-test
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of root colonization by AMF (M) was significantly higher
(p < 0.05) than that of DSE (C). Finally, S. herbacea in
fructification attained highest levels of root colonization by
both groups of fungi (M + C = 62 %).

Repeated monitoring of fungal colonization in the roots of
two plant species. In C. articulatus roots, AMF colonization
was present at each sampling time (Figure 1). Only hyphae
and vesicles were detected, and arbuscules were absent;
Paris-type morphology predominated, as judged by presence
of intracellular hyphal coils and absence of intercellular hy-
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Figure 1. Root colonization by arbuscular mycorrhizal fungi and
dark septate endophytes in Cyperus articulatus established in the pas-
tureland Don Rufino at La Mixtequilla wetland (mean + SE; n = 3).
Evaluation was carried out nine times in a year. M, intensity of my-
corrhizal colonization in the root system; C, intensity of colonization
by DSE in the root system; MS, abundance of microsclerotia in the
root system; broken lines indicate plants under flooding conditions;
asterisks indicate significant differences (p < 0.05) between M %
and C % (Student’s #-test); different letter on the bars indicate dif-
ferences among homogeneous groups of means (p < 0.05), following
an ANOVA.

phae. The highest intensity of root colonization (M = 13.5 %)
was observed in July, but without significant differences
among the sampling months. DSE colonization was also
present throughout the year. The percentage of root coloni-
zation (C) was < 10 % in flooded plants, increasing during
the dry season, demonstrating the significant, highest peak
(p <0.05) in July 2012 (C = 25 %) when the second flood
period started. Highest abundance of microsclerotia in the
whole root system (MS) was also observed in July 2012
(MS =4 %), but without differences among sampling months.
During the dry season, the percentage of root colonization by
DSE was always higher than that of AMF, particularly in
April, with significant differences (p < 0.05). In July 2012,
C. articulatus attained highest levels of colonization by both
groups of fungi in the whole root system (M + C = 38.2 %)).
A Pearson correlation (r) considering all data of intensity of
root colonization by AMF (M) and DSE (C) in C. articulatus,
showed a significant correlation (» = 0.62; p < 0.05) between
both fungal groups.

AMF and DSE colonized M. pigra roots during the whole
annual cycle (Figure 2). Concerning AMF, intensity of root
colonization (M) was significantly highest (p < 0.05) in Feb-
ruary 2012 during the flooded season (61 %). The highest
abundance of arbuscules in the whole root system (A) was
observed under dry conditions. During nearly all the year,
few vesicles were present in the roots; Arum and Paris-type
morphologies were present. Concerning DSE, the highest
percentage of root colonization (C) was observed in April
(11 %), without differences among sampling months; abun-
dance of microsclerotia in the whole root system (MS) was
<1 %. In February 2012, M. pigra attained highest levels of
colonization by both groups of fungi in the whole root system
(M + C =62 %). At 6 sampling times, colonization by AMF
was significantly higher (p <0.05) than that of DSE. There was
no correlation between intensity of root colonization by AMF
(M) and DSE (C) in M. pigra, following a Pearson test.

Relations between fungal root colonization and water column
properties. Significant correlations (p < 0.05) were observed
between fungal colonization parameters and water column
properties (Table 5). In C. articulatus established in Don
Rufino pastureland, a negative correlation between M or C
and temperature was observed. In addition, higher concentra-
tions of dissolved oxygen in the water column favored root
colonization by AMF (M) and DSE (C). A negative correla-
tion between C and the concentration of orthophosphates was
also identified. In M. pigra established in El Llanete, nega-
tive correlations were identified between C or MS and tem-
perature; dissolved oxygen was negatively correlated with M
and A. Finally, higher orthophosphate concentrations in the
water column increased the abundance of arbuscules (A) in
the whole root system.

Molecular identification of AMF in Mimosa pigra roots. Be-
cause M. pigra was highly colonized by Glomeromycotina,
identification of AMF inside roots containing arbuscules was
addressed by a molecular approach targeting fungal rDNA
sequences (SSU-ITS-LSU) (Kriiger et al. 2009). The size of
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Figure 2. Root colonization by arbuscular mycorrhizal fungi and dark
septate endophytes in Mimosa pigra established in the pastureland El
Llanete at La Mixtequilla wetland (mean + SE; n = 3). Evaluation was
carried out nine times in a year. M, intensity of mycorrhizal coloniza-
tion in the root system; A, abundance of arbuscules in the root system;
C, intensity of colonization by DSE in the root system; MS, abun-
dance of microsclerotia in the root system; broken lines indicate plants
under flooding conditions; asterisks indicate significant differences
(p < 0.05) between M % and C % (Student’s #-test); different letter
on the bars indicate differences among homogeneous groups of means
(p <0.05), following an ANOVA.

the final amplified fragments was ~ 1.5 kb, corresponding to
that expected for Glomeromycotina species. These amplicons
were employed to construct a SSU-ITS-LSU rDNA library.
Fifty recombinant clones of E. coli were randomly selected
and subcultured; isolated plasmid DNA was digested with
EcoRI enzyme in order to corroborate the exact size of in-
serts; 38 positive samples were sequenced, but only 30 of
these exhibited good sequence quality. No chimeric amplicon
sequences were detected, and all of the sequences obtained
showed a high degree of similarity to Glomeromycotina
SSU-ITS-LSU rDNA sequences. All the 30 sequences were
submitted to the GenBank database at NCBI (accession num-
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bers from MK418498 to MK418527). Phylogenetic analyses
revealed four monophyletic ribotypes (Figure 3); three of
these belonged to the Order Glomerales and one, to Ar-
chaeosporales. Concerning Glomerales, 11 of the sequences
were grouped with Rhizophagus irregularis/Rh. proliferum,
and seven sequences showed affinity with Rhizophagus di-
aphanum;, a group of two sequences were related to Glomus.
Estimates of evolutionary divergence between representative
sequences of clades observed in the tree confirmed these
ribotypes of Glomerales (Table 6). Finally, a group of ten
sequences were included in the Order Archacosporales and
were closely related with Archaeospora.

Discussion

Soil and water properties in pasturelands. Soils from both
pasturelands in the La Mixtequilla wetland showed typical
characteristics of Gleysols, such as clay texture and satura-
tion with groundwater for long periods, which develop a
typical gleyic color pattern and favor a prolonged O,-deficit
phenomenon (Driessen et al. 2001). The significantly higher
concentrations of available P, Na*, Mg?*, and K" at El Llanete
in comparison with the Don Rufino pastureland could be at-
tributed to the different strategies of soil management utilized
at these sites (agricultural and/or livestock breeding), as well
as to biological activity. Driessen et al. (2001) state that
Gleysols in depressions or lowlands possess higher organic
matter, CEC, P, and K* than adjacent upland soils; at El
Llanete, the flooding season is normally longer than at Don
Rufino (Rivera-Becerril et al. 2008), which can influence
a higher transport of nutrients from uplands via the Blanco
River. River nutrient contribution into the floodplain consti-
tutes an elemental process for floodplain production (Junk
et al. 1989). Fertility is also favored by fine soil texture and
slow rate of organic matter decomposition (Driessen et al.
2001). Flatlands, temperate to warm temperatures, prolif-
eration of plant cover, and its contribution to high levels of
autochthonous organic matter, comprise the causes for very
low levels of dissolved oxygen in the water columns of both
pasturelands. In general, moisture, temperature seasonality,
soil fertility, and/or substrate availability control wetland mi-
crobial processes (Gutknecht et al. 2006).

Floristic composition and fungal colonization in roots. Gley-
sols are covered with swamp vegetation and are normally
used for extensive grazing (Driessen et al. 2001) of livestock,
as occurs at La Mixtequilla. The “popal” plant community
is normally present in the neotropical region of the Atlantic
coast of Mexico (Rzedowski 1986). In both pasturelands,
most plant species belonged to Magnoliopsida, and were
herbaceous, consistently with a report from other neotropical
wetland (Moreno-Casasola et al. 2009). Three exotic plant
species (E. crassipes, E. marginata, and C. pallida) were
detected; the free-floating E. crassipes is known as one of the
worst macrophyte invaders (Thomaz et al. 2015); in addition
to its presence in Don Rufino pastureland, large areas of the
Blanco River were covered by this plant species. M. pigra,
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Table 5. Pearson correlation (r) between water column properties and fungal colonization in Cyperus articulatus and Mimosa pigra established

at La Mixtequilla wetland.

Arbuscular mycorrhizal fungi

Dark septate endophytes

Plant species M (r) A () C (@) MS (r)
Cyperus articulatus

Temperature (°C) -0.790%* - -0.951%* -0.359
O, concentration (mg L) 0.641* - 0.785* 0.106

PO,*~ concentration (mg L) -0.304 - -0.607* -0.491

Mimosa pigra

Temperature (°C) -0.121 -0.473 -0.977* -0.844*
O, concentration (mg L) -0.817* -0.864* -0.469 -0.486
PO,> concentration (mg L") 0.320 0.616* 0.147 -0.306

M, intensity of mycorrhizal colonization in the root system; A, abundance of arbuscules in the root system; C, intensity of colonization by DSE in
the root system; MS, abundance of microsclerotia in the root system. Asterisks indicate significant correlations (p < 0.05)

native to the tropics, is a well-recognized invasive plant in
Southeast Asia and Australia (Lonsdale 1993). At La Mix-
tequilla, M. pigra is adapted to both flooded and dry condi-
tions throughout the year; local people normally attempt to
eliminate it in order to avoid the perturbation of agricultural
practices, livestock breeding, and fishing.

Seven plant species (C. articulatus, E. cruspavonis, M.
pigra, F. spadicea, R. geminiflora, S. herbacea, and T. genic-
ulata) showed a differential co-colonization between AMF
and DSE in roots, either under dry or flooded conditions, as
reported for other wetlands (Fuchs & Haselwandter 2004,
Weishampel & Bedford 2006, de Marins ez al. 2009, Sudova
etal. 2011). Flooded M. pigra showed the highest abundance
of arbuscules, indicating that this symbiosis is functional
under flooded conditions at low levels of dissolved O, (see
later). Weishampel & Bedford (2006) consider that Magnoli-
opsida exhibit more affinity for AMF than DSE, as observed
in three plant species analyzed in this work (M. pigra, R.
geminiflora and S. herbacea).

Repeated monitoring of fungal colonization in roots from
two plant species. Cyperus articulatus, a native plant from
Mexico, is well adapted to tropical wetlands, where is used
as forage (Olivares et al. 2002), as observed at the Don
Rufino pastureland. This plant species exhibited low levels

(up to 13.5 %) of AMF colonization, but only hyphae and
vesicles were present in roots. Members of Cyperaceae typi-
cally show low mycotrophy; their mycorrhizal status could
be influenced strongly by environmental conditions such as
flooding/dry periods (Muthukumar et al. 2004). The lack of
arbuscules has been previously reported in cultivated C. ro-
tundus (Muthukumar et al. 1997) or established in a tropical
ecosystem (Muthukumar & Udaiyan 2002). In contrast, high
levels of DSE root colonization indicate that these could play
a more relevant role in this sedge. Low root colonization by
DSE during the flooded season (<10 %), in comparison with
the higher levels observed during the beginning/ending of the
dry period (19-25%), could suggest that DSE are sensitive
to low oxygen concentrations in the water column. In April,
during the dry season, a four-fold reduction in colonization
by AMF, in contrast with increased colonization by DSE, is
probably a consequence of fungal competition for resources
during the grazing time (Garcia et al. 2012), as was observed
for the grass species Bouteloua gracilis (Medina-Roldan et
al. 2008). In this study, a significant correlation was ob-
served between root colonization by AMF and DSE during
the annual cycle in C. articulatus. As previously reported for
some plant species (Ruotsalainen et al. 2002), this positive
correlation might indicate a synergism between both groups
of fungi.

Table 6. Estimates of evolutionary divergence between representative ribotypes observed in the phylogenetic tree representing SSU-ITS-LSU rDNA
sequences of Glomerales colonizing Mimosa pigra flooded roots. The number of base substitutions per site between sequences are shown. Analyses
were conducted using the Maximum Composite Likelihood model and it involved five nucleotides sequences. All positions containing gaps and
missing data were eliminated. There was a total of 517 positions in the final dataset. Best hits were following NCBI or Maarj4M databases.

Sequence Distance Max identity (%) Best hit Propose name
MK418527/1-555 96.3 AY744275 Rhizophagus
MK418515/1-561 0.038 99 HG969372 Rhizophagus
MK418522/1-551 0.211 0.19 97 AJ972463 Rhizophagus
MK418523/1-551 0.1830.163 0.028 97 AM972463 Rhizophagus
MK418519/1-566 0.303 0.291 0.288 0.275 94 AM384981 Glomus
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Figure 3. Molecular phylogenetic analysis by Maximum Likelihood method representing SSU-ITS-LSU rDNA sequences of Glomeromycotina
fungi colonizing Mimosa pigra flooded roots at La Mixtequilla wetland. Four identified ribotypes are indicated.
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The native plant from the tropics, M. pigra, is present in
different ecosystems. Members of Fabaceae are highly my-
cotrophic, mainly when environmental conditions threaten
plant development (Azcéon 2000). Considering that M. pigra
demonstrated high levels of root colonization by AMF in
the freshwater wetland under study (M = 7-61 %; A = up to
17.7 %), it can be postulated that AMF could facilitate the
spread of this plant species, as suggested for Ambrosia arte-
misiifolia growing in disturbed sites (Fumanal ez al. 2006). In
addition, M. pigra also interacts with nitrogen-fixing bacteria
harboring in root nodules (Parker et al. 2007). These bacteria,
together with AMF, might render this plant species highly
competitive for colonizing stressful environments conferring
a better nutritional status. AMF colonization in some Mimosa
species is required for enhancing root nodulation (Lammel
et al. 2015).

In this wetland, it was observed that properties prevail-
ing in the water column influence fungal root colonization.
High temperatures tended to reduce fungal colonization by
AMF and DSE in both plants (M and C in C. articulatus,
and C and MS in M. pigra), and DSE appeared to be more
susceptible than AMF to high temperatures. Within this con-
text, plant-root colonization by AMF was reduced when the
temperature exceeded 30 °C; elevated temperatures might
increase plant night respiration resulting in diminished pho-
tosynthate for root-inhabiting fungi (Zhu et al. 2011). High
concentrations of dissolved O, in the water column favored
higher M and C in C. articulatus; the negative correlation
between dissolved O, in the water columnand M and A in
M. pigra could suggest a particular root physiology for sup-
plying dissolved O,. A floating growth habit and aerenchyma
are root adaptations described in M. pigra living in a flooded
environment in a neotropical ecosystem (James et al. 2001).
Finally, the negative correlation in C. articulatus between
C and the orthophosphate concentration could indicate that
DSE are not involved in P nutrition in this plant. In contrast,
concentrations of orthophosphates in the water column at
El Llanete, which correlated positively with A in M. pigra,
pointed out the role of AMF in transferring P from soils
and/or the column water to the plant, even under suboxic
conditions.

Molecular identification of AMF in Mimosa pigra roots. This
is the first time, to the best of our knowledge, in which
an AMF community of flooded roots from the shrub M.
pigra established in a freshwater wetland was molecularly
identified. Arbuscules confirmed visually the presence of
AMF inside roots; molecular analysis allowed to identify
the whole fungal community, constituted by members of
Rhizophagus, and Glomus (Order Glomerales), as well as
by Archaeospora (Order Archaeosporales). All identified
AMF are reported to produce arbuscules; observed vesicles
inside roots could belong to Rhizophagus and Glomus since
members of Archaeospora do not produce them (Oehl et al.
2011). Glomerales, the largest Order of Glomeromycotina,
predominated inside M. pigra roots; Glomerales are consid-
ered as generalist AMF (Davison ef al. 2011). Consistently
with results presented here, AMF spores extracted from the

rhizosphere soil of colonized native and exotic Fabaceae
showed the dominance of Glomerales, but Archaeosporales
and Diversisporales were also present (Tibbett et al. 2008). In
a recent meta-analysis, Ramirez-Viga et al. (2018) concluded
that AMF improve plant performance in wetlands through
higher nutrient acquisition, photosynthetic activity, biomass
generation, and mitigation of abiotic stress. However, un-
derstanding the functionality of AMF in M. pigra plants is
a future task.

The Neotropics harbor several freshwater intermittent
wetlands. Nearly one-hundred known AMF species have
been reported in Mexico (Montafio et al. 2012, Chimal-San-
chez et al. 2016, Fabian et al. 2018), considered a high AMF
diversity reservoir linked with plant and ecosystem diversity.
The Mesoamerican biodiversity hotspot (Myers et al. 2000),
where La Mixtequilla wetland is located, certainly harbors a
still unknown diversity of AMF that is threatened by habitat
destruction and land-use change.
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