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Abstract

Background: Historical and contemporary climates may shape the distributional patterns of plant species richness across different scales.
However, few studies have focused on the effects of historical and contemporary climate changes on the distributional patterns of plant rich-
ness in Chinese protected areas across different taxonomic levels.

Hypotheses: Historical and contemporary climates can have an important legacy effect on the large-scale distributional patterns of plant
richness across different taxonomic levels.

Studied species: Vascular plants.

Study site: China.

Method: We used data on plant richness at the family, genus, and species levels from Chinese protected areas and applied regression model-
ling to explore the relationships between climate change and plant richness among vascular, fern, seed, gymnosperm, and angiosperm plants
based on paleoclimate (Last Glacial Maximum; LGM, ca. 22,000 years ago) and contemporary climate data.

Results: The large-scale distributional patterns of plant richness could be predicted across different taxonomic levels on the basis of paleo-
climate and contemporary climate data. Specifically, historical and contemporary climate variables were found to better correlate with fern
plant richness than seed plant richness. For seed plants, the explanatory power of historical and contemporary climate variables was found to
be stronger for the richness of gymnosperms than for the richness of angiosperms.

Conclusions: The distributional pattern of plant richness could be predicted across different taxonomic levels after including paleoclimate
(LGM, ca. 22,000 years ago) and contemporary climate data from China. Our study could support the effectiveness of the management of
protected areas in China.

Key words: China, climate legacy, conservation, paleoclimate, plant diversity, taxonomic level, vascular plants.

Resumen

Antecedentes: Los climas historicos y contemporaneos contribuyen a conformar el patron de la distribucion de la riqueza de especies de plantas
a diferentes escalas. Sin embargo, muy pocos estudios se han concentrado en entender los efectos de los cambios historicos y contemporaneos
del clima en el patron de la distribucion de la riqueza de plantas en diferentes niveles taxonémicos en China.

Hipétesis: Los climas historicos y contemporaneos pueden tener un importante efecto de legado en los patrones de distribucion a gran escala
de la riqueza de plantas a diferentes niveles taxonomicos.

Especies de estudio: Plantas vasculares.

Sitio de estudio: China.

Métodos: Empleando datos de reservas naturales chinas y modelado de Regresion Ponderada Geograficamente aplicada junto con el método
de Minimos Cuadrados Ordinarios, utilizamos la informacion de riqueza de plantas a nivel de familia, género y especies para explorar las
relaciones entre el cambio climatico historico y contemporaneo, y la riqueza de plantas a nivel de familia, género y especie entre diferentes
grupos de plantas vasculares, helechos, semillas, gimnospermas y angiospermas.

Resultados: En comparacion con las plantas de semilla, los climas historicos y contemporaneos predicen mejor la riqueza de helechos. Para
las plantas con semillas, los poderes explicativos de los climas historicos y contemporaneos son mas fuertes para la riqueza de gimnospermas
que para la de angiospermas.

This is an open access article distributed under the terms of the Creative Commons Attribution License CCBY-NC (4.0) international.
https://creativecommons.org/licences/by-nc/4.0/

323



Wang and Wan / Botanical Sciences 97 (3): 323-335. 2019

Conclusiones: El patron de distribucion de la riqueza de plantas se pueden predecir a diferentes niveles taxonomicos utilizando datos paleocli-

maticos y de clima contemporaneo en China.

Palabras clave: China, diversidad vegetal, legado climatico, nivel taxondémico, paleoclima, plantas vasculares.

Plant richness can deeply affect ecosystem structure and
function (Tilman et al. 1997). Both the historical and con-
temporary climate can influence the large-scale geographic
patterns of plant richness (Kreft & Jetz 2007, Normand et
al. 2011, Sandel et al. 2011, Svenning et al. 2015, Liu et al.
2018). Time lags in the legacy effects of historical climates
on biodiversity may vary widely across different plant spe-
cies (Normand et al. 2011, Svenning et al. 2015, Shrestha et
al. 2018). These time lags may influence the response of the
distributional and richness patterns of plant species to climate
change via several mechanisms (e.g., diversification, lineage
adaptation, range shifts, population buildup, and physiologi-
cal responses; Svenning et al. 2015). Contemporary plant
richness is to some degree the product of diversification with-
in the Cenozoic (Colinvaux & De Oliveira 2001, Svenning et
al. 2015), and in this way, paleoclimates may influence the
diversification of plants and shape the current distribution of
plant richness at large scales (Svenning et al. 2015).

Different studies (e.g., Svenning 2003, Svenning & Skov
2007, Fang et al. 2012, Svenning et al. 2015, Liu et al.
2018) have shown that contemporary climates are the main
predictors of large-scale distributional patterns of plant rich-
ness. For example, the mean annual temperature (MAT) and
mean annual precipitation (MAP) in recent years have been
shown to influence the contemporary distributional patterns
of plant richness in China (Wang et al. 2010, 2012, Yang
et al. 2014, Wang et al. 2017). European plant richness is
one of the best-known examples in which regional distribu-
tions of plant richness are strongly affected by contemporary
temperature and precipitation as well as by late Quaternary
glacial-interglacial climates (Kreft & Jetz 2007, Svenning
& Skov 2007, Fang et al. 2012, Svenning et al. 2015). The
physiological responses of plant species to historical climates
may be delayed, and contemporary climates may also affect
the distribution of plant richness (Svenning & Skov 2007,
Svenning et al. 2015).

The understanding of the effects of historical and contem-
porary climate on plant richness can provide new insights
into the evolution of plant species at large scales. Previous
studies (e.g., Svenning 2003, Wang et al. 2010, 2012, Yang
et al. 2014, Svenning et al. 2015, Liu et al. 2018) have
evaluated the effects of historical and contemporary climates
on plant richness at the species level. However, to fully
understand these effects, it is important to evaluate them in
terms of large-scale distributional patterns of plant richness at
different taxonomic levels, from family to species, and from
ferns to angiosperms.

The evaluation of biodiversity at the family and genus
levels can indicate the evolutionary distinctiveness of a given
set of species and provide more information on the evolu-
tionary processes affecting plant species richness across dif-
ferent spatial and temporal scales than studies only focusing
on the species level (O'Brien e al. 1998, Pimm & Joppa
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2015, Qian & Ricklefs 2007, Huang et al. 2016). In addition,
phylogenetic endemism and biogeography may indicate the
evolutionary distinctiveness of plants at large scales (Prinz-
ing 2001, Huang ef al. 2016). The large-scale patterns of
biodiversity at the family and genus levels can be accurately
used to identify instances of phylogenetic endemism and geo-
graphical concentrations related to the evolutionary history
of plants (O'Brien et al. 1998, Qian & Ricklefs 2007, Huang
et al. 2016, Millar et al. 2017).

The climatic niche development of higher plants across
different taxonomic levels (i.e., species, family, and genus)
differs considerably at large scales (O'Brien et al. 1998,
Pimm & Joppa 2015). Hence, dissimilarity in the large-scale
distributional patterns of plant richness may exist across dif-
ferent taxonomic levels. Furthermore, previous studies have
identified different legacy effects of climate on the large-
scale distributional patterns of plant richness in non-seed and
seed plants (Peppe et al. 2014, Boyce & Lee 2017, Xu et al.
2018). Non-seed plants may be more sensitive to the veloc-
ity of climate change than seed plants due to their different
reproduction and dispersal characteristics (Peppe et al. 2014,
Xu et al. 2018). Lu et al. (2018) explored the evolutionary
history of the angiosperm flora of China at the species, fam-
ily, and genus levels and identified areas of high species
richness and phylogenetic diversity. However, we need to
explore the differences in the effects of historical and con-
temporary climates on the large-scale distributional patterns
of plant richness across different taxonomic levels.

Here, we tested the following hypotheses: 1) historical
and contemporary climates can affect the large-scale dis-
tributional patterns of plant richness and 2) the effects of
historical and contemporary climates on plant richness vary
across different plant groups and taxonomic levels. To test
the abovementioned hypotheses, we used data on plant rich-
ness from Chinese protected areas at the family, genus, and
species levels and explored the relationships between histori-
cal and contemporary climate and plant richness based on
different groups of vascular, fern, seed, gymnosperm, and
angiosperm plants. The testing of these two hypotheses will
allow our study to contribute to the development of effective
strategies for the conservation of plant diversity in protected
areas in China.

Materials and methods

Plant richness data. Data on plant richness, including that
of ferns (non-seed) and seed plants, including gymnosperms
and angiosperms, were collected and organized across dif-
ferent taxonomic levels (i.e., the total number of families,
genera, and species) from published records regarding natu-
ral reserves in China. The list of published records was pro-
vided by the study by Wang ef al. (2017, Figure 1). Based
on the published records, we extracted data on the plant
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Figure 1. Distribution of the protected areas in China used in our
analysis.

taxon richness found in core areas of protected areas. In
China, the goal of core zones of protected areas is to protect
relatively undisturbed natural vegetation, which has a long,
uninterrupted history in this region, and the associated data
thus represent an ideal dataset of plant richness (Tang et al.
2010, Zhang et al. 2017).

Based on previous studies (e.g., Huang et al. 2016, Feng
etal 2017, Zhang et al. 2017, Liu et al. 2018), we transposed
the plant richness data from the core zones of the protected
areas into grid data at a spatial resolution of 10 arc minutes
(c. 16 x 16 km). Different groups of vascular plants (fern,
gymnosperm, and angiosperm plants) were analysed in our
study, as vascular plants include non-seed plants (ferns) and
seed plants (gymnosperms and angiosperms). For the ac-
curate nomenclature of scientific names, we followed the
Plant List (www.theplantlist.org) and compared the lists
of families, genera, and species based on The Plant List
(http://www.theplantlist.org) and the Flora of China
(http://frps.iplant.cn/) to identify the plant groups in our
study. We deleted the wrong data on plant richness of pro-
tected areas. We found that the effect of the area of a nature
preserve on plant richness could be excluded from further
analyses because there was no significant relationship be-
tween reserve size and plant richness across the different
taxonomic levels (i.e., the total number of families, genera,
and species) based on linear regression modelling (P > 0.05).
Finally, data from protected areas were obtained (detailed
information in the Supplemental data and Figure 1).

Climate data. The MAT and MAP were used to assess the
legacy effects of climate on the large-scale distributional
pattern of plant richness (e.g., Svenning et al. 2015, Feng
et al. 2017, Blonder et al. 2018). Feng et al. (2017) showed
that historical and contemporary MAT and MAP could in-
fluence plant endemism in China. We downloaded the grid
maps of historical and contemporary MAT and MAP at a
spatial resolution of 10 arc minutes (ca. 16 x 16 km) from

the WorldClim database (http://www.worldclim.org/). The
extremely dry and cold climate during the Last Glacial Maxi-
mum (LGM; approximately 22,000 years ago) excluded trop-
ical forests from China and caused other strong vegetational
changes (Wang et al. 2012, Feng et al. 2017). Paleoclimate
(i.e., the LGM) has been shown to be the main driver of
plant richness at large scales (e.g., Kreft & Jetz 2007, Sven-
ning & Skov 2007, Fang et al. 2012, Svenning et al. 2015).
The Holocene has not been long enough to have allowed
speciation in most cases (Lister 2004, Svenning ef al. 2015);
hence, we used average climate data from 1950-2000 AD to
represent the contemporary scenario and paleoclimate data
(i.e., the LGM) for the historical scenario. Paleoclimate data
in regard to MAT and MAP were obtained from the CCSM4
general circulation model (http://www.cesm.ucar.edu/mod-
els/ccsm4.0/). The CCSM4 model consists of a coupled at-
mospheric, oceanic, and sea ice model with noninteractive
vegetation and an atmospheric resolution of 10.0 arc minutes.
The model is driven by variations in orbital configuration,
greenhouse, ice-sheet topography, and coincident sea level
changes and bathymetry for paleoclimates (Lawrence & Ole-
son 2012). The paleoclimate data have the same coordinate
system and resolution as the contemporary climate data. A
paired-sample #-test coupled with a Bonferroni adjustment
was used to evaluate the differences between the paleocli-
mate data and contemporary climate data across all the pro-
tected areas. The paired-sample z-test was conducted in JMP
version 11.0 (SAS Institute Inc., Cary NC).

Data analysis. Spatial autocorrelation in ecological data can
inflate Type I errors in statistical analyses (Diniz-Filho et
al. 2003). Hence, we used Moran’s I coefficient calculated
on the basis of a distance matrix to assess the spatial auto-
correlation in plant richness across the different taxonomic
levels (i.e., the total number of families, genera, and species)
(Diniz-Filho et al. 2003). The default settings were used
in SAM 4.0 (Rangel et al. 2010), and the default number
of distance classes was 17 with an equal number of pairs
between different protected areas according to the available
plant richness data (Rangel e al. 2010). Pearson correlation
coefficients were used to assess the correlations in plant rich-
ness between the different groups (i.e., vascular, fern, seed,
gymnosperm, and angiosperm) and taxonomic levels (i.e.,
family, genus, and species) across the protected areas. The
analysis of Pearson correlation coefficients was conducted in
JMP version 11.0 (SAS Institute Inc., Cary NC).

Then, we used geographically weighted regression (GWR)
coupled with the ordinary least squares (OLS) method to
evaluate both the historical and contemporary climates and
identify the large-scale distributional patterns of plant rich-
ness (Brunsdon et al. 1996, Mellin et al. 2014, Xu et al.
2016). GWR is a local form of linear regression that is used
to spatially model varying relationships based on the assess-
ment of nonstationarity and the effects of spatial scale on
ecological data (Brunsdon et al. 1996, Mellin et al. 2014).
Previous studies (e.g., Foody 2004, Eiserhardt et al. 2011,
Mellin et al. 2014) have shown that GWR is useful in the
investigation of spatially varying biodiversity-environment
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relationships because spatial autocorrelation and heteroge-
neity exist in ecological data. The variables pertaining to
the historical and contemporary climates (including MAT
and MAP) were regarded as explanatory variables, and plant
richness was regarded as the dependent variable across the
different groups of vascular, fern, seed, gymnosperm, and
angiosperm plants. The specific settings for the GWRs were
as follows: 1) the spatial function of the GWR was Gaussian;
2) the adaptive kernel was 10 % neighbours; and 3) optimi-
zation to minimize the AICc (corrected Akaike information
criterion) was used for all bandwidths (Brunsdon et al. 1996,
Eiserhardt et al. 2011, Xu et al. 2016). The GWR analysis
was conducted with SAM 4.0 (Rangel et al. 2010).

The correlation coefficients () and P-values from the
GWR and OLS analyses were used to assess the associations
between the historical and contemporary climates (including
MAT and MAP) and plant richness. We used the adjusted
R, i (%) from the GWR to determine the explanatory power
of the historical and contemporary climate in regard to the
large-scale distributional pattern of plant richness (Blonder
et al. 2018, Liu et al. 2018). Meanwhile, the Rzad/, (%) of
the OLS analysis was used to test the relationships between
the historical and contemporary climates and plant richness.
Then, we compared the correlation coefficient (r) and R’, i
(%) of the GWR with the OLS analysis to test whether the
GWR performed better than the OLS method (Brunsdon et
al. 1996).

Finally, we used OLS to determine the best predictors
of the large-scale distributional patterns of plant richness at
different taxonomic levels (i.e., the total number of species,
families, and genera) across the vascular, fern, seed, gymno-
sperm, and angiosperm plant groups in independent analyses
(Nagelkerke 1991, Liu et al. 2018). The adjusted Rz,ddj (%)
from the OLS analysis was used to determine the explanatory
power of climate in regard to the large-scale distributional
patterns of plant richness. We conducted the OLS analysis
in JMP 10.0 (SAS Institute Inc., Cary, NC).

Results

The ranges of vascular plant richness were 11-257, 30-1372,
and 45-4543 at the family, genus, and species levels, respec-
tively (Table 1). The average vascular plant richness was
132, 506, and 1117 from the family to species level (Table
1). Specifically, the average fern species richness was 20, 40,
and 87 at the family, genus, and species levels, respectively,
and the average seed plant species richness was 112, 467, and
1027 at the family, genus, and species levels, respectively
(Table 1). The average family, genus, and species richness
values were 4 (ranging from 1 to 10), 8 (ranging from 1 to
33) and 14 (ranging from 1 to 102) for gymnosperms and
108 (ranging from 22 to 203), 460 (ranging from 52 to 1,244)
and 1,024 (ranging from 65 to 3,931) for angiosperm plants,
respectively (Table 1).

The MAP and MAT in the contemporary climate were
significantly higher than those in the paleoclimate (paired-
sample t-test; P < 0.05). Specifically, the average historical
MAT was 5.1 °C (ranging from -14.8 °C to 21.9 °C), and
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Table 1. Basic description of plant richness in protected areas in
China

Mean SD Max. Min.

Vascular plant family 132 58.0 257 11
Vascular plant genus 506 267.4 1372 30
Vascular plant species 1117 773.2 4543 45
Fern family 20 13.4 50 1
Fern genus 40 31.8 127 1
Fern species 87 92.0 594 1
Seed plant family 112 449 210 22
Seed plant genus 467 234.1 1251 53
Seed plant species 1027  689.2 3949 43
Gymnosperm family 4 24 10 1
Gymnosperm genus 8 5.9 33 1
Gymnosperm species 14 12.0 102 1
Angiosperm family 108 42.6 203 22
Angiosperm genus 460 229.0 1244 52
Angiosperm species 1024 6722 3931 65

the contemporary MAT was 10.1 °C (ranging from -8.9 °C
to 25.5 °C; Table 2). The average historical MAP was 830.7
mm (ranging from 17 mm to 2232 mm), and the contem-
porary MAP was 952.4 mm (ranging from 26 mm to 2,262
mm; Table 2).

Based on the Moran’s I coefficients, the spatial autocor-
relation in the plant richness data was low across the different
taxonomic levels (most Moran’s I coefficients were < 0.200
or > -0.200; Figure 2). We found that there were significant
correlations in plant richness among the different taxonomic
levels (i.e., families, genera, and species; P < 0.05; Table
3). Additionally, a significant relationship of plant richness
among the different vascular, fern, seed, gymnosperm, and
angiosperm plant groups could be detected (P < 0.05; Table
3). The correlation coefficients were the largest (0.9979; P
< 0.05) between seed and gymnosperm plants at the family
level, between vascular and seed plants at the genus level
(0.9979; P <0.05), and between seed and angiosperm plants
(0.9979; P < 0.05) at the species level (Table 3).

All the correlation coefficients in the GWR between the
historical and contemporary climate variables (including
MAT and MAP) and plant richness were higher than 0.49
(P <0.001), and those in the OLS analysis were higher than
0.20 across the different taxonomic levels (P < 0.001; Table
4). Values of R’, i (70) represent the adjusted R, 4 (70) values
obtained from the GWR and OLS analyses conducted to
determine the explanatory power of historical and contempo-
rary climate variables on the large-scale distributional pattern
of plant richness. Based on R’ " the GWR showed better
modelling performance than the OLS analysis, indicating
that both historical and contemporary climate coupled with
spatial autocorrelation can explain the distributional patterns
of plant richness at large scales (Table 4).
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Table 2. Basic description of mean annual temperature (MAT; °C) and
mean annual precipitation (MAP; mm) in protected areas in China

Mean SD Max. Min.

Historical MAT 53 8.2 219  -148
Historical MAP 842.0 5347 2232 17
Contemporary MAT 10.3 7.1 25.5 -8.9
Contemporary MAP 962.6  520.7 2262 26

The following results regarding the R’, ;; vValue were ob-
tained from the GWR. The combination of historical and
contemporary climate could explain the richness of vascular
plant families, genera, and species (RZ = 25.8 %, 26.1 %,
and 26.4 %, respectively; P < 0.001; Table 4), and both
historical and contemporary climate had the strongest ex-
planatory power in regard to the richness of fern genera and
species (RZ =34.6 % and 37.6 %, respectively; P < 0.001;
Table 4). The historical and contemporary MAT and MAP
had the strongest explanatory power in regard to richness
at the family level (P < 0.001; Table 4) but the smallest
explanatory power in regard to species richness based on the
Rzadj (%) from the OLS analysis (P < 0.001; Table 4).

Historical MAT explained plant richness at different taxo-
nomic levels in a better way than contemporary MAT, and
this explanatory power of the MAP was opposite to that
of the MAT across the different taxonomic levels (Figure
3). Furthermore, the explanatory power of the contempo-
rary MAP was the strongest for plant richness at the family,
genus, and species levels (Figure 3). With the exception of
historical and contemporary MAT, historical and contempo-
rary climate variables better explained fern richness than seed
plant richness across all the taxonomic levels (Figure 3). Re-
garding gymnosperm and angiosperm plants, the explanatory
power of historical and contemporary climates was stronger
for gymnosperm plant richness than angiosperm plant rich-
ness across all taxonomic levels (Figure 4). Furthermore, the

— Vascular family
— Vascular genus
— Vascular species
— Fern family
— Fern genus
— Fern species
— Seed family
Seed genus
— Seed species
— Gymnosperm family
—— Gymnosperm genus

Moran’s | coefficients

Min. Distances in km Max.

Figure 2. Moran’s I coefficients across different taxonomic levels
(i.e., families, genera, and species) and groups (i.e., vascular, fern,
seed, gymnosperm, and angiosperm plants).

historical and contemporary MAP had the strongest explana-
tory power in regarding to angiosperm plant richness at the
family level (R’ > 60.0%; P < 0.001; Figure 4).

Discussion

Our results showing that the average vascular plant rich-
ness was 132 (ranging from 11 to 257), 506 (ranging from
30 to 1,372), and 1,117 (ranging from 45 to 4,543) at the
family, genus, and species levels, respectively, and that the
plant richness was also high for fern, seed, gymnosperm,
and angiosperm plants in protected areas of China (detailed
information in Table 1) indicate that the protected area net-
work in China has rich plant resources. In particular, Chinese
protected areas have a high richness of angiosperm plants
(Table 1). Hence, the ability of protected areas to conserve
plant richness is strong in China.

We found that the contemporary climate variables (i.e.,
MAP and MAT) were significantly higher than those for
the paleoclimate (paired-sample t-test; P < 0.05; Table 2),
and previous studies (e.g., Aratjo et al. 2011, Keppel et al.
2015, Wan et al. 2018) have shown that climate change has
a high potential to threaten the effectiveness of protected
areas in terms of conserving plant diversity at large scales.
The exploration of the legacy effects of climate on the large-
scale distributional patterns of plant richness is key for plant
diversity conservation in protected areas in China. Based on
the database of plant richness data from Chinese protected
areas (with low spatial autocorrelation in plant richness data
across different taxonomic levels; Figure 2), we examined
the legacy effects of historical and contemporary climate on
the large-scale distributional patterns of plant richness across
different taxonomic levels.

The results of our GWR for both the historical and con-
temporary climate show significant explanatory power in
terms of plant richness in China across various taxonomic
levels (Table 4; Figures 3, 4), which hints that historical
and contemporary climate affect the large-scale distributional
patterns of plant richness across various taxonomic levels.
Interestingly, the MAT was more important in the historical
climate scenario than the present day scenario; however, the
opposite was true of MAP according to the results of the
explanatory power analysis (Figures 3, 4). The explanatory
power of the historical and contemporary climate variables
was higher at the family and genus levels and decreased at
the species level based on the results regarding R’ (Figures
3, 4). O'Brien et al. (1998) showed that the realized distri-
butional limits of families and genera (unlike species) could
be constrained by year-round or seasonally high ambient
energy and by seasonally low ambient energy regardless of
the water regime. Therefore, the historical and contemporary
climate can better explain family and genus richness than
species richness. Furthermore, historical and contemporary
climate variables (including MAT and MAP) were found to
better explain the richness of fern (non-seed) plants than that
of seed plants (Figures 3, 4).

Some studies (e.g., Wang et al. 2012, Svenning & San-
del 2013, Svenning et al. 2015) have found that both the
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Table 4. Results of geographically weighted regression (GWR) and ordinary least squares (OLS) analysis of the effects of both historical and

contemporary climate on plant richness

GWR OLS

r R*adj (%) P-value r R*adj (%) P-value
Vascular plant family 0.560 25.8 <0.001 0.491 23.8 <0.001
Vascular plant genus 0.563 26.1 <0.001 0.474 22.1 <0.001
Vascular plant species 0.566 26.4 <0.001 0.461 20.9 <0.001
Fern family 0.624 339 <0.001 0.552 30.1 <0.001
Fern genus 0.629 34.6 <0.001 0.544 29.3 <0.001
Fern species 0.613 37.6 <0.001 0.499 24.5 <0.001
Seed plant family 0.611 322 <0.001 0.536 28.4 <0.001
Seed plant genus 0.629 34.6 <0.001 0.521 26.8 <0.001
Seed plant species 0.636 35.6 <0.001 0.508 25.5 <0.001
Gymnosperm family 0.586 28.9 <0.001 0.512 259 <0.001
Gymnosperm genus 0.566 26.5 <0.001 0.438 18.8 <0.001
Gymnosperm species 0.521 21.2 <0.001 0.361 12.7 <0.001
Angiosperm family 0.543 23.7 <0.001 0.454 20.3 <0.001
Angiosperm genus 0.567 26.6 <0.001 0.453 20.2 <0.001
Angiosperm species 0.576 27.6 <0.001 0.444 19.3 <0.001

This table shows the correlation coefficients (r) and P-values of GWR and OLS analysis of the associations between historical and contemporary
climate variables (including MAT and MAP) and plant richness across different taxonomic levels (i.e., family, genus, and species) based on the

vascular, fern, seed, gymnosperm, and angiosperm plant groups.

historical and contemporary climate can explain large-scale
distributional patterns of plant richness. However, these ef-
fects may change across different taxonomic levels depend-
ing on the MAT and MAP (Figures 3, 4). There is ample
evidence showing that Quaternary climatic change shaped
the current patterns of plant richness and endemism across
different regions of the world (e.g., North America, Europe,
and Africa; Svenning & Skov 2007, Normand et al. 2011,
Svenning et al. 2015, Barnosky et al. 2016, Cotton et al.
2016). The dynamics of plant richness may not follow the
climatic equilibrium (Svenning & Sandel 2013, Svenning
et al. 2015). In addition, a shift to a new climatic equilib-
rium can cause time lags (Svenning & Sandel 2013, Sven-
ning et al. 2015). Plant species may experience a slower
response to changes in temperature than to those of precipi-
tation, and in many places, the migration of these species
has shown a time lag in response to temperature changes
(Svenning & Sandel 2013, Normand et al. 2011, Svenning
et al. 2015).

Plant community structure is strongly influenced by water
under environmental change, and plant richness is strongly
correlated with current water availability on a large scale
(O'Brien 1998, O'Brien et al. 1998, Yang et al. 2011). For
example, the distributional pattern of plant richness is an
important link to late Cenozoic precipitation trends, and a
positive correlation between the mean annual rainfall and
woody plant richness can be observed in southern Africa
(O'Brien 1998, O'Brien et al. 1998). Therefore, the response
lags of plant richness to historical temperature and the ef-

fects of current precipitation on plant richness may drive the
distributional pattern of plant richness at a large scale.

Blonder et al. (2018) found that paleoclimate (i.e., MAT
and MAP) is a better predictor of the spatial pattern of con-
temporary functional plant composition than contemporary
climate predictors. The spatial pattern of contemporary func-
tional plant composition is related to the distribution of plant
richness at large scales (Petchey & Gaston 2002, Thompson
et al. 2005, White et al. 2018). Furthermore, plant species
diversity may change more than functional-trait diversity
because high levels of trait-based redundancy imply that
the loss of a particular species should not affect ecosystem
functions because of the maintenance of other species with
similar traits (D1az & Cabido 2001, Petchey & Gaston 2006).
Relationships between functional-trait diversity and plant
richness can still exist at various spatial and temporal scales
(Petchey & Gaston 2002, 2006, Kraft et al. 2015). Hence,
historical MAT may have greater effects than contemporary
MAT on the distributional pattern of plant richness, and
contemporary MAP could also strongly affect the plant rich-
ness pattern.

The explanatory power of the historical and contemporary
climate variables in regard to plant richness varied across
the different taxonomic levels (Table 4; Figures 3, 4). Spe-
cifically, the historical and contemporary climate had the
strongest explanatory power in terms of the family richness
and the smallest explanatory power in regard to the species
richness (Table 4; Figures 3, 4). The family taxonomic level
can define the collective evolutionary distinctiveness of a set
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Figure 3. Changes in the large-scale richness of vascular, fern, and seed plants as a function of historical and contemporary climate across dif-
ferent taxonomic levels. The lines associated with the points in each panel indicate the relationships between historical and contemporary climate
and plant richness across different taxonomic levels (i.e., family, genus, and species). Shaded areas over the dashed regression lines represent the
95 % confidence interval of the fitted values for each evaluated order. Values of R’ represent the adjusted R , (%) values from the OLS analysis,
which indicate the explanatory power of historical and contemporary climate variables in regard to the large-scale distributional pattern of plant
richness. We transferred the values of R? ; to Figure 3 based on the unit “%". Plant richness represents the number of families, genera, and species.
All the R, 4 (%) values obtained from the OLS analysis were significant (P < 0.05).
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Figure 4. Changes in the large-scale richness of gymnosperm and angiosperm plants as a function of historical and contemporary climate across
different taxonomic levels. The lines associated with the points in each panel indicate the relationships between historical and contemporary climate
and plant richness across different taxonomic levels (i.e., family, genus, and species). Shaded areas over the dashed regression lines represent
the 95 % confidence intervals of the fitted values for each evaluated order. Values of R’ represent the adjusted R’ (%) values obtained from the
OLS analysis, which indicate the explanatory power of historical and contemporary climates in regard to the large-scale distributional pattern of
plant richness. We transferred the values of R’, ; 10 Figure 4 based on the unit “%". Plant richness represents the number of families, genera, and
species. All the R’ ;i (%) values obtained from the OLS analysis were significant (P < 0.05).
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of species (Qian & Ricklefs 2007, Huang et al. 2016). Fur-
thermore, species’ abilities to thrive in an environment, resist
and solve physiological problems, interact with other species
and influence various ecosystem processes are determined
by their functional traits (Diaz & Cabido 2001, Fonseca &
Ganade 2001, Rosenfeld 2002, Kuebbing et al. 2018). In
other words, while some species exhibit uncommon traits
(functionally unique species), other species are functionally
similar (i.e., represent redundant species) within one specific
family (Naeem 1998, Rosenfeld 2002). Hence, the effects of
historical and contemporary climate on the large-scale distri-
butional pattern of plant richness were found to be significant
at the family level.

Furthermore, other recent environmental variables (e.g.,
human influences and usage of land) may influence the dis-
tributional patterns of plant species richness at large scales
(Kier et al. 2005, Gerstner et al. 2014). Such effects may
escalate with increases in habitat areas and ranges (Lundholm
2009). The habitat areas and distributional ranges of plants
are generally wider at the family level than at the species
level (O'Brien et al. 1998, Huang et al. 2016). Therefore,
the explanatory power of the historical and contemporary
climate in regard to plant richness may rely on changes
in taxonomic level (i.e., family, genus, and species) due to
changes in habitat areas and distributional ranges.

Our results indicate that the influence of climate on plant
richness at large scales differs between non-seed and seed
plants (Table 4 and Figure 3). Fossil plant records (e.g., Du-
biel 1987, Collinson 2001, 2002, Watkins & Cardelas 2012,
Naugolnykh et al. 2016) indicate that paleoclimates have
affected the large-scale distributional pattern of ferns, while
current bioclimatic variables, mainly those related to humid-
ity (as water is an essential medium for fern reproduction),
are closely associated with the variation in fern community
composition. The physiological requirements and relative
habitat restrictions of fern plants make them more sensitive
to climate change than seed plants, and the effects of climate
on plant richness may therefore differ between fern and seed
plants (Schneider et al. 2004, Peppe et al. 2014).

We found that the explanatory power of the historical and
contemporary climate variables was higher for gymnosperm
plant richness than for angiosperm richness (Table 4 and
Figure 4). Such variation in explanatory power may be the
result of evolutionary history and physiological adaptions to
historical and contemporary climate (Wang ez al. 2010, Yang
et al. 2014, Lu et al. 2018, Xu et al. 2018). For instance,
Lu et al. (2018) found that herbaceous plants usually have
higher molecular substitution rates than woody plants, partly
due to their shorter generation times, apparently enabling
herbaceous species in China to adapt quickly in response
to climate change through increased genetic divergence and
higher speciation rates.

Environmental heterogeneity and precipitation are the
most important predictors of the diversity patterns of gymno-
sperms, followed by historical temperatures (Lii ef al. 2018).
A number of gymnosperm plants are distributed mainly in
western China (Lii ez al. 2018), and there is a large difference
in historical temperature and contemporary precipitation be-
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tween eastern and western China (Qin et al. 2015, Lu et al.
2018, Lii et al. 2018). Furthermore, the temperature sensitiv-
ity of spring tree growth, water use, and successional strate-
gies vary dramatically between the dominant angiosperm and
gymnosperm plants (Bond 1989, Ma et al. 2016, Wan et al.
2017, Trugman et al. 2018). The differences in the variables
correlated with plant richness between gymnosperm and an-
giosperm plants may be related to their evolutionary histories
and physiological adaptions to historical temperature and
contemporary precipitation (Lu et al. 2018, Lii ef al. 2018).
Hence, historical and contemporary climate influence the
large-scale distributional patterns of gymnosperm and angio-
sperm plant richness to different extents.

Our study used protected area data to explore the ef-
fects of historical and contemporary climate on the large-
scale distributional patterns of plant richness across different
taxonomic levels, contributing to the conservation of plant
diversity in China. China is the country/territory on Earth
experiencing the greatest degree of land transformation (Liu
et al. 2003, Lopez-Pujol et al. 2006, Zhang et al. 2017).
Based on our results that the historical climate can shape the
large-scale distributional pattern of plant richness, we predict
that it will take a long time for the plant diversity in China
to recover if the plant richness is damaged. Furthermore, it
will be necessary to use large-scale data from protected areas
to assess the effects of climate change on plant diversity in
protected areas around the world (Aratjo et al. 2011, Wan
et al. 2014, Keppel et al. 2015, Wan et al. 2018). Thus,
plant diversity data from protected areas could be benefi-
cial not only for scientists but also for decision makers and
practitioners in other fields (Aratijo et al. 2011, Wan et al.
2016, Zhang et al. 2017). Hence, future studies should pay
attention to the strategic value of different protected areas
in the context of the plant diversity they protect, especially
considering the current trends of land transformation around
the world.

In conclusion, the distributional patterns of plant richness
at large scales could be predicted across different taxonomic
levels after the assessment of paleoclimate and contempo-
rary climate data. Pleistocene temperature and current pre-
cipitation effects were studied to understand plant richness
patterns, and such effects were found to be most important
at the family level. In particular, the historical and contem-
porary climate data were better correlated with fern plant
richness than with seed plant richness. Understanding the
effects of historical and contemporary climate on the large-
scale distributional patterns of plant richness across various
taxonomic levels may help guide predictions of future plant
diversity and facilitate the conservation of plant diversity
under climate change.
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