
569
Botanical Sciences	 96 (4): 569-581, 2018

This is an open access article distrib-
uted under the terms of the Creative 
Commons Attribution License CC 
BY-NC (4.0) international.

DOI: 10.17129/botsci.1989

Resumen
Antecedentes: Cambios en los patrones hidrológicos degradan la estructura forestal y afectan la producti-
vidad primaria. Con acciones de restauración hidrológica, se pretende restablecer condiciones biogeoquí-
micas para facilitar el establecimiento, sobrevivencia y crecimiento de la vegetación del manglar que 
permitan la recuperación de la estructura forestal y la productividad de raíces subterráneas (< 20 mm).
Pregunta: ¿Pueden los cambios ambientales inducidos por la restauración hidrológica reactivar la pro-
ductividad de raíces?
Especie en estudio: Los cambios en biomasa y productividad de raíces subterráneas de Avicennia germi-
nans fueron usadas como indicador de éxito de la restauración.
Sitio de estudio y fechas: Isla del Carmen, Laguna de Términos, Campeche, agosto de 2013 a febrero de 2015.
Métodos: Se seleccionaron tres sitios de manglar en restauración y uno natural como referencia. En ellos 
se evaluó la concentración de algunos nutrientes (nitratos, nitritos, amonio y fosfatos) y reguladores como 
la salinidad y el hidroperíodo. Se evaluó entre sitios la biomasa y productividad de raíces en núcleos de 
crecimiento enterrados a 30 cm de profundidad durante 18 meses.
Resultados: La productividad de raíces < 20 mm de diámetro fue menor en los sitios en restauración (17 
a 233 g m2 año-1) que en el sitio de referencia (414 g m2 año-1). La productividad de raíces estuvo asociada 
con la estructura forestal y las condiciones hidrológicas.
Conclusiones: La proporción de raíces > 2 mm de diámetro fue mayor en el sitio de referencia y decreció 
hacia los sitios restaurados, indicando que la estructura forestal (regeneración natural) y el tiempo (años) 
después de la restauración fue importante para la recuperación funcional del ecosistema de manglar.
Palabras clave: biogeoquímica, hidroperíodo, producción subterránea, raíces finas, rehabilitación hidro-
lógica.

Abstract
Background: Changes in hydrological patterns produce degradation that affects forest structure and pri-
mary productivity. With actions of hydrological restoration, it is intended to restore biogeochemical condi-
tions to facilitate the establishment, survival and growth of mangrove vegetation to recovering the forest 
structure and the productivity of underground roots (< 20 mm).
Research question: Inducing changes in environmental variables through hydrological restoration reacti-
vate the process of roots production?
Study species: Biomass and fine roots production of Avicennia germinans were used as indicators of 
restoration success.
Study sites and dates: This study was carried out from August 2013 to February 2015 in Isla del Carmen, 
located in Terminos Lagoon, Campeche.
Methods: The study included four sampling sites, three of which were sites restored at different times. The 
fourth one was a natural undisturbed mangrove patch used as a reference for comparisons. After incuba-
tion of about 18 months within buried growth cores in each study site, biomass and roots production were 
quantified and contrasted.
Results: The restored sites showed a lower root production (< 20 mm) (17 to 233 g m2 yr-1) regard to the 
reference site (414 g m2 yr-1). The analyses showed that production is determined by the forestry structure 
and hydrological conditions.
Conclusion: The proportion of roots > 2 mm in diameter was greater in the reference site and decreased 
towards the restored sites, indicating that the forest structure (natural regeneration) and the time (years) 
after the restoration was important for the functional recovery of the mangrove ecosystem.
Keywords: belowground production, biogeochemistry, fine roots, hydrological rehabilitation, hydroperiod.
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L os manglares son ecosistemas dominantes en la zona intermareal de las regiones tropicales y 
subtropicales (Twilley & Day 2012, Clough 2013). Forman hábitats constituidos por plantas 
tolerantes a suelos salinos e hipersalinos, y muy reducidos por la falta de oxígeno por estar 
inundados frecuentemente (Lugo & Snedaker 1974, Tomlinson 2016). Una de las razones de su 
éxito es que poseen raíces aéreas que, aparte de brindar soporte mecánico a la planta, transportan 
oxígeno a la rizósfera; las raíces transportan nutrientes y savia elaborada, además que absorben 
agua y nutrientes del substrato (Srikanth et al. 2015).

Muchos microorganismos que son importantes en los ciclos biogeoquímicos viven asociados 
a las raíces del manglar (Bashan & Holguin 2002, Gomes et al. 2014). Las raíces son también 
hábitat para una meiofauna y la macrofauna muy diversa (Bosire et al. 2008, Nagelkerken & 
Faunce 2008, Serafy et al. 2015) y su arquitectura es aprovechada como guardería y refugio 
durante parte del ciclo de vida de muchas especies de importancia ecológica y comercial que 
además aprovechan el detritus generado por la descomposición de la hojarasca y las raíces finas 
(Nagelkerken et al. 2008, Zhila et al. 2014).

Los manglares tienen dos tipos de raíces que pueden representar hasta el 60 % del total de la 
estructura del árbol (Komiyama et al. 2008): (1) aéreas (crecen por arriba del suelo), que tienen 
forma de zanco y dan apoyo mecánico en Rhizophora o de pneumatóforos que crecen vertical-
mente y permiten un intercambio directo entre la atmósfera y el suelo (ejemplo, Avicennia spp. 
y Laguncularia racemosa; (2) las subterráneas que transportan nutrientes y agua (Adame et al. 
2017). Las raíces subterráneas se pueden dividir de acuerdo a su grosor (Komiyama et al. 1987, 
Vogt et al. 1998, Adame et al. 2017); reconociendo que las raíces de 0 a 20 mm funcionan para 
tomar agua y nutrientes del substrato; las mayores a 20 mm sirven para la comunicación entre 
pneumatóforos, cuyo crecimiento radial proporciona soporte y cobertura subterránea al árbol. 
Por otro lado, la biomasa y productividad de las raíces finas tienen una relación directa con la 
elevación del suelo (acreción) pudiendo responder al incremento del nivel del mar (McKee 
2011). El suelo de los manglares está compuesto por sedimentos minerales y componentes orgá-
nicos, fundamentalmente raíces, pero también madera y hojarasca derivados de la productividad 
primaria del manglar.

En los estuarios hay abundantes sedimentos terrígenos (alóctonos, constituidos por minera-
les) que forman planicies lodosas que los manglares pueden colonizar (Thom 1967, Feller et 
al. 2010, Lovelock et al. 2015, Woodroffe et al. 2016). En contraste, en ambientes sin ríos con 
poco aporte de sedimentos, los manglares son la fuente primordial de la acumulación del suelo 
autóctono y principalmente orgánico (McKee & Faulkner 2000, Cahoon et al. 2006, McKee 
2011). La producción de las raíces subterráneas en los manglares contribuye a la formación de la 
turba, y son la acumulación de raíces vivas y muertas quienes mayor contribuyen en la elevación 
del suelo (Krauss et al. 2013). Además, se ha establecido claramente que los manglares tienen 
una contribución significativa en la captura subterránea de carbono a través de las raíces finas 
(Chmura et al. 2003, Alongi 2014).

Debido a que la biomasa y productividad de raíces presentan variaciones en función de la 
estacionalidad anual, la calidad ambiental y gradientes de hidroperíodo (Castañeda-Moya et al. 
2011), es posible utilizar su cuantificación como un método confiable para evaluar el estado 
ecológico de un manglar (Reddy & DeLaune 2008). Además, la evaluación de la productividad 
de las raíces ante los cambios cualitativos y biogeoquímicos del agua y suelo o de disponibilidad 
de nutrientes, permiten también evaluar el estado de conservación de los manglares (Feller et al. 
2003, Naidoo 2009, Castañeda-Moya et al. 2013).

Las raíces son clave en el proceso de oxigenación del suelo durante las inundaciones, por-
que participan en el intercambio gaseoso entre el suelo, el agua y la atmósfera (Skelton & 
Allaway 1996, Alongi & Brinkman 2011), modifican el pH y mejoran la infiltración de agua 
y el transporte de nutrientes (Srikanth et al. 2015). Las raíces forman asociaciones simbióticas 
con bacterias y hongos (Bashan & Holguin 2002). La productividad de raíces en función de la 
disponibilidad de nutrientes, principalmente el déficit de fósforo (ambientes carbonatados); la 
productividad puede aumentar de 40 a 60 % respecto a la aérea (Komiyama et al. 2000, Cas-
tañeda-Moya et al. 2013). Cuando el fósforo es escaso, hay mayor productividad de biomasa 
subterránea debido a una mayor asimilación y reciclaje del fósforo (Sherman et al. 2003, Ka-
pulnik & Koltai 2016). Adicionalmente, la rápida producción, senescencia y descomposición de 
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las raíces, son consideradas variables integradoras del funcionamiento del ecosistema (Ellison 
2000, McKee & Faulkner 2000, Donato et al. 2011, Ouyang et al. 2017), y son especialmente 
importantes en el proceso de formación de suelo en los manglares establecidos en ambientes 
carbonatados, un factor crítico para la resiliencia del ecosistema ante la elevación del nivel del 
mar (Cahoon et al. 2006).

La degradación y pérdida de los manglares es un problema global (Giri et al. 2011). En 
México, se ha perdido alrededor del 10 % de los bosques de manglar en un periodo de tan sólo 
35 años (Valderrama-Landeros et al. 2017). Es por ello que se ha enfatizado la importancia de 
su restauración para recuperar sus procesos y funciones (Zaldivar-Jimenez et al. 2010, Rodrí-
guez-Zúñiga et al. 2013), especialmente en la mitigación de los efectos del cambio climático. 
Documentar y comprender los efectos de la restauración hidrológica sobre la productividad de 
raíces, abre la posibilidad de utilizarla como indicador de la recuperación de funciones del eco-
sistema (McKee & Faulkner 2000).

Este estudio tiene como objetivo evaluar la biomasa y productividad de raíces subterráneas 
de manglares en tres sitios sujetos a acciones de restauración con diferente condición ecológica 
(estructura forestal y tiempo de restauración hidrológica) y compararlo con un sitio de referencia 
natural. El propósito de este estudio fue evaluar la utilidad de la biomasa y la productividad de raí- 
ces como indicador de la recuperación de los manglares sometidos a restauración hidrológica.

Materiales y métodos

Área de estudio. El área de estudio fue en el estero Bahamitas en la Isla del Carmen, Campe-
che, dentro del Área de Protección de Flora y Fauna Laguna de Términos. Está en una isla de 
barrera (Bach et al. 2005) constituida por dunas y cordones litorales arenosos; detrás de ellos, 
se distribuyen los manglares de franja y cuenca en función de las mareas y la microtopografía 
(Lugo & Snedaker 1974).

La laguna de Términos tiene un área aproximada de 2,500 km2 y una profundidad media de 
3.5 m, tiene una descarga de agua dulce continental y un comportamiento estuarino (Yañez-
Arancibia & Day 2010). El sistema lagunar se separa en la zona occidental que recibe la mayor 
proporción de la descargas de los ríos y un aporte de sedimentos lodosos; y la zona oriental 
predominan los sedimentos calcáreos (Bach et al. 2005). A través de la corriente litoral entra el 
agua del Golfo de México a la laguna de Términos desde las Bocas de Puerto Real y del Carmen 
(Contreras-Ruiz et al. 2014). Las especies que se distribuyen en el área de estudio son Rhizo-
phora mangle L. (mangle rojo), Avicennia germinans (mangle negro), Laguncularia racemosa 
(mangle blanco) y Conocarpus erectus L. (mangle botoncillo) (Day et al. 1987). Además, hay 
en la zona lagunar praderas de pastos marinos, principalmente Thalassia testudinum (Grenz 
et al. 2017).

El clima de la región es húmedo tropical con precipitaciones anuales que van desde 1,100 
– 2,000 mm. Las épocas climáticas que se han registrado para la región son secas (febrero-abril), 
transición (mayo), húmedo (junio-septiembre), y nortes (octubre-marzo) (Guerra-Santos & Kahl 
2018). Las mareas astronómicas en Isla del Carmen son diurnas con intervalo de amplitud de 
0.43 m, con mareas mínimas de -0.24 m y máximas de 0.92 m (Escudero et al. 2014).

El área de estudio corresponde a una zona de manglar con vegetación muerta debido a la 
pérdida de la conectividad hidrológica con la laguna de Términos que modificó los patrones 
del hidroperíodo. Por ello, se realizaron acciones de restauración ecológica donde la principal 
acción fue la rehabilitación hidrológica y el desazolve de canales de marea en función de la 
microtopografía (Figura 1). Con ello se buscó la reactivación del régimen hidrológico (princi-
palmente el hidroperíodo) y los procesos biogeoquímicos (Zaldivar-Jimenez et al. 2017).

Diseño de muestreo. Se establecieron tres sitios para cubrir un gradiente de condición ecológica 
y un sitio 4 fue utilizado como referencia (sitio testigo; Figura 1) para los análisis (Zaldivar-Jime-
nez et al. 2017). El gradiente de la condición ecológica se determinó con base en la estructura de 
la vegetación y el tiempo de la restauración. En el sitio 1 se identificaron plántulas de Rhizophora 
mangle y Avicennia germinans (altura promedio = 0.43 m, densidad = 111 ind. ha-1). En el sitio 
2 se registraron juveniles de A. germinans (altura promedio = 0.55 m, densidad = 82 ind. ha-1); 
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mientras que en el sitio 3 se registró A. germinans en forma arbustiva (altura promedio = 1.86 m, 
densidad = 1,450 ind. ha-1). El sitio 4 de referencia, fue donde se observó la cobertura vegetal 
con mayor desarrollo (A. germinans, árboles de 5.85 m de altura, densidad = 3,400 ind. ha-1) 
(Rivera-Rosales 2017). Los sitios degradados fueron sometidos a un tratamiento de restaura-
ción hidrológica en los años 2010, 2012 y 2013 (Sitio 2, Sitio 3, y Sitio 1 respectivamente). 
En cada sitio se establecieron dos unidades de muestreo para la determinación de la biomasa, 
productividad de raíces finas e hidroperíodo. En cada una de estas unidades de muestreo fueron 
medidas variables fisicoquímicas (temperatura, salinidad, pH y potencial de óxido reducción 
(Eh)), además de los nutrientes (nitritos, nitratos, amonio y fosfatos) así como la concentración 
de sulfuros del agua intersticial. La duración del experimento fue de 18 meses (agosto 2013 
- febrero 2015).

Variables hidrológicas. El régimen de inundación fue determinado con medidores automáticos 
de presión “hobo water level” (Onset Computer Corporation), instalados en cada uno de los si-
tios de estudio dentro tubos de PVC hidráulico de tres pulgadas de diámetro a una profundidad 
mayor a 50 cm. Los sensores fueron programados para registrar valores cada 60 minutos durante 
el año 2014. La duración, el nivel y la frecuencia de inundación que definen al hidroperíodo, se 
calcularon mensualmente.

La colecta de muestras de agua intersticial se realizó a 30 cm de profundidad utilizando una 
jeringa y tubos de acrílico que se introdujeron en el suelo. Las variables fisicoquímicas fueron 
medidas en campo. La salinidad y la temperatura se midieron con una sonda multiparamétrica 
YSI-30, el potencial redox (Eh) y el pH mediante un tester combo de ORP/pH (Hanna-HI9126). 
Las muestras de agua intersticial se colectaron en recipientes de plástico y se transportaron al 
laboratorio para análisis químico. Para determinar la concentración de iones se utilizó un espec-
trofotómetro CHEMetrics V-2000. La concentración de los sulfuros (S-2) del agua intersticial se 

Figura 1. Área de estudio donde se ubican los sitios de muestreo representados por los cuadrados ne-
gros; se muestran además, las áreas sometidas a restauración (color gris claro) y las zonas de manglares 

naturales o sin disturbio (color gris oscuro).
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analizó in situ mediante el método de azul de metileno, mientras que los iones restantes fueron 
determinados en el laboratorio el mismo día de su colecta utilizando cloruro de estaño para la 
determinación de PO4

-3, clorante azoico para NO2
-, reducción de cadmio para NO3

- y nessleriza-
ción directa para NH4

+ (APHA 2005).

Biomasa y productividad de raíces. Se colectaron ocho núcleos de suelo en cada sitio (cuatro 
núcleos x unidad de muestreo), mediante un nucleador de acero inoxidable (diámetro = 10 cm × 
profundidad = 30 cm). La biomasa capturada en los núcleos fue separada de las raíces mediante 
lavado y enjuague con agua dulce para eliminar el suelo completamente y lograr la separación 
de las raíces vivas (Adame et al. 2014). Las raíces fueron clasificadas para su análisis según el 
diámetro en raíces finas (< 2 mm), medianas (2 – 5 mm), gruesas (5 – 20 mm) (Komiyama et al. 
1987, Vogt et al. 1998, Adame et al. 2017). Una vez separadas, las raíces vivas se secaron a 60 °C 
por 48 horas en una estufa y se pesaron en una balanza analítica. La biomasa fue calculada me-
diante los gramos de raíces secas por metro cuadrado de suelo (Adame et al. 2014).

Para determinar la productividad de raíces, se fabricaron núcleos de crecimiento de raíces de 
10 cm de diámetro por 30 cm de altura con “peat moss” (características similares a la densidad 
del suelo del manglar) comercial libre de raíces, utilizando bolsas de plástico con luz de malla 
de 3 mm (Castañeda-Moya et al. 2011, Adame et al. 2014). Estos núcleos se implantaron ver-
ticalmente a 30 cm de profundidad en los sitios de muestreo y se incubaron por 18 meses. Al 
final de este período las unidades se extrajeron y se procesaron siguiendo el mismo protocolo 
utilizado para la determinación de la biomasa de raíces. La productividad de las raíces (g m2 año-

1) se determinó utilizando el peso de las raíces secas (g) por metro cuadrado de suelo dividido 
entre el tiempo total (años) del experimento (Adame et al. 2014).

Análisis de datos. Se calcularon los valores medios ± errores estándar de biomasa de raíces (g m-2) 
y productividad de raíces (g m-2 año). Para comparar entre sitio, los valores encontrados entre 
sitios de biomasa y productividad de raíces, así como de las variables hidrológicas (fisicoquí-
micas y químicas), se aplicó la prueba de Kruskal-Wallis (KW). Para determinar la asociación 
de la biomasa y productividad de raíces se llevó a cabo un Análisis de Componentes Principales 
(ACP). Este tipo de análisis se realiza cuando hay correlación entre variables, reduce la dimen-
sionalidad de los datos mediante relaciones lineales entre variables e identifica las que explican 
el mayor porcentaje de variación (Anderson 2003). Para el ACP se incluyeron las variables con 
diferencias significativas entre sitios. Los fosfatos (p = 0.06) también se incluyeron en el análi-
sis por ser importantes en la productividad de raíces (Mckee 2010). Para normalizar los datos se 
aplicó una transformación logarítmica (log V+1) a la biomasa, productividad, salinidad, nitratos 
más nitritos, amonio, fosfatos, periodo, nivel y frecuencia de inundación. Este análisis se llevó a 
cabo utilizando el programa PRIMER v6 (Clarke & Gorley 2006). Todos los resultados fueron 
considerados significativos a p ≤ 0.05.

Resultados

Variables hidrológicas. Huo variaciones significativas de la salinidad entre sitios (χ2 = 9.11, 
p < 0.050; Figura 2). Las salinidades más altas se registraron en los sitios 1 y 3 (57 y 56 ups, 
respectivamente) y las menores en los sitios 2 y 4 (48 y 42 ups, respectivamente). No hubo 
diferencias significativas entre sitios en la temperatura intersticial, pH, Eh y sulfuros; pero si 
en la concentración de NO2

-+NO3
- (χ2 = 15.13, p = 0.001). La mayor concentración se registró 

en el sitio 1 (6.58 mg l-1) y la menor en el sitio 4 (0.93 mg l-; Figura 2). La concentración de 
NH4

+, fluctuó entre 66.80 y 207.49 mg l-1 (χ2 = 12.73, p < 0.05, Figura 2) y hubo diferencias 
significativas entre sitio. Finalmente, la concentración de PO4

-3 varió entre 2.05 y 6.36 mg l-, y 
tampoco hubieron diferencias significativas entre los sitios de muestreo (χ2 = 7.22, p = 0.064, 
Figura 2).

Hidroperíodo. La frecuencia, la duración y el nivel de inundación fueron significativamente dife-
rentes entre sitios (χ2 = 29.93, p < 0.001). Las comparaciones múltiples indicaron que los sitios 1 
y 3 difirieron de los sitios 2 y 4 en todas las variables relacionadas con el hidroperíodo (Figura 3). 
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Los mayores niveles de inundación y las inundaciones más prolongadas se registraron en los si-
tios 1 y 3 (0.11 – 0.33 m; 473 - 738 h mes-1). En contraste, los valores de inundación y el periodo 
en los sitios 2 y 4 oscilaron entre 0.04 – 0.12 m, y 95 – 524 h mes-1 respectivamente. Finalmente, 
se registraron de 9 a 17 inundaciones mes-1 en los sitios 2 y 4, y de 1 a 5 inundaciones mes-1 en 
los sitios 1 y 3 (Figura 3).

Biomasa y productividad de raíces. Hubo diferencias significativas entre sitios, en la biomasa 
(χ2 = 19.85, p < 0.001) durante el periodo de estudio. En los sitios 3 y 4 se registró la mayor 
biomasa de raíces (Tabla 1). En todas las categorías de raíces analizadas, la biomasa de raíces 

Figura 2. Variación espacial de la características fisicoquímicas y químicas (valor promedio y error 
estándar). Las letras distintas indican que hubo diferencias significativas entre los sitios.

Biomasa (g m-2) Sitio 1 Sitio 2 Sitio 3 Sitio 4 χ2 p

Finas
1.7 a 10.2 b 434.2 c 354.6 c

19.6 < 0.001
(0.8, 3.8) (5.20, 31.2) (310.7, 581.9) (215.8, 414.8)

Medianas
0 a 86.6 b 225.4 c 201.2 c 

20 < 0.001
(0, 2.5) (49.7, 98.0) (197.3, 294.1) (132.7, 293.8)

Gruesas
0 a 21.6 a 287.7 b 606.1 c

19.9 < 0.001
0, 8.59 (0, 48.38) (227.91, 401.07) (424.6, 1173.0)

Total
1.7 a 118.4 b 988.0 c 1140.2 c

19.8 < 0.001
(0.8, 17.5) (67.6,164.9) (725.7, 1208.3) (963.8,1936.9)

Productividad (g m-2 año-1)

Finas
6.4 a 55.9 b 47.8 b 153.0 b

14.5 < 0.001
(5.7, 24.4) (32.6, 93.2) (14.9, 100.8) (102.0, 227.7)

Medianas
5.3 80.6 32.9 121.5

7.31 0.062
(0, 31.1) (13.1, 127.5) (22.0, 118.4) (52.3, 144.4)

Gruesas
0 95.8 49.9 85.7

3.47 0.324
(0, 26.8) (0, 132.26) (12.1, 310.5) (0, 353)

Total
16.8 a 232.5 b 197.7 b 414 b

11.1 0.011
(5.7, 79.8) (64.1, 313.9) (71.4, 496.6) (280, 634.2)

Tabla 1. Biomasa y productividad de raíces para cada una de las categorías de raíces, se presentan todos 
los sitios de muestreo con su mediana (percentil de 25 y 75 %). Letras diferentes indican diferencias signi-
ficativas (p < 0.05).
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fue mayor en los sitios 3 y 4. La contribución de las raíces finas y medianas fue mayor en el 
sitio 3, con el 46 % en las finas (χ2 = 19.60, p < 0.001) y el 24 % en las medianas (χ2 = 20.0, 
p < 0.001); mientras que la mayor proporción de las raíces gruesas fue en el sitio 4 con el 52 % 
(χ2 = 19.94, p < 0.001; Tabla 1).

La productividad de raíces también varió significativamente entre sitios (χ2 = 11.07, 
p < 0.05), siendo mayor en el sitio 4, intermedia los sitios 2 y 3 y menor el sitio 1 (Tabla 1), 
asociándola a la cobertura de la vegetación presente. Adicionalmente, la productividad de raíces 
finas fue mayor en el sitio 4 que respecto a los demás sitios de muestreo (χ2 = 14.54, p < 0.05). 
Sin embargo, la productividad de raíces medianas y gruesas fue similar entre sitios (χ2 = 7.31, 
p > 0.05; χ2 = 3.47, p > 0.05, respectivamente; Tabla 1).

Los dos componentes del ACP explicaron el 79 % de la variabilidad total de los datos, en el 
primer (PC1, 51.6 % de la varianza) las variables más relevantes fueron la biomasa, la producti-
vidad de raíces y las concentraciones de NO2

-+NO3
- , NH4

+ y PO4
-3. En el segundo componente 

(PC2, 27.4 % de la varianza) las variables de mayor relevancia fueron salinidad, nivel, periodo 
y frecuencia de inundación (Tabla 2, Figura 4). Este análisis indicó una correlación negativa de 

Figura 3. Variación espacial de las características del hidroperíodo.



Pérez-Ceballos et al.

Botanical Sciences	 96 (4): 569-581, 2018
576

la biomasa y productividad de raíces con las concentraciones de NO2
-+NO3

-, NH4
+ y PO4

-3. La 
menor biomasa y productividad de raíces se registraron en el sitio 1 y 2, influenciados por las 
mayores concentraciones de PO4

-3
, NO2

-+NO3
- y NH4

+. La mayor cantidad de biomasa y produc-
tividad se registraron en el sitio natural (sitio de referencia) asociándose a mayores frecuencias 
de inundación. Por otro lado, hubo correlación positiva entre la salinidad con el nivel y el perio-
do de las inundaciones, pero negativa con la frecuencia de inundación (Figura 4).

Discusión

La cantidad de biomasa en los manglares de referencia fue de 11.62 Mg ha-1 similares a los re-
portados en los manglares de tipo franja de R. mangle en México (11.30 Mg ha-1; Adame et al. 

VARIABLES PC1 PC2

Biomasa de raíces 0.434 0.110

Productividad de raíces 0.443 -0.023

NO2
-
 + NO3

- -0.443  -0.097

NH4
+ -0.401 -0.287

PO4
-3 -0.356 -0.286

Salinidad -0.235  0.417

Nivel de inundación -0.108 0.528

Periodo de inundación -0.153 0.514

Frecuencia de inundación -0.238 -0.313

Tabla 2. Porcentaje de las variables utilizadas en el Análisis de Componentes Principales. Los números en 
negritas son los coeficientes de mayor influencia en los dos primeros componentes principales.

Figura 4. Ordenación multivariada de los componentes 1 y 2 del análisis de componentes principales 
donde se incluyeron los nutrientes, el hidroperíodo, la biomasa y productividad de raíces.
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2013) y también fue similar a los manglares tipo franja y ribereños en Micronesia (9.50 a 13.17 
Mg ha-1; Cormier et al. 2015). Además, se pudo demostrar que los manglares en restauración 
(sitio 1, 2 y 3) se ha reactivado el proceso de producción de raíces y que la variabilidad dependió 
de la estructura forestal presente, encontrándose valores de 0.02 y 9.47 Mg ha-1 que correspon-
den a sitios con plántulas y con arbustos de A. germinans respectivamente. Las variaciones de 
la biomasa de raíces entre tipos de manglar de diferentes escenarios ambientales está en función 
de la densidad de árboles, la salinidad del suelo y el hidroperíodo (Adame et al. 2017).

La productividad de raíces en los manglares en restauración (sitio 1, 2 y 3) fluctuó entre 0.17 
a 2.32 Mg ha-1 año-1 y de 3.60 Mg ha-1 año-1 para los manglares de referencia (sitio 4); lo que fue 
similar a la valores reportados para los manglares conservados (1.4 a 2.89 Mg ha-1 año-1; Casta-
ñeda-Moya et al. 2011) y restaurados en Florida (1.83 a 2.10 Mg ha-1 año-1; McKee & Faulkner 
2000). Además, se comparó con otros manglares naturales de Belice que fue de 0.43 a 1.97 Mg 
ha-1 año-1 (Mckee et al. 2007) y en Micronesia de 0.46 a 7.5 Mg ha-1 año-1 (Cormier et al. 2015); 
demostrando que la productividad está en los intervalos de los manglares restaurados de Belice, 
Micronesia y Florida, pero están por debajo de los manglares de referencia. Además, en el sitio 
2 (5 años después del inicio de las acciones de restauración) la productividad fue igual a la del 
sitio de referencia (Tabla 1); donde a pesar de que la estructura forestal fue arbustiva (< 0.55 m) 
la productividad fue mayor (2.32 Mg ha-1 año-1), esto se atribuye al tiempo transcurrido después 
de la restauración que también fue un factor clave.

El incremento en la biomasa y productividad de raíces fue diferencial en los sitios de restau-
ración; como el sitio 3, que después de 2 años de que fueron intervenidos, alcanzaron valores 
similares a los manglares de referencia (sitio 4). La diferencia en la velocidad de respuesta de las 
raíces del sitio 3, respecto a los sitios 1 y 2 fue porque en el momento de la intervención existía 
una cobertura de manglar relicto arbustiva y de baja densidad de A. germinans. Comparando 
con otros sitios se ha reportado que después de 6 años en manglares reforestados la biomasa 
alcanza valores comparables con manglares naturales (Bosire et al. 2008). Los sitios degradados 
que presentan vegetación relicto, requieran menor tiempo para reactivar el proceso de producti-
vidad de raíces favoreciendo la captura carbono subterráneo (Tamooh et al. 2008).

La disponibilidad limitada de fósforo incrementó la biomasa y productividad de raíces finas. 
Los manglares de Laguna de Términos tuvieron más del 40 % de materia orgánica en suelo 
pero son deficientes en nutrientes, especialmente del fósforo (Coronado-Molina et al. 2012); 
por ello la absorción de nutrientes en estos manglares depende una mayor productividad de las 
raíces finas (Feller et al. 1999). En este estudio se observó una relación N:P mayor a 62, lo que 
evidencia la limitada disponibilidad de este nutriente en el área de estudio, como ocurrió en los 
manglares de Shark River y Taylor Slough en Florida, en donde se reportaron relaciones N:P 
iguales a 32 (Castañeda-Moya et al. 2013). Por otro lado, la deficiencia de fósforo limita la 
altura de los árboles cuando existen deficiencias de este elemento (Feller et al. 1999) aunque el 
crecimiento también está en función del Eh (Cormier et al. 2015) y de la salinidad.

En este estudio, el sitio de referencias (sitio 4) la biomasa y la productividad de raíces fue 
influenciada por la frecuencia de inundación; la cual en los otros sitios, esta contribución no 
fue notable. Por otro lado, el hidroperíodo contribuyó directamente a la estabilización de la 
concentración de nutrientes y salinidad del agua intersticial. La salinidad intersticial en el sitio 
2 (mayor tiempo de restauración), fue similar a la del sitio conservado (sitio 4). A pesar de que 
la salinidad del suelo regula el desarrollo de las raíces (Sherman et al. 2003), las concentracio-
nes registradas no tuvieron un efecto claro en la biomasa y productividad, esta falta de relación 
puede ser debida a la sinergia entre la salinidad y otros factores reguladores como temperatura, 
pH y sulfuros en el suelo (Adame et al. 2014) y a los cambios por la restauración hidrológica 
(Perez-Ceballos et al. 2017).

Las raíces subterráneas finas (< 2 mm) participan en la absorción de agua y nutrientes, mien-
tras que medianas y gruesas (2 a 20 mm) son importantes en el transporte, almacenamiento de 
materiales y soporte de la planta (Gleason & Ewel 2002). La biomasa de raíces finas representó 
el 51 % del total de raíces en los manglares restaurados; en contraste con los manglares naturales 
en donde las raíces medianas y gruesas (> 2 mm) representaron el 69 % del total. Similares va-
lores fueron registrados en manglares con tres años en restauración en Kenya (65-90 %; Lang’at 
et al. 2013). La acumulación de la mayor biomasa de raíces gruesas fue una señal de mayor 
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longevidad (Adame et al. 2014) y la longevidad de raíces es en un mecanismo para conservar 
nutrientes en estructuras más gruesas y perenes (Huxham et al. 2010). Respecto a la producti-
vidad de raíces en función al tamaño, las finas representaron la mayor contribución en los sitios 
naturales (42 %) que en los de restauración (38 %). En manglares de Florida se determinó que el 
comportamiento de raíces finas se relacionó con la calidad ambiental del suelo y el agua (Cas-
tañeda-Moya et al. 2013). El sitio 2 de restauración (5 años de intervención) presentó la mayor 
productividad de raíces con 2.32 Mg ha-1 año-1 y fueron las raíces finas y medianas (< 5 mm) las 
que mayor contribuyeron (59 %). Se ha evaluado que la productividad tiene una relación positi-
va con la edad de la vegetación y el tiempo de la restauración (Tamooh et al. 2008).

Nosotros concluimos que la productividad de raíces varió en función de la recuperación de 
la estructura de la vegetación (regeneración natural) y del tiempo de la restauración hidrológica; 
determinado por las condiciones ambientales del suelo, la hidrología y la recuperación de cober-
tura de la vegetación (de plántulas a arbustos). La biomasa y productividad de raíces demostró 
ser una variable integral del ecosistema. Por lo tanto, su cuantificación de las raíces fue la señal 
de la recuperación funcional del manglar después de la restauración hidrológica.

Las diferencias ambientales encontradas en los sitios de estudio, demostraron que el desazol-
ve de los canales de marea como una estrategia de restauración hidrológica, contribuyó a mejo-
rar la calidad del suelo y del agua en áreas de manglar degradados, generando las condiciones 
necesarias para desarrollo de biomasa y productividad de raíces subterráneas.
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