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Background: Worldwide only 45 bamboo species are considered economically important. Guadua iner-
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Studied species: We consider Guadua inermis and Otatea acuminata, both endemic to Mexico, as poten-

tially economic priority species. Both are used in rural communities for different purposes. Both inhabit

tropical sub-deciduous, deciduous and dry oak forests, and are extracted exclusively from wild popula-

tions.

Study site and years of study: Mexico and Central America. Data considered have different temporality

depending on the source of collections and databases; localities were recorded until 2015.

Methods: The potential geographic distributions of Guadua inermis and Otatea acuminata were modeled

to investigate the possible effects of climate change under different scenarios and to identify their potential

future distributions and potential plantation management.

Results: Our results showed a likely reduction of the current potential distributions when both species are
o i . projected into future scenarios of climate change. G. inermis will lose between 9.5 and 42.3 % of its current
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amboos frequently represent an important component of many ecosystems, and in some cases
are locally abundant or even a dominant element of the vegetation (Silveira 1999, Ben-Zhi et al.
2005, Griscom & Ashton 2006, de Carvalho et al. 2013, Clark et al. 2015). Woody bamboos are
known as “tree grasses” and they are used to substitute for timber, due to their lignified culms
and fast growth (Clark er al. 2015). Traditionally, bamboos have a wide range of traditional
uses, such as construction, food, weaving, tools, fodder, paper, musical instruments, handicrafts,
tar oil, alcohol, vinegar food and more than one thousand other uses (Benton 2015, Liese et al.
2015). More important, bamboos play key environmental roles in erosion control, water conser-
vation, land rehabilitation and carbon dioxide sequestration for climate change mitigation, etc.
(Zhou et al. 2005).

With 1,482 described bamboo species, only 45 species are widely considered of particular eco-
nomic importance (Benton 2015). Of those, only three American species (Guadua angustifolia,
G. amplexifolia and G. chacoensis) are considered as economically important species and we also
mention that two Chusquea species (i.e., Chusquea culeou and C. gigantea) should be considered
as potentially important economically. However, there are two species endemic to Mexico that
have not received the attention they deserve and probably should be considered for their economic
potential as priority bamboo species (see Rao et al. 1998). These are Guadua inermis E. Fourn.
(Figure 1), and Otatea acuminata (Munro) C.E. Calderén & Soderstr (Figure 2).

Guadua inermis is a mid-sized species, with culms 4 to 12 m tall, 3 tol0 cm in diameter
and solid or thick-walled culms. Its geographical distribution includes the Mexican states of
Campeche, Chiapas, Oaxaca and Veracruz, inhabiting tropical sub-deciduous forests (Cortés-
Rodriguez 2000, Londofio & Ruiz-Sanchez 2014). This species is used for rural house construc-
tion, fences, kiosks and furniture. There is an important furniture industry around this and other
(exotic) species in the community of Monte Blanco in central Veracruz, and their products are
found all over the country and are also exported (Cortés-Rodriguez 2000).

Otatea acuminata is a small to mid-sized bamboo, with culms from 2 to 10 m tall, 1 to 5 cm
in diameter and hollow or solid culms. It is the bamboo species with the widest geographical
distribution in Mexico, inhabiting tropical dry forests, dry oak forest and xerophytic scrubs from
Sonora to Oaxaca along the Pacific coast, and along central Mexico to north of Veracruz (Ruiz-
Sanchez & Sosa 2010, Ruiz-Sanchez et al. 2011, Ruiz-Sanchez 2015). Currently, O. acuminata
is the most used bamboo species in Mexico: to build roofs or walls of rural houses, doors, fences,
baskets, walking sticks, tool handles or sticks in agriculture among several more uses (Guzman
et al. 1984, Vazquez-Lopez 1995, Judziewicz et al. 1999, Cortés-Rodriguez 2000, Vazquez-
Lopez et al. 2004). O. acuminata has been used since pre-European times by Mesoamerican
cultures (800-890 AC) to build house walls in the style known as bajereque or bahereque, which
are built with culms of O. acuminata or other bamboo species and covered with mud (Judrez &
Mairquez 1992, Vazquez-Lépez et al. 2004). It is important to mention that both G. inermis and
O. acuminata are currently exploited directly from wild populations without any management.

Climate change (CC) is a complex phenomenon which, according to the Millennium Eco-
system Assessment (2005), is one of the most important drivers affecting biodiversity, due to
the speed of an environmental change that might represent a difficult challenge for species to
adapt to at the same speed (Loarie et al. 2009). Thus, CC would affect species’ geographic dis-
tributions due to the average temperature rise and changes in spatial and temporal patterns of
precipitation, which together might affect also species’ reproduction, migration and population
sizes (Gitay et al. 2002).

Ecological niche modeling (ENM) is an approach that helps to reveal the climatic envelopes
where the species niche occurs (sensu Hutchinson 1957). ENM is based on the relationship
between two types of data: occurrence records, represented by geographic coordinates (i.e.,
latitude and longitude; Pearson et al. 2007) and climatic layers (Soberén 2007). These two types
of data are combined for model performance in an ecological or statistical space, where they
interact to produce ecological distributions (Stockwell & Peters 1999, Phillips et al. 2006) that
are then projected onto geographic space for obtaining a potential species distribution (Peterson
2001, Soberén & Nakamura 2009). ENM has been used as a powerful tool for assessing the
impacts that climate change may have on geographical species distribution (Martinez-Meyer et
al. 2004, Mendoza-Gonzalez et al. 2013).
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Figure 1. Guadua inermis A) Small populations growing in Veracruz in an open site where the original vegetation (sub-deciduous tropical
forest) was converted to pasture. B) Nodal area, showing the nodal bands and bud. C) Culm leaves. D) Clump showing culms. E) Culm
cross-section showing solid culm. F) Pseudospikelets and flowers.
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Figure 2. Otatea acuminata. A) Population growing in xerophytic scrub. B) Culm showing the typical three branches. C) Population
growing in tropical dry forest. D) Close up of some clumps in the xerophytic scrub. E) Hollow culm. F) Solid culm. G) Close up to culm
growing in tropical dry forest.
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Despite the economic importance of many bamboo species, there are few studies analyzing
how those species might respond under different CC scenarios. Among those few, Tuanmu et
al. (2013) modeled and projected under different CC scenarios three bamboo species (Bashania
fargesii, Fargesia dracocephala and F. ginlingensis), which are key species of the giant panda
(Ailuropoda melanoleuca) diet. They found that the habitat for the giant panda might be reduced
between 80 to 100 % in the Qinling Mountains by the end of the XXI century, if the bamboo spe-
cies cannot colonize new areas beyond their present distributions. Furthermore, Li ez al. (2015)
modeled and projected 16 bamboos species for the complete range of distribution of the giant
panda and found that potentially six bamboo species will disappear, two would experience habi-
tat loss, and meanwhile about eight will potentially colonize new climatically suitable areas by
2070. However, there are no studies on the positive or negative possible effects of CC on any
American bamboo species using ENM. The aims of this study were: 1) to model the ecological
niches and the potential geographic distributions of Guadua inermis and Otatea acuminata, 2) to
investigate the possible effects of climate change of those species under different scenarios, and
3) to identify potential areas with future climatic stability (i.e., the persistence of current environ-
mental conditions in the near future) for conservation and potential plantation management.

Material and methods

Occurrence and environmental data. A database with geo-referenced occurrence data of Gua-
dua inermis and Otatea acuminata was built. The information was obtained from field trips,
scientific collections herbarium, records from IEB, MEXU and XAL (Thiers 2010) and Global
Biodiversity Information Facility (GBIF 2015). Dubious historical records, particularly those
with no specimens and those that were duplicates (different collections for the same locality)
or offered insufficient geographic information for geo-referencing (i.e., ambiguous localities)
were eliminated.

For characterization of the environmental niches we used the 19 bioclimatic variables ob-
tained from the WorldClim Project (Hijmans et al. 2005), with a spatial resolution of 0.0083°
(~1 km?) that are the result of interpolating monthly averages from weather stations throughout
the world from 1950 to 2000 (Table 1).

Ecological niche modeling and potential species distribution. Prior to the modeling process, we
defined polygons to establish the area of accessibility (sensu Soberén 2007) to run the ENM,
since the model does not implicitly take into account the historical barriers of species (Barve et

Table 1. Bioclimatic variables used for the ecological niche model performance.

Bioclimatic variable acronym Bioclimatic variable description

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5-BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BlO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter
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al.2011). Due to the known distributions of the species, we defined the training area as the ac-
cessibility of the species in México and Central America, considering Belize, Guatemala, Hon-
duras and El Salvador. Likewise, we used a digital elevation model (~1 km*px) for considering
the altitudinal range of the species’ distributions.

For modeling performance, we used the algorithm MaxEnt v.3.3.3k (Phillips et al. 2006)
which uses the maximum entropy principle to estimate, from the existing values in the climate
layers where records occurred, a probability distribution that ranges from O to 1 for each pixel,
which can be interpreted as an index of habitat suitability for the population that is being mod-
eled (Elith er al. 2011). The algorithm compensates for co-linearity between variables using a
method for regularization that deals with feature selection, ranking the contribution of each one
through the analysis so there is less need to remove correlated variables (Elith et al. 2011).

For model performance we used for training 80 and 79 % occurrence records for Guadua
inermis and Otatea acuminata respectively, and the remaining percentage was used for testing.
We used the MaxEnt default values of 500 iterations to limit convergence and 0.00001 conver-
gence limit during modeling, as this is the default level used by background test models. We
also used a regularization value of 1. The options for extrapolation and clampling were disabled.
Five replicates were set, using a subsample of ~20 % of the records that were run independently
to validate each model. To select the best model, we focused on the lowest rate of omission
and the highest value of area under the curve (AUC). MaxEnt results indicate the relative suit-
ability of the geographic representation of ecological space in probability values; which were
transformed to a binary absence-presence map, using the Minimum Training Presence (MTP)
threshold. We chose this threshold considering that all localities used for the model were veri-
fied and validated.

The performance of MaxEnt models is traditionally evaluated using the AUC values of the
Receiver Operating Characteristic (ROC) curve (Phillips et al. 2006) which allows the evalu-
ation of the coincidence of the climatic suitability generated by the model with the known oc-
currences, ranging from zero to one, where one indicates perfect discrimination between pres-
ences and absences (presence/background in the case of MaxEnt) and 0.5 indicates that the
discrimination is no better than the suitability given by a random assumption (Fielding & Bell
1997). However, several problems have been associated with this approach (Peterson et al.
2008, Lobo et al. 2008), for example, that the two error components (omission and commission)
are inappropriately weighted equally. Therefore, we used the partial ROC approach that solves
this problem by evaluating only the portion of the ROC curve that covers the spectrum of the
prediction, allowing a differential weighting of the two error components (Peterson et al. 2008).
Within a value range from O to 2, values over 1 suggest a better performance than chance, by
analyzing the presences versus the absence against the total area predicted by MaxEnt (Barve
2008). Because of this, we calculated for each model the partial ROC test using the Tool for
Partial-ROC v. 1.0. (Barve 2008). We withheld ~20 % of the occurrence records to validate each
model. AUCs were limited to the proportional areas over which models actually made predic-
tions and only omission errors < 5 % were considered (Peterson et al. 2008).

Based on the current potential distribution, we projected into future layers under two Repre-
sentative Concentration Pathways (RCPs) scenarios, which are described in the 5™ Assessment
Report (IPCC 2013) as externally imposed perturbation in the radiative energy budget of the
Earth’s climate system (Pachauri et al. 2014). We used the medium and high emissions projec-
tions (RCP 4.5 and RCP 8.5 respectively) in a median future for the year 2050. We used the
Centre National de Recherches Météorologiques, France (CNRM) and the Canadian Centre for
Climate Modeling and Analysis (CCCma) based on the evaluation of several general circula-
tion models (GCM) by Ferndndez-Eguiarte et al. (2015) considering a better characterization
of Mexico for the mid future according to the observed data. To reduce uncertainty, we then
constructed an ensemble map of both GCM outputs (CCCma, CNRM) for the current and fu-
ture conditions in order to balance accuracy and robustness by obtaining the coincident areas
of geographic potential distribution projected for both models. An ensemble is a collection of
climate scenarios where the individual scenarios are different from each other. It highlights the
relatively reliability where the different scenarios give similar results than in different directions
independently (Zhang et al. 2015).
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Results

After a careful revision, we gathered a total of 47 occurrence records for Guadua inermis and
117 unique occurrence records (latitude—longitude) for Otatea acuminata. These occurrence
numbers allowed us to develop a satisfactory model performance (high AUC values and signifi-
cant ratio values of partial ROC analysis; Table 2).

Table 2. Area under the curve values used for the selection of the best models in the MaxEnt replicates. Partial

ROC curve, Ratio and p values per species.

CNRM CCCma
Corresponding Corresponding Ratio values Corresponding Corresponding Ratio values
probability probability ~ from Partial ~ probability probability  from Partial
value for value for ROC value for value for ROC
Training set Testing set Training set Testing set
Guadua inermis 0.986 0.98 1.83,p<0.001 0.983 0.985 1.90,p <0.001
Otatea acuminata 0.958 0.946 1.74,p<0.001 0.965 0.926 1.59, p<0.001

The most important variables identified by the percent of contribution tests (Figure 3) showed
that the trend of contribution for each variable is similar in both Canadian and French scenarios.
The mean diurnal range (BIO2) and the precipitation in the wettest month (BIO 13) have the
highest contribution for G. inermis (Figure 3a), while the temperature and precipitation season-
ality (BIO4 and BIOL15 respectively) have the highest contribution for O. acuminata in both
projections (Figure 3b).

To describe bi-dimensionally the ecological niches for both species, we analyzed the relation-
ship between the annual mean temperature and annual precipitation for the occurrence data, and
we found that the known distribution of G. inermis occurs in a range of mean annual tempera-
ture between 20.3 and 27.2 °C, and annual precipitation between 882 mm and 2,455 mm (Figure
4A). Regarding O. acuminata, the mean annual temperature range goes from 12.5 to 27.8 °C
and the annual precipitation from 437 to 1,610 mm (Figure 4B).

Figure 3. Percent of relative

contribution of the 19 climate

variables extracted from the

analysis. a) Guadua iner-

mis, b) Otatea acuminata. A
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Figure 4. Relationship between annual precipitation and annual mean temperature; A) Guadua inermis, B) Otatea acuminata.

Table 3. Predicted increase or reduction (negative values) of distribution area under different RCP and GCM

scenarios for Guadua inermis and Otatea acuminata.

Species RCP 4.5 RCP 8.5

CNRM CCCam Assemble CNRM CCCam Assemble
Guadua inermis 56.90 % -17.30 % -9.50 % 43.90 % -37.80 % -42.30 %
Otatea acuminata 2.50 % -2.70 % -14.20 % -2.90 % -4.50 % -22.30 %

The potential current distribution map revealed that G. inermis (Figure 5A) should be found
in the coastal plain of the Gulf of Mexico and the western area of the Yucatan Peninsula under
1,000 m a.s.l, with the exception of the southern part of the distribution in the Chiapas-Gua-
temala plateau, where it rises to 1,900 m a.s.I. Small areas of the Pacific coastal plains were
projected, with attributes similar to those where the distribution of G. inermis is known in the
coastal plains of the Gulf of Mexico.

The potential current distribution map for O. acuminata (Figure 5D) suggests that it should
be widely present in the Pacific slope, the Balsas depression, the Sierra Madre del Sur, the Sierra
Madre Occidental, the Trans-Mexican Volcanic Belt, in some fractions of the coastal plain of
the Gulf of México, the Sierra Madre Oriental and in the Central depression in Chiapas. This
species has an altitudinal distribution range from 150 to 2,000 m a.s.l. from the records used to
calibrate the model.

Because the different model projections do not always correspond to the limits of the pre-
dicted potential distribution for each species, the net changes of the ensemble are different to
changes in each model independently, namely compiling is spatially explicit the coincident
geographic areas between the two models seeking greater certainty in areas predicted (Table 3).
We performed an assemble maps in order to find areas of concordance spatially explicit for both
GCM, the maps of potential distribution of both species shrink (Figures 5B, C, F, G, Table 3).
The changes projected in the assemble map were greater for G. inermis as it loses nearly half
of the current distribution (Figure 5C) under RCP 8.5. However, when each of the projections
is analyzed an increase of area for the CNRM scenario is shown, in contrast with the Canadian
scenario, principally in G. inermis.

Discussion

The analysis of potential effects of climate change on biodiversity via ENM represents a satis-
factory approach to understand the tendencies of species distributions in the future (Wiens ez al.
2009). In this sense, it is particularly important to pay attention to the impacts of climate change
on those species that are endangered, ecologically or geographically restricted, but also those
with human economic importance or potential use (Stern 2007).
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RCP 8.5 RCP 8.5
C 2050 F 5050

Figure 5. Assemble maps of both GCM outputs (CCCma, CNRM). Green = coincidence of projected distribution with CCCma and CNRM:

Blue = projected distribution with CNRM only; Red = projected distribution with CCCma only. A) Guadua inermis, current geographic

potential distribution, black dots are geo-referenced localities used to build the models. B) G. inermis 2050 projection, RCP 4.5. C) G.

inermis 2050 projection, RCP 8.5. D) Otatea acuminata, current geographic potential distribution, black dots are geo-referenced localities
used to build the models. E) O. acuminata 2050 projection, RCP 4.5. F) O. acuminata 2050 projection, RCP 8.5.

The studies focused on the future projections of bamboo species in Northern China high-
lighted the declining trend in distribution (Tuanmu et al. 2013, Li et al. 2015). This is to be
expected for temperate woody bamboos as they are more vulnerable to increases in global tem-
perature, and thus the areas with optimal conditions for them are likely to decrease, whereas
those of tropical species could be expected to increase. Furthermore, the output differences from
the use of different GCM scenarios generate high uncertainty, and this is why an assemble map
is recommended for showing the coincidence of different models and thus, less uncertainty of
interpreting results for those areas (Zhang et al. 2015). The species in this study are distributed
in a biogeographical transitional zone (Neartic vs Neotropical regions); however, the variables
identified with the major contribution of each species suggest different ecological niches for
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each species. Guadua inermis grows in tropical sub-deciduous forests with less variation in tem-
perature and more annual precipitation, contrary to Otatea acuminata, which grows in tropical
dry forests or xerophytic scrub with a large variation in temperature tolerated, especially higher
temperatures and less precipitation than G. inermis (Figure 3A, B).

The differences between these contrasting ecological niches are well reflected in the future
projections based on assemble maps. For G. inermis the predicted reduction in distribution
ensemble is 9.5 and 42.3 % for RCP 4.5 and RCP 8.5 respectively of the total area that was
projected for both GCM relative to its current distribution (Figure 5B, C). For O. acuminata
the reduction of potential distribution ensemble ranges between 14 to 22 % for RCP 4.5 and
RCP 8.5 respectively of the current distribution (Figure 5F, G). Overall for both species, most
of this uncertainty will tend to occur on the Pacific slope, the Balsas depression and the Gulf
of Mexico coastal plains (Figure 5B-C). However, new areas might be gained mainly in the
western portion of the Sierra Madre Occidental and in the northern and southern portions of
the Sierra Madre Oriental. These findings do not suggest a threat to these species, and their use
and potential management may continue for a long time, independent of climate change. Their
management as a provider of culms for wood (for construction, charcoal, furniture, handcrafts)
should follow guidelines similar to other commercial species of bamboo, and this management
may benefit from anticipating potential areas for cultivation in the following decades. We found
climate stability by an ensemble of the maps of current and future projections (both scenarios)
for G. inermis on the coast of the Gulf of Mexico and the east of the Sierra Madre del Sur and
some parts of the west coast and south of the Yucatan Peninsula (Figure 5D). For O. acuminata
the areas of climate stability occur in the Sierra Madre Occidental, the Trans-Mexican Volcanic
Belt and the Sierra Madre del Sur and less area in the Sierra Madre Oriental (Figure SH).

The CC scenarios predicts rising in global temperatures for 2,100 between 1.4 to 3.1 °C under
RCP 4.5 and between 2.6 to 4.8 °C under RCP 8.5, and change in the precipitation averages
between 10 and 20 % less than today for Mexico (Pachauri et al. 2014). The question is: why
would we expect reduction in distribution areas for two species found in fairly high temperature
ranges? In the case of G. inermis, a species currently found mostly in lowlands, although tem-
peratures at higher altitudes may increase under CC scenarios, they may not be matching the
required increases in precipitation. Therefore, this results in a reduction in the suitable area for
large tropical woody bamboos, known to require significant water availability, especially in the
season of shoot growth that starts during the rainy season (May or June) (Banik 2015). Oratea
acuminata, a species widely distributed in Mexico, seems to be more tolerant of drier climates
(Ruiz-Sanchez 2015) and to a little bit lower temperatures than G. inermis. This combination of
tolerance climatic variables may make this species more adaptable to climate change and less
prone to reduction in geographical distribution compared with G. inermis, especially under the
RCP 8.5 scenario. The maintenance of suitable areas for G. inermis and O. acuminata under
scenarios of future climate change could keep them playing an important role in the dynamics
of the woody vegetation both species inhabit.

Conclusions

As with many clump forming commercial species, both native species are easily propagated,
either from vegetative cuttings (rhizomes, culms or branches) or fruits. The wider range of en-
vironmental conditions in which Otatea acuminata is found, along with its tolerance to lower
temperature and precipitation, should be considered in future incentives to establish commercial
plantations and to look for a wider range of traditional and technical uses of this species. In
either case, the use of genotypes obtained from sites that more closely match the environmental
conditions of the plantation should provide the best results in terms of product quality. It is pos-
sible to find some culms of Guadua inermis flowering every year and to get fruits that could
be planted for seedlings. On the other hand, although O. acuminata is said to flower every 30
years (Ruiz-Sanchez et al. 2011), it is usually possible to find at least one population flowering
every year in different regions in Mexico due to the asynchronic flowering cycles of this species
(Ruiz-Sanchez et al. 2011). Both species can be grown from seeds to adults in only about seven
years, when they reach the final size to start harvesting culms to be used in construction or to
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satisfy the growing demand nationwide and worldwide as a building material, as well as hand-
crafts, baskets and other many potential uses. Promoting their cultivation could help to reduce
some climate change effects, for example using both species to restore landslides on hillsides
and for CO, sequestration.
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