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Abstract
Although Tansley originally proposed the ecosystem concept in 1935, ecosystem science underwent significant development in the last 20 years, 
as in this period it has been consolidated with concepts and methods arisen in convergent disciplines, such as ecosystem genetics, ecological 
stoichiometry, global ecology, and ecosystem services. The objective of this paper is to review new concepts and methods of water, energy, and 
nutrient dynamics research in terrestrial ecosystems to contribute to generate a new theoretical framework in the field of ecosystem science. 
From this review, a new conceptual definition of ecosystem is required based on three key issues: (a) the integration of functional processes at 
different spatial and temporal scales to understand the ecosystem dynamics in its environmental context; (b) the concept of resource (i.e., water 
or nutrients) use efficiency as a key metric for ecosystem function; and (c) the role of biological species in ecosystem functioning, using the 
genetic framework. These new concepts and methods are necessary to advance in the research on ecosystem functioning and resilience in the 
context of the current environmental crisis that includes processes such as ecosystem degradation, biodiversity loss, and global climate change. 
Finally, this new conceptual definition must be linked to evolutionary theory and global ecology research.
Keywords: ecosystems, energy, functional biodiversity nutrients, resilience, resource use efficiency, water.

Resumen
A pesar de que el concepto de ecosistema fue propuesto por Tansley desde 1935, la ciencia de los ecosistemas ha tenido un desarrollo significati-
vo en los últimos 20 años, ya que en este periodo se fortaleció con conceptos y métodos surgidos en disciplinas convergentes como la genética de 
ecosistemas, la ecología estequiométrica, la ecología global y los servicios ecosistémicos. El objetivo del presente trabajo es revisar los nuevos 
marcos conceptuales y metodológicos en los estudios de la dinámica del agua, energía y nutrientes en ecosistemas terrestres. De esta revisión, 
destacan tres aspectos relevantes: (a) la integración de los procesos funcionales a diferentes escalas espaciales y temporales para entender la 
dinámica de los ecosistemas en su contexto ambiental, (b) el concepto de eficiencia del uso de recursos (agua o nutrientes) como una medición 
clave en el funcionamiento de los ecosistemas, y (c) el papel de las especies biológicas en el funcionamiento de los ecosistemas en el contexto de 
la genética de los ecosistemas. Una nueva definición del concepto del ecosistema es necesaria considerando los avances de los marcos teóricos, 
y es necesario aplicar nuevas metodologías a los estudios de ecosistemas. Estos nuevos conceptos y herramientas son necesarias para mejorar 
la investigación sobre la resiliencia de los ecosistemas en la actual crisis ambiental que incluye la degradación de ecosistemas, la pérdida de la 
biodiversidad y el cambio climático global. Finalmente, esta nueva definición de ecosistema debe estar ligada con la teoría de la evolución y  
la investigación en ecología global.
Palabras clave: agua, biodiversidad funcional, ecosistemas, eficiencia de uso de recursos, energía, nutrientes, resiliencia.
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Among the disciplines of ecology, ecosystem science is the most dynamic and has undergone the greatest 
development over the last 20 years. The term “ecosystem” was originally proposed by Tansley (1935), 
then Lindeman (1942) gave a framework to the ecosystem concept using the concept of trophic-dynam-
ics of energy flow in lakes and, Odum (1969) integrated biodiversity, energy flow and nutrient dynamics 

into a conceptual model for ecosystem development. This conceptual model defined the ecosystem as a cybernetic 
system with a holistic approach (Margalef 1968, Odum 1969). However, this model had two main problems: the defi-
nition of ecosystem boundaries (Levin 1992) and the heterogeneity and scales, all of which were unclear within the 
black-box vision (Turner 1989, Pickett & Cadenasso 2002, Currie 2011, Carpenter & Turner 2017). Indeed, several 
contemporary ecosystem-level studies face these problems. In terrestrial ecosystems, the problem of boundaries was 
assumed to be a methodological issue encountered in the context of watersheds. The studies of Bormann & Likens 
(1979) and Swank & Crossley (1988) used small experimental watersheds for measuring water and nutrient budgets 
at the ecosystem level. Moreover, Bormann et al. (1974) proposed that forest ecosystems have the resilience capac-
ity to cope with severe disturbances, such as complete deforestation; this study represented an important experiment 
to analyze the response of a forest ecosystem to disturbances. Although these studies do not solve the problem of 
boundaries, they address several conceptual and methodological problems for ecosystem science. O’Neill et al. 
(1986) suggested that the ecosystem is the highest hierarchical level of the components of a functional organization, 
and that the processes at the ecosystem level define the boundaries. However, this conceptual proposal is not fully 
accepted because of several limitations of the ecosystem concept as a closed biotic system (Currie 2011). The spatial 
heterogeneity and the integration of spatial and temporal scales have been addressed through landscape ecology 
(Turner 1989). All of these limitations of the ecosystem concept complicate the definition of ecosystem as an opera-
tional unit (Currie 2011). Ecosystem science thus requires convergent disciplines to overcome its limitations. Finally, 
in 1998, a scientific forum on ecosystem science was published in the Ecosystems journal (Carpenter & Turner 1998), 
that served to define a contemporary approach for ecosystem ecology research (Carpenter & Turner 2017).

Over the last two and a half decades, several concepts and methods have arisen in different convergent disciplines, 
contributing to the consolidation of ecosystem science. These disciplines include ecosystem genetics (Whitham et 
al. 2006, Sardans et al. 2011, Peñuelas et al. 2013), ecological stoichiometry (Sterner & Elser 2002, Peñuelas et al. 
2019), global ecology (Schimel et al. 2019, Schlesinger & Bernhardt 2020), and ecosystem services (Millennium 
Ecosystem Assessment 2003).

The role of biological species in ecosystem functioning has been a relevant subject for ecosystem science and 
several authors have proposed different models to understand the effect of species on ecosystem resilience (Peterson 
et al. 1998). However, the role of species in different ecosystem processes has been determined with the development 
of omic molecular methods, such as genomics, proteomics, and transcriptomics (Whitham et al. 2006, Sardans et al. 
2011, Peñuelas et al. 2013). These omic methods were applied successfully to the understanding of the biological 
richness and their interactions in microbial and plant communities, allowing the development of a conceptual frame-
work with which to understand the genomic basis of ecosystem processes (Whitham et al. 2006).

In the two last decades of the 20th century, several authors considered that specific ecosystems are limited mainly 
by a single nutrient; for example, temperate forests and deserts are mainly limited by nitrogen (N), while tropical for-
ests are limited by phosphorus (P) (Vitousek 1984, Noy-Meir 1985, Vitousek & Sanford 1986, Aber & Melillo 1991). 
At present, the net primary productivity of ecosystems can be co-limited by carbon (C), N, and P; expressed as C:N, 
C:P and N:P ratios (Sterner & Elser 2002, Sinsabaugh et al. 2009, Tapia-Torres et al. 2015a). In order for biologi-
cal species to maintain their C:N:P ratios, they must invest energy in nutrient acquisition, rather than in population 
growth (Sterner & Elser 2002). The conceptual framework of these processes is known as ecological stoichiometry 
(Sterner & Elser 2002, Peñuelas et al. 2019), and it serves to analyze nutrient uptake in relation to the metabolic 
efficiency of specific species or group of species (Sterner & Elser 2002, Peñuelas et al. 2019). This theoretical frame-
work allows the study of nutrient dynamics in an evolutionary context. Wider aspects of these interactions across 
trophic levels and functional assemblages at different scales are expressed as eco-evolutionary dynamics (Brunner 
et al. 2019).
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Global ecology is focused on the integrated study of ecosystems from regional to global scales including carbon 
and nutrient dynamics, water dynamics and global energy budgets (Schimel et al. 2019; Schlesinger & Bernhardt 
2020, Yu et al. 2021). This discipline is based on the development of methods that allow measurements of processes 
at different scales, such as plant physiological (i.e., photosynthesis and transpiration), soil (i.e., respiration, C accu-
mulation) and atmospheric (i.e., turbulence, emissions) processes and their interactions. In this context, flux towers, 
remote sensing methods and isotopic ratios are fundamental tools in global ecology (Fry 2006, Schimel et al. 2019).

The human dimension as a key element for ecosystem functioning has been recognized since Odum (1969), but 
adoption of the concept of ecosystem services as a framework for research increased dramatically at the end of the 
1990s (Costanza et al. 1997; Daily et al. 2000; Carpenter et al. 2009, Carpenter & Turner 2017). The advent of the 
Millennium Ecosystem Assessment synthesis (2005) clearly established the conceptual framework of ecosystem 
services and made it critical to current ecosystem management research. In addition, Currie (2011) and Yu et al. 
(2021) proposed ecosystem science as a tool for studying the effects of climate change and anthropic management 
on ecosystems, in terms of achieving sustainable development.

The objective of the present paper is to review novel concepts and methods of convergent disciplines that con-
tributed to the theoretical framework of ecosystem science. In the two following sections, we review examples of 
concepts and methods relating to water, energy, and nutrient dynamics in terrestrial ecosystems. We then analyze 
how these new concepts and methods have influenced in the understanding of the ecosystem resilience processes.

Ecosystem water and energy dynamics

Water fluxes through soils, rocks, organisms, and the atmosphere essentially control all functional processes in 
terrestrial ecosystems (Biederman et al. 2016, Rodríguez-Robles et al. 2020). This circulation of water can be con-
ceptualized and measured as energy and matter exchanges across ecosystem components that are central to the 
understanding of ecosystem processes. Given the close relationship between water fluxes and biological productiv-
ity, contemporary interdisciplinary fields such as ecohydrology have recently presented a research agenda to study 
ecosystem functions and applications (Newman et al. 2006). Ecohydrology embraces theory and methods from ecol-
ogy and hydrology to identify couplings and feedbacks between organisms, populations and communities, as well 
as water-related processes across a broad range of spatial and temporal scales. This perspective has gained attention 
due to the significant impacts on ecosystems for the growing demand of ecosystem services (Sun et al. 2017) and 
climate change (Tague et al. 2020).

Early conceptual tools of ecohydrology, such as rain use efficiency (RUE), defined as the  annual net primary 
production/mean annual precipitation ratio (Leith 1975, Le Houérou 1984), were widely used as basic process-inte-
grators and to investigate environmental constraints on biological productivity (Lauenroth & Sala 1992, Paruelo et 
al. 1999). Since a fundamental relationship emerges when rainfall and biological production parameters are related, 
the role of water as a key driver for ecosystem function is clear. Indeed, when temperate or tropical-wet ecosystems 
experience water limitations, the slopes of rainfall and biological production converge to a common RUE (Huxman 
et al. 2004). This variation on the RUE slope indicates that the relationship itself is of interest, since RUE deviations 
in particular ecosystems, at specific times and under varying environmental conditions, could indicate ecophysiologi-
cal adaptations (Plaut et al. 2012), organismic interactions (Rodríguez-Robles et al. 2020), constraints to nutrient 
availability (Porporato et al. 2003) and levels of ecosystem degradation (Ehleringer 2001).

When scaled to ecosystem level (Chapin III et al. 2006), photosynthesis (A) and gross primary production (GPP) 
express the CO2 assimilation process in plants. This flux is therefore the main path for radiant energy and inorganic 
atmospheric compounds to be incorporated into ecosystems as organic matter. However, such a fundamental flux has 
an expensive water cost, since a water loss of two orders of magnitude occurs at leaf level for each CO2 molecule 
fixed (Nobel 1999). This process led to the establishment of H2O and CO2 molecules as central currencies of matter 
and energy flow in studies addressing ecosystem function (Mooney 1972, Pearcy et al. 1989, Chapin III et al. 2002, 
Shuttleworth 2007).
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Figure 1. Soil bacteria OTUs, Shannon biodiversity index, and some soil characteristics (pH, EC: electrical conductivity, NO3: nitrate concentration and 
HPO4: available phosphate concentration) under three management conditions (G: natural desert grassland, C: cultivated plot with alfalfa, and A: aban-
doned plot) in the Cuatro Ciénegas Valley, Mexico. (Hernández-Becerra et al. 2016).
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Theoretical approaches to assess the availability of water that controls biological productivity, and contempo-
rary methods that rely on advanced technology capable of monitoring CO2 and water fluxes in temporal and spatial 
scales to determine ecosystem function, are now central to ecosystem science research (Keenan & Williams 2018, 
Schimel et al. 2019, Baldocchi 2008, Yu et al. 2021). Careful tracing of H2O and CO2 fluxes across ecological scales 
of organization within an ecosystem has emerged as a powerful practical and conceptual tool with which to advance 
theory concerning ecosystem functioning (Tang et al. 2014), carbon cycle analysis (Vargas et al. 2012), as well as to 
consider ecosystems as natural climate solutions (NCS) in this age of chronic environmental climate change (Hemes 
et al. 2021). 

Carbon dioxide and water measurements taken at the ecosystem scale with the eddy covariance technique have 
provided key metrics (Chapin III et al. 2006), such as evapotranspiration (ET), gross primary production (GPP), net 
ecosystem exchange (NEE), net ecosystem production (NEP) and ecosystem-level water use efficiency (EWUE), 
with which to assess ecosystem functioning across continents (Baldocchi 2008, Tang et al. 2014, Baldocchi et al. 
2018, Keenan & Williams 2018, Delgado-Balbuena et al. 2019, Tarin et al. 2020, Kang & Cho 2021, Heiskanen et al. 
2022). One example of these applications in the semiarid region of western North America comes from an integra-
tion of ecosystem water and CO2 measurements in combination with remote sensing tools (Biederman et al. 2016, 
2017), to use time by space substitutions to explore the relationships of rainfall and ET to the NEP and GPP, and to 
compare the carbon sink potential and controls of arid and forested ecosystems. Taking advantage of the RUE-like 
criteria (see above), the authors invoked “fast” (i.e., weather, soil moisture, leaf area, microbial communities) and 
“slow” (i.e., climate, atmospheric CO2 concentration, soil development, biogeochemical pools, plant community) 
factors as differential controls of ecosystem processes across sites. Since most of the unexplained NEP variability 
was related to site-specific functions, further research is necessary to obtain more conclusive evidence regarding 
how slow factors drive carbon and water relations in ecosystems (Biederman et al. 2016, Baldocchi et al. 2018). 
However, since common temporal and spatial sensitivity to interannual environmental changes can be extrapolated 
to predict fundamental water controls on CO2 exchanges and biological productivity over long-term temporal scales, 
an important tool emerges to improve our understanding of ecosystem resilience in the context of climate change and 
human pressures (Yu et al. 2021).

Moreover, when disaggregated ecosystem fluxes are related among themselves (i.e., ET and GPP), there is a 
clearer biological response to the environmental drivers. For instance, the RUE slope for widespread ecosystems 
is asymptotic, while an ET vs. GPP relationship is linear (Biederman et al. 2016). As part of understanding these 
differences, the issue of temporal and spatial scales is unavoidable, but this also presents a challenge to ecosys-
tem science regarding how to implement means to separate ecosystem fluxes into their fundamental components; 
for example, ET into transpiration (T) and evaporation (E), or NEP into GPP and ecosystem respiration (Reco), 
such that more in-depth explorations of the biological responses to environmental drivers can be made at ecosys-
tem scales, while obtaining mechanistic information pertaining to ecosystem processes (Yepez et al. 2007, Stoy 
et al. 2019).

To confront this challenge, a combination of tools, including leaf cuvettes, porometer techniques, sap flow probes, 
soil chambers, lysimeters, and in situ spectral tools, has traditionally been employed. However, the propagation of 
error when scaling these methods up to an entire ecosystem is substantial (Wilson et al. 2001, Kool et al. 2014). A 
partial solution is provided by the eddy covariance technique (EC), which provides a direct and continuous estimate 
of aggregated fluxes, such as ET and NEE (NEE = NEP), within an ecosystem. In combination with modeling, data 
assimilation techniques and ancillary measurements have provided evidence of the capacities of these approaches 
to partition fluxes. Recently, Zhou et al. (2016) and Scanlon & Kustas (2010) were able to employ a water-use ef-
ficiency criterion to partition ET as the ratio of GPP and ET, simply by using the eddy covariance method, providing 
promising results. Although this approach is appealing, considerable uncertainties remain regarding the estimation 
of GPP with these criteria, since GPP is not a directly measured variable in EC operations but rather one that is mod-
eled (Reichstein et al. 2005). Nevertheless, there is a promising future for disentangling spatial and temporal NEP 
variation with the application of remote sensing techniques (i.e., drones, microsatellite clouds, satellites, and space 
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stations), relying on the spectral properties of surfaces, combined with numerical assimilation schemes that can offer 
greatly enhanced spatial resolution to detect functional traits and temporal dynamic changes in ecosystems (Schimel 
et al. 2019).

Fundamentally, the aim of separating water and carbon flux components demands a combination of temporal and 
spatial congruent techniques (Yepez et al. 2007, Stoy et al. 2019). Combining EC and stable isotope techniques con-
stitutes an alternative that allows flux partitioning at the ecosystem scale (Good et al. 2012). This is possible since 
the stable isotopes of water and carbon can be used as tracers of hydrological and carbon cycles, because of their 
different fractionation processes (Yakir & Sternberg 2000).

Implementation of a concise scheme of combined methods, for incorporation into long-term monitoring programs 
to generate baselines of ecosystem functions responding to environmental variation at different scales, will undoubt-
edly contribute to the identification of effects of climate change on ecosystems and to the provision of ecosystem 
management strategies as options for natural climate solutions in the context of chronic climate change.

Ecosystem nutrient dynamics

The ecosystem nutrient dynamics (END) is broadly defined as the manner in which nutrients are taken up, retained, 
transferred, and recycled over time and space in an ecosystem (Allan & Castillo 2007). END is an emerging property 
of ecosystems, which, like the other biogeochemical processes, is the result of a convergence of geological, pedologi-
cal, and ecological processes, each of which depends on the spatial and temporal scales at which they are observed 
(Berhe & Kleber 2013, Berhe et al. 2018). In most terrestrial ecosystems, END not only depends on the rate of input 
from extreme boundaries (i.e., atmospheric deposition, weathering) but also, and more importantly, from internal 
cycles, where soil organic matter is the main source of inorganic nutrients through its decomposition by the soil mi-
crobial community (Schlesinger et al. 2011, Banwart et al. 2019). In general, three stages help to summarize END: 
(a) absorption and allocation of inorganic nutrients by plant roots, (b) reabsorption of nutrients from senescent tissues 
and return of nutrients by litterfall and abscission of fine roots, and (c) release of inorganic nutrients from organic 
matter to the soil solution through microbial metabolism (mineralization).

In the first stage of END, nutrient absorption by the roots depends on the characteristics of the nutrients them-
selves, such as solubility, diffusion speed, and concentration. For example, N, P, and K, in the forms of HPO4

2- and 
H2PO4-, K+ and NH4

 +, diffuse slowly due to the strong affinity with other components of the soil, cations in the 
case of P and clays in the case of K+ and NH4

+, while NO3
- is highly mobile and diffuses rapidly in the soil solution 

(Sparks 2019). One of the most common approaches to estimate the consequence of nutrient absorption in biomass 
production is through nutrient use efficiency (NUE), which is defined as the quantity of biomass production per unit 
of nutrient acquired. However, this does not allow direct measurement of the flow of nutrients to the plant (Silla & 
Escudero 2003, Chapin III et al. 2011). Once the roots acquire the nutrients, these are distributed through the differ-
ent tissues. These requirements determine the demand for acquired nutrients and ultimately define their limitation 
(Peñuelas et al. 2019). The distribution of nutrients in plants is determined by their destination, including structural 
molecules, tissues with high metabolic activity such as photosynthetic organs, chemical defenses, or other defense 
structures. In general, three factors govern the allocation of nutrients in plants: (1) the genetic structure of the plant 
species community, (2) the environmental conditions in which the plants grow, and (3) the seasonal program of re-
source allocation (Hartmann et al. 2020).

In the second stage of END, leaves and fine roots have higher concentrations of nutrients (mainly N and P) 
than other tissues since both of these organs are physiologically active. Likewise, these structures are continually 
replaced due to depletion of their physiological function but, prior to detachment from the plant, they go through 
a process of preparation or deciduous senescence in which some nutrients are recovered and reabsorbed before 
abscission, then transported and stored in branches, stem or structural roots where they remain available for the 
formation of new functional or reproductive structures in the following phenological cycle (Leopold 1961, Kill-
ingbeck 1996, Cartaxana & Catarino 2002). Translocation or reabsorption of nutrients from senescent leaves has 
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been recognized as an efficient mechanism for conservation of nutrients in several plant species (Killingbeck 1996) 
since it allows them to be less dependent on the availability of N and P in the soil (Aksekili et al. 2007). It has been 
calculated that between 50 and 80 % of foliar N and P can be reabsorbed, and that there are differences between 
these and other nutrients, (e.g., the cations), for which translocation is less efficient (Killingbeck & Costigan 1988, 
Rentería et al. 2005, Hagen-Thorn et al. 2006, Covelo et al. 2008b). One of the more commonly accepted metrics 
to calculate nutrient reabsorption is reabsorption efficiency, defined as the percentage of the nutrient that has been 
reabsorbed, based on the nutrient content in living leaves and the nutrient content in senescent leaves (Killingbeck 
1996, Vergutz et al. 2012).

Multiple factors can define nutrient reabsorption patterns, including soil nutrient availability, foliar nutri-
ent concentration, senescence time, air temperature, water stress, and factors associated with the physiological 
characteristics of each species (Hagen-Thorn et al. 2006). For example, it has been reported that between 1,300 
and 1,900 genes are activated in Arabidopsis thaliana when senescence begins (Zentgraf et al. 2004). However, 
it is not known how many of these genes are directly related to nutrient resorption (Jones 2004). Studies have 
been carried out for different tree species, aiming to define their reabsorption patterns compared to other taxa 
(Killingbeck & Costigan 1988, Hagen-Thorn et al. 2006), considering the effect of forest management (Covelo 
et al. 2008b), and with climatic conditions such as a water gradient (Del Arco et al. 1991, Zhao et al. 2017). 
Moreover, studies have analyzed the effect of spatial patterns (Covelo et al. 2008a) and the foliar phenological 
strategies of different species (Huang et al. 2007, Brant & Chen 2015) on foliar nutrient resorption. In general, 
it has been determined that deciduous species have higher reabsorption efficiencies than perennials and, even 
within the same phenology, species with a longer leaf life-span present lower reabsorption efficiencies (Huang 
et al. 2007, Vergutz et al. 2012, Chavez-Vergara et al. 2014). It is widely accepted that nutrient reabsorption ef-
ficiency has an important genetic component at population level (Allan et al. 2012, Whitham et al. 2012) or at 
different taxonomic levels (Chávez-Vergara et al. 2015). The effect of physiological plant traits with a genetic 
basis on the chemical composition of the plant-derived material that returns to the soil is considered a part of 
ecosystem genetics, since these physiological traits can be analyzed within an evolutionary framework (Whitham 
et al. 2006, Peñuelas et al. 2013).

In the third stage of the END, the return of nutrients to the soil via organic residues follows different routes, such 
as canopy leaching (throughfall), litterfall, root death and root exudates. Litterfall quantity is regulated by primary 
productivity and seasonality by phenology, which is influenced by the availability of water, temperatures during the 

Figure 2. Functional and ecological processes involved in the evolutionary stages of foundational, developed, human-transformed and human-induced 
foundational ecosystems. Created with BioRender.com

http://BioRender.com
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growing season, and the canopy morphology (Brant & Chen 2015). In forest ecosystems, the contribution from lit-
terfall is dominated by the tree stratum, which represents 95 % of the litter mass that falls to the soil surface (Kögel-
Knabner 2002). Of this percentage, about 80 % corresponds to foliar biomass (Rapp et al. 1999; Santa Regina & 
Tarazona 2001). The concentration of nutrients in the leaves that fall to the ground is regulated by the processes of 
nutrient resorption, environmental conditions, and plant physiological responses, while the intrinsic characteristics 
of the species themselves determine the quantity and chemical composition of the organic residues (Chavez-Vergara 
et al. 2014). Another way to return nutrients to the soil is through the abscission of fine roots, but very little is known 
about this process due to the difficulty of collecting samples. Nevertheless, in some cases, it can be as important 
as litter fall in terms of the mass and concentration of nutrients returned to the soil (e.g., in tropical dry forests) 
(Martinez-Yrizar et al. 1996).

Before organic residues can be transformed, they must be suspended or dissolved in the soil solution, when they 
become known as dissolved organic matter (DOM) and must be smaller than 0.45 µm (von Lützow et al. 2007). 
Some chemical characteristics that can hinder their decomposition include hydrophobicity, since they will tend to 
form micelles that are difficult to break, a high C:N ratio, non-polarity of the molecules, the presence of carbon 
covalent bonds (C-quaternary), functional groups with poorly hydrolyzable bonds (ester, phenyl, cyano), nitrogen 
heterocyclic (pyrrole, pyridine) and long hydrocarbon chains (Kiikkilä et al. 2005, van Hees et al. 2005, Roberts et 
al. 2009; Kiikkilä et al. 2011, Glanville et al. 2012, Jones et al. 2012). The use of solid-state 13C NMR and 31P NMR 
allows the definition of the molecular structure of soil organic C and P molecules and thus indicates their susceptibil-
ity to degradation (Almendros et al. 2000, Turner et al. 2003, 2007, Noack et al. 2012, Bonanomi et al. 2013, Merino 
et al. 2015, García-Oliva et al. 2018, Merino et al. 2021).

The dominant molecular size in dissolved organic matter is greater than 10 kDa, but most microorganisms can 
only assimilate small molecules (< 1 kDa) and the soil microbial community therefore requires a mechanism with 
which to cleave them (Neff & Asner 2001, Jones et al. 2012). This mechanism of depolymerization is primarily 
extracellular and carried out by ecoenzymes (exoenzymes). These are protein catalysts secreted into the soil solu-
tion and are essential for breaking the chemical bonds of organic molecules (Sinsabaugh 1994, Baldrian 2009, Bai 
et al. 2021). The enzyme can be produced if the genes that code for it are present in microbial community (Starke 
et al. 2021). For example, it is known that ascomycetes fungi have a greater specialization for the degradation of 
polysaccharides, while basidiomycetes, in addition to their capacity for polysaccharide degradation, are special-
ized in the degradation of lignin, polyphenols, and other aromatic compounds (Baldrian et al. 2011b, Culleton et 
al. 2013). The composition of the soil microbial community, as well as its genetic diversity, is therefore critical for 
soil organic matter decomposition, providing other example of the importance of genetic diversity to ecosystem 
functioning (Whitham et al. 2006, Sardans et al. 2011, Peñuelas et al. 2013). Likewise, to produce exoenzymes, 
a stimulus that generates the gene expression that produces the enzyme must be present (Ekschmitt et al. 2005, 
Baldrian et al. 2011a, Voříšková et al. 2011). For example, a high availability of nitrogen in the soil can reduce the 
production of exoenzymes associated with the depolymerization of nitrogenous molecules, while a low availability 
of nitrogen can stimulate the production of ecoenzymes, such as proteases, chitinases, and laccases. This suggests 
that microorganisms do not invest in producing these enzymes if they have access to available nutrients in the soil 
(Šnajdr et al. 2011, Glanville et al. 2012). Consequently, the soil microbial community must invest more energy in 
different ecoenzymes to acquire the limited element rather than growing the population (Sterner & Elser 2002, Sin-
sabaugh et al. 2009). However, the investment of energy in nutrient acquisition must be related to the C:N:P ratios 
of the soil microbial community. For example, Cleveland & Liptzin (2007) reported that the soil microbial commu-
nity presents a relatively constant C:N:P ratio (60:7:1) in several terrestrial ecosystems. Furthermore, Sinsabaugh 
et al. (2009) reported an ecoenzymatic stoichiometry of 1:1 for C-N and C-P ecoenzymes in a different ecosystem, 
suggesting a strong relationship among ecoenzymatic activities. All of these results suggest that the C:N:P ratios 
are key indicators for understanding the integrated dynamic of nutrients in ecosystems, the conceptual framework 
of which is known as ecological stoichiometry (Sterner & Elser 2002, Sinsabaugh et al. 2009, Tapia-Torres et al. 
2015a, Peñuelas et al. 2019).
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Ecosystem resilience

In the two previous sections, we reviewed new theoretical frameworks and methods by which to understand the 
water, energy, and nutrient dynamics in terrestrial ecosystems, and which have served to consolidate ecosystem sci-
ence. From this review, we highlighted three key issues: (a) the requirement for integration of functional processes 
at different spatial and temporal scales (e.g., from genomic based processes to global fluxes) to understand the dy-
namics of an ecosystem in its environmental context; (b) the resource use efficiency (energy, water or nutrients) as a 
key metric for ecosystem function; and (c) the role of biological species in ecosystems functioning using the genetic 
framework. As stated above, the development of new methodologies (i.e., eddy covariance, remote sensing, stable 
isotope, solid-state 13C NMR and 31P NMR, and the omic molecular methods) has allowed the three issues mentioned 
above to be adequately addressed.

One of the main problems of human well-being is related to the current environmental crisis, mainly through the 
problems derived from ecosystem degradation and global climate change (Millennium Ecosystem Assessment 2005, 
IPCC 2013). In 2005, one quarter of the continental area worldwide was converted to cultivated systems and ap-
proximately 60 % of the ecosystem services were degraded (Millennium Ecosystem Assessment 2005). Moreover, 
the last decade was the warmest since 1850 as a result of greenhouse gas emissions by human activities increasing 
the frequency of extreme climatic events (IPCC 2021) and disturbing several components and processes of ecosys-
tems. For example, genetic diversity decreased globally (Millennium Ecosystem Assessment 2005), along with the 
capacity of soils to sequester carbon (Hoffmann et al. 2012, Albaladejo et al. 2013). Under this current scenario of 
environmental crisis, it is very important to understand the factors that determine the resilience capacity of ecosys-
tems and find means by which to implement natural climate solutions (Griscom et al. 2017). Resilience is defined 
as the capacity of an ecosystem to return to the functional and structural condition it presented prior to perturbation 
(Holling 1973, Pimm 1984, Dell et al. 1986). López et al. (2011) then defined ecosystem resilience as how and to 
what extent the ecosystem condition changes between the different states prior to disturbance, in a model of different 
structural-functional states that includes threshold values of degradation that define the resilience capacity of an eco-
system for changing functional states. This definition considered that the ecosystem function has several equilibrium 
states, some of which could be far removed from its original condition. This latter definition therefore incorporates 
a dynamic concept of ecosystem resilience. Most of the papers related to ecosystem resilience analyzed changes of 
biological diversity following disturbance (MacGillivray et al. 1995, Tilman 1996, Griffiths et al. 2000, Wardle et al. 
2000), but a few studies analyzed the recovery of functional processes (Herbert et al. 1999, Orwin & Wardle 2004, 
Hernández-Becerra et al. 2016). In addition, some authors proposed a quantitative index of ecosystem resilience 
(Herbert et al. 1999, Griffiths et al. 2001, Orwin & Wardle 2004).

Most studies are focused on a few variables, limiting the conclusions that can be made regarding the resilience 
capacity of ecosystems. For illustrative purposes, we present a resilience study conducted in a desert ecosystem in 
northern Mexico published by Hernández-Becerra et al. (2016). These authors analyzed soil microbial composition 
and soil nutrient dynamics in three plots with different management conditions (natural desert grassland, plot culti-
vated with alfalfa and plot abandoned for over 30 years) in the Cuatro Ciénegas Basin in northern Mexico. Briefly, 
the management consisted of cultivation of alfalfa (Medicago sativa L.) by flooding the fields and introducing large 
quantities of fertilizer, but the agriculture plots were abandoned because of soil degradation, mainly salinization 
(Hernández-Becerra et al. 2016, Tapia-Torres et al. 2018). Figure 1 shows the variables with the greatest differences 
among the three plots. The number of OTUs of soil bacteria and the Shannon diversity index decreased from the 
grassland to the abandoned plot, suggesting a reduction in the number of bacterial species as a result of the agricul-
tural management. Soil pH and electrical conductivity were both reduced in the alfalfa plot, but these variables both 
increased dramatically in the abandoned plots. Soil pH is considered as a strong filter of several soil bacterial spe-
cies (Delgado-Baquerizo et al. 2018, Malik et al. 2018). The bacterial species were therefore affected by two strong 
soil pH changes; one during the cultivation of alfalfa and the other after the agriculture activities were abandoned. 
The strongest changes in the bacterial community composition were observed during cultivation, in which the pro-
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portion of protobacteria decreased from 50 to 35 % in both the native grassland and alfalfa plot, and the species of 
cyanobacteria and chloroflexi bacteria were not observed in the latter plot. Finally, the available soil NO3 and HPO4 
concentrations increased and decreased, respectively, in the abandoned plot. These two variables also had the low-
est resilience index values among all the variables measured. These results suggest that nitrification increased with 
cultivation and soil P occlusion increased along with pH in the abandoned plots. Soil vulnerability to N loss therefore 
increased (Tapia-Torres et al. 2015b), as well as the soil capacity for geochemical occlusion of P (Perroni et al. 2014), 
and the soil processes that reduce the availability of N and P are therefore enhanced. These results suggest that the 
loss of bacterial species strongly affects the mechanisms of soil nutrient availability. The effect of the management 
could be worse than that of global climate change in this site, since the frequency of extreme climatic events had 
increased over the last decade (Montiel-González et al. 2021). In conclusion, soil bacterial composition is the key 
factor that controls the resilience of soil nutrient dynamics in this desert ecosystem. However, it is necessary to study 
the changes of expression of functional genes of bacteria that are related to nutrient dynamics. With this information, 
it is possible to design soil restoration or degradation mitigation methods, for example, by incorporating the func-
tional bacterial species which were lost during the agriculture activities.

According to the global ecology perspective, one future challenge is the development of simple but integrative 
metrics with which to assess the resilience capacity of ecosystems at large scales. As an exploratory tool with which 
to assess ecosystem response to disturbances, space for time substitutions in resource use efficiencies (i.e., RUE) can 
be used to measure resilience (i.e., as disturbance increases, the slope of RUE decreases, and vice versa, as ecosys-
tems recover the slope RUE increases) (Ehleringer 2001). To develop these powerful metrics for the assessment of 
ecosystem function responding to disturbance, we first require the baseline information that only long-term monitor-
ing schemes combining techniques at the appropriate scales can provide.

Integration of resource use efficiency, species functions, and ecosystems processes is critical for understanding 
changes in the resilience capacity of an ecosystem. Unfortunately, no studies have integrated these three components 
to date. Figure 2 shows the main processes driving ecosystem changes in four evolutionary stages. Prior to soil 
development in the foundational ecosystem stage, the parent material has a high concentration of mineral-derived 
nutrients but with low incorporation of organic matter, resulting in a low capacity for accumulating energy and water. 
Primary succession then occurs, promoting ecological interactions among the species with their eco-evolutionary 
dynamics, while the soils develop at the same time. In the developed ecosystem stage, the ecosystem shows a high 
water and energy storage capacity in the soils and biomass compared to the previous stages. In this stage, the avail-
ability of resources is strongly regulated by internal recycling mediated by the metabolic capacity of the organisms. 
This capacity depends on the species composition of the communities, where the resource use efficiency of species, 
defined by the genetic composition of species, could be an important driver of community composition. Incorpora-
tion of anthropic management into the ecological processes modifies the ecosystem function (human-transformed 
ecosystem stage), disrupting the feedback among ecological components and leading to soil degradation. In this 
condition, the storage capacity of energy and water is reduced due to the decline in functional, metabolic, and biodi-
versity. However, if the effect of anthropic management does not irreversibly deplete the biodiversity, it is possible 
for the ecosystem to return to its condition prior to management, depending on its resilience capacity. However, if the 
biodiversity is strongly depleted, a new human-induced foundational ecosystem stage is reached. This new stage is 
strongly limited by nutrients, energy, and water, with highly adverse physical and chemical conditions, representing 
a strongly degraded ecosystem.

Final remarks

In the last two and half decades, several concepts and methodologies from different convergent disciplines have 
contributed to the consolidation of ecosystem science. From these, three key issues emerge: (a) the requirement for 
integration of functional processes at different spatial and temporal scales to understand the dynamics of the ecosys-
tem in its environmental context, (b) the concept of resource use efficiency (i.e., water or nutrients) as a key metric 
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for ecosystem function, and (c) the role of biological species in ecosystem functioning, using a genetic framework. 
However, a new conceptual definition of the ecosystem is required in the context of the advance in theoretical bases, 
and it is necessary to apply these new methods to ecosystem studies. These new concepts and tools are necessary for 
improving ecosystem resilience research in the context of the current environmental crisis (i.e., ecosystem degrada-
tion, biodiversity erosion and global climate change). Finally, the new conceptual definition must be linked to evolu-
tion theory and global ecology research.
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