

LIGHT QUALITY AND TEMPERATURE FLUCTUATION PROMOTE THE GERMINATION OF *MAGNOLIA ALEJANDRAE* (MAGNOLIACEAE, SECT. MACROPHYLLA), A CRITICALLY ENDANGERED SPECIES ENDEMIC TO NORTHEAST MEXICO

LA CALIDAD DE LA LUZ Y LA FLUCTUACIÓN DE TEMPERATURAS PROMUEVEN LA GERMINACIÓN DE *MAGNOLIA ALEJANDRAE* (MAGNOLIACEAE, SECCIÓN MACROPHYLLA), UNA ESPECIE EN PELIGRO CRÍTICO, ENDÉMICA DEL NORESTE DE MÉXICO

SERGIO IGNACIO GALLARDO-YOBAL^{1,4}, EDILIA DE LA ROSA-MANZANO^{1*}, SERGIO CASTRO-NAVA², FRANCISCO REYES-ZEPEDA¹, ARTURO MORA-OLIVO¹, AND JOSÉ ANTONIO VÁZQUEZ-GARCÍA³

¹ Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México.

² Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México.

³ Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan, Jalisco, México.

⁴ Tecnológico Nacional de México/ITS de Zongolica, Zongolica, Veracruz, México.

*Author for correspondence: ermanzano@docentes.uat.edu.mx

Abstract

Background: *Magnolia alejandrae* is a critically endangered species and endemic to the Sierra Madre Oriental in northeastern Mexico. The abiotic requirements for its germination, such as light and temperature, are unknown.

Hypotheses: White light and temperature fluctuations will promote the germination of *M. alejandrae* and seeds from site with higher humidity will have increased germination percentage.

Study species: *Magnolia alejandrae*.

Study sites and dates: El Farallón in the Jaumave municipality and Los San Pedros in the Güémez municipality, Tamaulipas, Mexico. May-June 2019.

Methods: Four light-quality treatments (white, red, far-red and darkness) were evaluated, along with two temperature treatments: constant (18/18 °C) and fluctuating temperatures (8/18 °C) and two populations (El Farallón and Los San Pedros) on the germination of *M. alejandrae*. We used twenty seeds of the study species per experimental unit with five repetitions for each treatment.

Results: Light quality influenced the germination of *M. alejandrae* seeds, having the highest germination (76 %) under white light, followed by 45 % under red light, 9 % under far-red and 5 % in darkness, demonstrating that the seeds of this species are neutral photoblastic. Temperature fluctuation (8/18 °C) enhanced germination of *M. alejandrae* more than constant temperature (18/18 °C).

Conclusions: *M. alejandrae* seeds respond differentially to light quality and temperature, which has important implications in the reforestation and conservation of the species.

Keywords: Dormancy, low temperatures, photoblastics, Tamaulipas, temperate forest.

Resumen

Antecedentes: *Magnolia alejandrae* es una especie en peligro crítico y es endémica de la Sierra Madre Oriental de México. Se desconocen los requerimientos abióticos como luz y temperatura para su germinación.

Hipótesis: La germinación de *M. alejandrae* se verá favorecida bajo la luz blanca y la fluctuación de temperaturas. Las semillas de la población con mayor humedad tendrán mayor porcentaje de germinación.

Especie de estudio: *Magnolia alejandrae*.

Sitio de estudio: El Farallón en el municipio de Jaumave y Los San Pedros en el municipio de Güémez, Tamaulipas, Mexico. Mayo-junio 2019.

Métodos: Se evaluaron cuatro tratamientos de calidad de luz (blanca, roja, rojo lejano y oscuridad); dos tratamientos de temperatura: constante (18/18 °C) y fluctuación de temperatura (8/18 °C) y dos poblaciones (El Farallón y Los San Pedros) sobre la germinación de *M. alejandrae*. Se colocaron 20 semillas de la especie de estudio por unidad experimental con cinco repeticiones por cada tratamiento.

Resultados: La calidad de la luz tuvo un efecto en la germinación de las semillas de *M. alejandrae*, las cuales tuvieron una germinación mayor (76 %) bajo la luz blanca, seguida de la luz roja (45 %), rojo lejano (9 %) y oscuridad (5 %), lo que demuestra que las semillas de esta especie son fotoblásticas neutras. La fluctuación de temperatura (8/18 °C) incrementó la germinación de *M. alejandrae*.

Conclusiones: Las semillas de *M. alejandrae* responden diferencialmente a la calidad de luz y a la temperatura, lo cual tiene implicaciones importantes en la reforestación y conservación de la especie.

Palabras clave: bajas temperaturas, bosques templados, dormancia, fotoblásticas, Tamaulipas.

Germination occurs when seeds encounter suitable environmental conditions of temperature, humidity and light for their development; however, the nature of the seed itself and internal dormancy can inhibit germination, even in favorable environmental conditions (Finch-Savage & Leubner-Metzger 2006, Holdsworth *et al.* 2008). Besides the obstacles for germination, the species may face difficulties for establishment, such as *Magnolia vovidesii* A. Vázquez, Domínguez-Yescas & L. Carvajal belonging to *Magnolia* L. sect. *Macrophylla* Figlar & Noot., having high seed mortality (99.7 %) and 96.7 % mortality in the transition from seedlings to juveniles, resulting in low regeneration potential (Galván-Hernández *et al.* 2020).

Seeds have developed different strategies that enable them to survive adverse environmental conditions. For example, some seeds conserve energy to maintain the integrity of their genetic information and prolong their viability for several days, months, or even years (Corral-Aguirre & Sánchez-Velázquez 2006, Kisanuki *et al.* 2008), establishing a demographic balance in the population (Simpson *et al.* 1989); meanwhile, others germinate immediately when environmental conditions are right (Long *et al.* 2015). These strategies, whether alone or in combination, are called seed dormancy and are directly related and antagonistic to the plant life cycle (Black *et al.* 2006, Finch-Savage & Leubner-Metzger 2006, Bewley *et al.* 2013).

Sexual reproduction could result in a bottleneck when the seeds are unviable or dormant (Venable & Brown 1988). Some species of the genus *Magnolia* exhibit morphological or physiological dormancy, or a combination of both (Baskin & Baskin 2014). For example, some species present embryos that are not fully developed at the time of fruit dehiscence, suggesting physiological, chemical, mechanical, or morphological dormancy (Evans 1933, Baskin & Baskin 2004, 2008, Jacobo-Pereira *et al.* 2016, Gallegos-Mendoza *et al.* 2019). Seed dormancy occurs in temperate and tropical species of *Magnolia* (Baskin & Baskin 2014, Fernando *et al.* 2013) despite that the most tropical species are recalcitrant seeds with relatively short life span (Subbiah *et al.* 2019). In general, seeds of the genus *Magnolia* present low percentage of germination due to dormancy and various techniques have been used to break dormancy and increase germination (Vásquez-Morales & Sánchez-Velásquez 2011, Iralu & Upadhyaya 2016, Vásquez-Morales & Ramírez-Marcial 2019).

Temperature fluctuation, including low temperature, is a requirement to activate the metabolic processes of germination and break seed dormancy in *Magnolia* seeds (Bewley & Black 1994, Baskin & Baskin 2004), since the slow release of food reserves from the endosperm to the embryo is probably in response to the natural temperature fluctuations that seeds experience in nature (Probert 2000, Baskin & Baskin 2014). The use of temperatures (4 to 10 °C) to break dormancy and subsequent germinative treatments increase the percent germination in *Magnolia vovidesii*, treated by Vovides & Iglesias 1996, and Corral-Aguirre & Sánchez-Velázquez (2006) as *M. dealbata* Zucc. (Vásquez-García *et al.* 2015, 2016a) and *Magnolia schiedeana* Schleidl. (Vásquez-Morales & Sánchez-Velásquez 2011).

A combination of environmental factors determines the timing of seed germination for some species. Light may regulate seed germination and early establishment of seedlings because phytochrome-mediated responses play a critical role in determining the time of germination (Baskin & Baskin 2014). Fluctuating temperatures can substitute light requirements for the germination of some positive photoblastic species (Pons 2000). Photoblastism is the seed's response to different light conditions; 1) some seeds require light to germinate (positive photoblastism); 2) others require darkness to germinate (negative photoblastism); 3) others have a higher percentage of germination in light than in darkness; 4) others have a higher percentage in darkness than in light; and 5) some seeds germinate equally well in light and darkness (Baskin & Baskin 2014). Other authors have classified the types of photoblastism into three categories, where positive photoblastism is equivalent to category 1; negative photoblastism is equivalent to category 2; and the other three categories could be classified as neutral photoblastism or non-photoblastic (Fenner & Thompson 2005, Flores *et al.* 2016). It has been found that the percentage of germination of *Magnolia kobus* DC. and *M. obovata* Thunb. does not differ among red:far-red ratio under both constant and fluctuating temperatures, being an adaptive germination strategy to ensure seed germination in gaps, even for buried seeds in soil or litter (Xia *et al.* 2016). Seed conditions such as light exposure and soil depth, among others, can change the dynamic of a population (Bond *et al.* 1999).

The genus *Magnolia* comprises 36 species in Mexico, almost 10% of the known species of this genus worldwide (350 spp.) (Vázquez-García *et al.* 2016b). Despite the high species richness and endemism of this group in Mexico, little is known about its light quality requirements or the effect of temperature on the development of *Magnolia* embryos, which are overriding factors in the early establishment of tree seedlings in tropical humid forests (Whitmore 1996). Low temperatures treatment are often used to break seed dormancy, for instance in the deciduous *Magnolia* sect. *Macrophylla*: *M. vovidesii* (Corral-Aguirre & Sánchez-Velásquez 2006); several species of the evergreen sect. *Magnolia*: *Magnolia iltisiana* A. Vázquez (Saldaña-Acosta *et al.* 2001); *M. schiedeana* (Vásquez-Morales & Sánchez-Velásquez 2011), and *Magnolia pugana* (Iltis & A. Vázquez) A. Vázquez & Carvajal (Jacobo-Pereira *et al.* 2016); and two species of the evergreen sect. *Michelia*: *Magnolia punduana* Hook. f. & Thomson and *M. champaca* (L.) Baill. ex Pierre (Silvertown 1999, Fernando *et al.* 2013, Iralu & Upadhyaya 2016).

Magnolia alejandrae García-Morales & Iamonico is a recently described and critically endangered species endemic to the northeast of Mexico, known only from its taxonomic description (García-Morales *et al.* 2017) and its interaction with the insect, *Leptoglossus dilaticollis* Guérin-Méneville (Gallardo-Yobal *et al.* 2020). The species has a narrow distribution in the Sierra Madre Oriental province (western center of the state of Tamaulipas), include five populations (www.naturalista.mx) in the tropical mountain cloud forest and the pine-oak forest between 1,500 and 1,600 m asl. At these sites, the mean annual temperature varies from 17 °C during the day to 8 °C at night (Fick & Hijmans 2017).

This work presents the photoblastic response of *M. alejandrae* seeds and the influence of temperatures on germination. The aim was to determine what effect light quality, temperature fluctuation and population provenance have on the germination of *M. alejandrae*. The hypothesis is that white light and fluctuating temperatures promote the germination of *M. alejandrae*, while *M. alejandrae* seeds from Los San Pedros will have a higher germination percentage than those from El Farallón, due to the first site being more humid than the second.

Materials and methods

Study species. *Magnolia alejandrae* is a deciduous tree, up to 16 m tall with grayish-brown bark and greenish patches ([Figure 1A](#)); obovate leaves with a silky texture, cordate leaf bases, acute to attenuate at the apex; open flowers 30-34 cm in diameter, petals oblong with attenuate base, creamy white, glabrous, with 5 or 7 well-marked stripes, with a purple spot close to their truncated bases, glutinous around the blotch ([Figure 1B](#)). Flowering occurs between April and May. Fruiting occurs from August to September.

The seeds have a three-layer coat, the outer one is bright reddish and rugose-striate and is called sarcotesta (presumably a bird dispersal syndrome), fleshy and with persistent oily scents that make it impermeable to water and gas exchange, protective from some diseases and predators and containing germination inhibitors; the middle hardcover, called sclerotesta, is bony blackish and provides mechanical protection; the inner coat, a thin membrane, surrounds the endosperm, including a rudimentary embryo (Callaway 1994, Vásquez-Morales *et al.* 2010, Vázquez-García *et al.* 2021a) ([Figure 1C](#)).

Magnolia alejandrae is similar to all other eight members of section *Macrophylla* including the newly described *M. mixteca* A. Vázquez & Domínguez-Yescas and *M. zotictla* A. Sánchez.-Gonz., Gut.-Lozano & A. Vázquez (Sánchez-González *et al.* 2021, Vázquez-García *et al.* 2021b) in having a deciduous habit, short longevity (ca. 75 years), giant flowers and large (abaxially glaucous leaves). Its morphologically closest species is *M. nuevoleonensis* A. Vázquez & Domínguez-Yescas (García-Morales *et al.* 2017) and recent molecular evidence from a multi-gen approach (Ibarra-Martínez 2020) and microsatellites (Chávez-Cortázar *et al.* 2021) support a close relationship between these two taxa, despite their results including a clear geographic structure, high genetic differentiation and fine-scale genetic structure supporting allopatric speciation for these species, the latter authors suggest that all five Mexican members of *Magnolia* sect. *Macrophylla* are conspecific. Here, we adopt the species concept used by de Queiroz (1998, 2007), also in agreement with García-Morales *et al.* (2017) in that *Magnolia alejandrae* differs morphologically from *M. nuevoleonensis* in having larger flowers, a brighter and much wider purple petal spot, and narrower fruits.

Figure 1. Morphological characteristics of *Magnolia alejandrae*: bark (A), flower (B) and fruit (C). Photo credit: SIGY.

Seed collection sites. We collected seeds of *M. alejandrae* from two population provenances in the Sierra Madre Oriental in Tamaulipas. The first population site was El Farallón ($23^{\circ} 52' 03.90''$ N; $99^{\circ} 23' 21.31''$ W) at 1,655 m asl, in the Altas Cumbres Natural Protected Area of the Jaumave municipality; the second is at Los San Pedros ($23^{\circ} 57' 26.63''$ N; $99^{\circ} 28' 41.21''$ W) at 2,050 m asl, in the Güémez municipality. The climate at both sites is sub-humid temperate, with an average annual temperature of 17.4°C and annual rainfall of 800-1,200 mm, in pine and oak forest (Fick & Hijmans 2017).

We collected seeds in May and June, 2019, when the fruits were ripe but before dehiscence to avoid losing the seeds. We collected three fruits, pest and disease-free, from each of 30 randomly distributed *M. alejandrae* trees in each one of the two sites, specially avoiding those frequently damaged by the leaf-footed bug, *L. dilaticollis* (Gallardo-Yobal *et al.* 2020). Distance between *M. alejandrae* trees was a minimum of 50 m and a maximum of 100 m in the two study sites. The fruits were placed in paper bags, labeled and transported to the laboratory for drying. They were placed on an aluminum table at room temperature to allow the follicles containing the seed to open, preventing them from being rendered unviable from excess heat, since *Magnolia* seeds are recalcitrant (Del Tredici 1981). Follicles dehisced within three days. Subsequently, the seeds were immersed in water for 24 hr to facilitate removal of the sarcotesta by wrapping with a plastic mesh until the sclerotesta was exposed.

Experiment design. We obtained a work sample from the batch of seeds from each study site using International Seed Testing Association (ISTA 2017) methodology. Twenty seeds were placed in each 9 cm Petri dish, with five repetitions for each light treatment (100 seeds \times treatment), for two temperature treatments and two study sites, having a total of 1,600 seeds. All seeds were disinfected with 5 % bleach for 15 min and then washed and immersed in running water for 24 hr, before being removed and placed on layers of cotton moistened with distilled water under cold stratification (5°C) for seven days.

We performed a cold stratification as recommended by Evans *et al.* (1933) to break seed dormancy, and the temperature used in the stratification of *M. alejandrinae* matched that of *in situ* provenance. Once we completed this process, we exposed the seeds from each population site to four light quality treatments: red, far-red, white and dark. For the red-light simulation, we covered the Petri dishes with red (Lee, number 071) filters; and for the far-red with overlapping red and blue (Lee, number 182) filters. We used the definition by Tsuboi *et al.* (2012) and González de León *et al.* (2021) to delimit the red light (650-670 nm) and far-red (730-750 nm), whose ratios were 7.22 and 0.12, respectively. We determined the light quality by spectroradiometer LI-180 (Lincoln, LI-COR, EUA). The seed dishes being subjected to darkness were covered with aluminum to prevent light from entering. Finally, for the white light treatment, we exposed the dishes to unfiltered direct light. We used water agar (Meyer[®]) at 5 % as substrate and sealed the Petri dishes with parafilm. We exposed the seeds of each population and each light treatment to two temperature levels: in chamber I (Luministell[®], model IES-OS, México), the temperature was constant at 18 °C with a 12-hr photoperiod, while the temperature in chamber II (Luministell[®], model ICP-O9, México) fluctuated between 8 °C and 18 °C with a 12-hr photoperiod. This temperature range represents the variations that occurs in the study sites (Fick & Hijmans 2017). Each chamber was equipped with white and cold light lamps of 32 W (Phillips[®]). Daily recorded germinated seeds under white light except those under red, far-red and darkness treatments, recorded towards the end of the experiment (44 days after seeding). A seed was considered to have germinated when the radicle was visible (Finch-Savage & Leubner-Metzger 2006).

We calculated final germination percentage as:

$$\frac{n}{N} \times 100 \quad (1)$$

where n is the number of germinated seeds and N is the total number of seeds. We calculated the speed of seed germination under white light based on Kotowski's coefficient of velocity:

$$KCV = [\Sigma(ni ti) \times 100] \quad (2)$$

where ni is the number of germinated seeds in the day i , and ti is the number of days after seeding. KCV takes values from 0 to 100; high values represent a high germination velocity (González-Zertuche & Orozco-Segovia 1996). We calculated the time to reach 50 % germination (t50) according to Grime *et al.* (1981).

Statistical analyses. We analyzed the data in R version 4.0.4 (R Core Team 2021). Effects of light quality (white, red, far-red, and dark), site (El Farallón and Los San Pedros) and temperature (18/18 °C and 8/18 °C) on germination probability were analyzed using generalized linear models (GLM) with a quasibinomial distribution to correct overdispersion and a logit link function (Crawley 2007) using “lme4” package (Bates *et al.* 2015). We corroborated the absence of multicollinearity between variables by the variance inflation factor (VIF) function of the “car” package (Fox & Weisberg 2019). We applied the analysis of variance (ANOVA) by Wald test to determine the significance of each factor (light quality, site and temperature) and their interaction on the germination (Dunn & Smyth 2018), and subsequently multiple means comparisons (Holm, $P < 0.05$) to evaluate possible differences between pair light quality treatments. Holm's method is an adjustment to the p-value used in multiple hypothesis tests to prevent false statistical inferences (Holm 1979).

We applied a two-way analysis of variance (ANOVA) to test the effect of temperature (two levels) and population provenance (two levels) on germination velocity and germination at t50 of *M. alejandrinae* seeds under the white light treatment. We checked normality using the Shapiro-Wilk test.

Results

The three-way ANOVA indicated that the percentage of germination did not differ significantly among temperature, light quality, and population site combinations ($P > 0.05$; [Table 1](#)). However, the light quality and temperature factors

had a significant effect on the germination of *M. alejandrae* ($P < 0.05$; [Table 1](#)), where dark and far-red treatments showed a negative impact on germination, and the temperature of 8/18 °C had the highest positive effect ([Table 2](#)). The population provenances and the interaction of factors studied had no significant outcome on the germination of *M. alejandrae* ($P > 0.05$; [Table 1](#) and [2](#)). The light quality explained more variance (70.6 %) on seed germination, than temperature (1.7 %) ([Table 3](#)). *M. alejandrae* seeds from each population presented a similar germination pattern under different light quality ([Figure 2](#)), the highest germination occurring under white light (~70 %), followed by red light (45 %), far-red (9 %) and darkness (~5 %). Multi-comparison tests showed significant differences among all pairs of light quality treatments ($P < 0.001$, [Table 4](#)).

Table 1. Three-way analysis of variance to estimate the effect of temperature, light quality, population site and their interaction on percentage of germination of *Magnolia alejandrae*. The significance P value of the Wald test was < 0.05 .

	Df	Chisq	Pr(> Chisq)
(Intercept)	1	0.070	0.790
Light quality (Lq)	3	139.042	< 0.001
Population site (Ps)	1	0.080	0.777
Temperature (T)	1	4.116	0.042
Lq Ps	3	0.298	0.960
Lq T	3	0.963	0.810
Ps T	1	0.001	0.970
Lq T	3	2.612	0.455

Table 2. GLM model with quasibinomial distribution on germination of *Magnolia alejandrae* under different light quality, population site, and temperature regimes. The white light, El Farallón and 18/18 °C are not listed as coefficients because they were used as reference points for the model. The significance P value was < 0.05 .

	Estimate	t value	Pr(> t)
Intercept	0.031	0.265	0.791
Dark	-2.508	-9.825	< 0.001
Red light	-0.523	-3.01	< 0.001
Far-red light	-1.756	-8.498	< 0.001
Los San Pedros	0.048	0.283	0.778
8/18 °C	0.348	2.029	0.046
Dark Los San Pedros	0.096	0.274	0.784
Red light Los San Pedros	-0.022	-0.093	0.925
Far-red light Los San Pedros	0.114	0.398	0.692
Dark 8/18 °C	-0.348	-0.964	0.338
Red light 8/18 °C	-0.107	-0.44	0.661
Far-red light 8/18 °C	-0.126	-0.442	0.659
Los San Pedros 8/18 °C	0.009	0.037	0.97
Dark Los San Pedros 8/18 °C	0.597	1.236	0.22
Red light Los San Pedros 8/18 °C	0.127	0.37	0.712
Far-red light Los San Pedros 8/18 °C	-0.231	-0.573	0.568

Table 3. Percentage of contribution of each variable on the germination of *Magnolia alejandrinae*.

	DF	Sum Sq	Percentage of contribution	F values	Pr(> F)
Light quality (Lq)	3	62.845	70.63	57.793	<0.001
Population site (Ps)	1	0.029	0.03	0.080	0.778
Temperature (T)	1	1.498	1.68	4.132	0.046
Lq Ps	3	0.108	0.12	0.099	0.959
Lq T	3	0.349	0.39	0.321	0.810
Ps T	1	0.001	0	0.001	0.970
L Ps T	3	0.95	1.07	0.873	0.459
Residuals	64	23.198	26.07		

Figure 2. Germination percentage of *Magnolia alejandrinae* under red, far-red, white and dark light. The seeds come from two populations: El Farallón and Los San Pedros, Tamaulipas.

The germination velocity of the seeds of *M. alejandrinae* and the number of days to 50 % of germination (t50) were influenced by the interaction of the site and temperature ($F_{(1, 16)} = 22.7, P < 0.05$; $F_{(1, 16)} = 19.6, P < 0.05$, respectively; [Table 5](#)).

Germination was epigeal, and sclerotesta rupture occurred on day 31st; the seedlings remained alive for 44 days after seeding and presented high mortality at 50 days. A lapse of 10 days occurred between the emergence of the first radicles to the formation of the seedling, during which the first leaves, anchor roots and secondary roots appeared, as well as the presence of photosynthetic tissue ([Figure 3](#)).

Table 4. Paired comparisons of light quality on germination of *Magnolia alejandrinae*. The significance *P* value was < 0.001.

Contrast	Estimate	z value	Pr(> z)
White - Dark	2.4849	20.558	< 0.001
White - Red	0.5535	6.413	< 0.001
White - Far red	1.8207	18.07	< 0.001
Dark - Red	-1.9314	-15.956	< 0.001
Dark - Far red	-0.6643	-5.042	< 0.001
Red - Far red	1.2671	12.551	< 0.001

Table 5. Germination velocity and germination at t50 of *Magnolia alejandrinae* under white light and constant temperature (18/18 °C) and fluctuating temperature (8/18 °C). Different letters mean significant differences between temperature treatments and population sites for each variable analyzed, *P* < 0.05.

	18/18 °C	8/18 °C
Germination speed (%)		
El Farallón	2.39 ± 0.01 ^b	2.40 ± 0.01 ^b
Los San Pedros	2.36 ± 0.01 ^c	2.42 ± 0.01 ^a
t50 (days)		
El Farallón	37.67 ± 0.15 ^b	37.60 ± 0.23 ^b
Los San Pedros	39.26 ± 0.46 ^a	36.72 ± 0.13 ^b

Figure 3. Development of *Magnolia alejandrinae* seedlings in a period of 10 days under white light: A) Rupture of the sclerotesta (31 days after sowing), B) Emergence of the first radicles (epigeal germination), C) Growth of radicle and formation of the first secondary roots (shows photosynthetic tissue), and D) Seedling 10 days old, from germination (44 days).

Discussion

Light quality and temperature had a significant effect on the germination of *M. alejandrinae* in agreement with our hypothesis. Seeds germinated more under white light (76 %) than in darkness (< 5 %), hence this species can be classified in category 3 (seeds that have higher percentage of germination in light than in darkness) according to Baskin & Baskin

(2014). Moreover, *M. alejandrinae* seeds can be considered neutral photoblastic or non-photoblastic, in which seed germinate both in the dark and under white light (Fenner & Thompson 2005, Flores *et al.* 2016). The neutral photoblastism of *M. alejandrinae* coincides with *Magnolia officinalis* Rehder & E.H. Wilson (Zhou *et al.* 2012), and the species *M. kobus* and *M. obovata*, which are indifferent to light quality (Xia *et al.* 2016).

The high percentage of germination of *M. alejandrinae* seeds under white light suggests that this species could take advantage of the forest gaps to germinate, indicating that this species responds as a pioneer species (Fenner & Thompson 2005). Moreover, pioneer seed species are stimulated by an increased range of temperature fluctuation that occurs in large canopy gaps (Pearson *et al.* 2002). In contrast, the low germination in the darkness of *M. alejandrinae* seeds is probably a reflection of its adaptive capacity to ensure seed germination under forest litter, where other tree species such as *Liquidambar styraciflua* L. and *Pinus* sp. protect the *Magnolia* spp. seedlings from exposure to direct sunlight, avoiding desiccation (Ramírez-Bamonde *et al.* 2005, Arrieta & Suárez 2006).

In the field, light received by seeds has a direct effect on temperature and water availability that affect germination. Fluctuation temperature (8/18 °C) enhanced germination of *M. alejandrinae* seeds from the two studied populations ([Table 2](#)) and increase percent germination in tropical species (Pearson *et al.* 2002), including *Magnolia* species (Xia *et al.* 2016); this suggests that fluctuating temperatures can stimulate germination of tropical pioneer species in large-canopy gaps, even when seeds buried beneath the soil litter (Pearson *et al.* 2002).

The use of low temperatures (4 to -1 °C) during seed stratification and subsequent exposure to constant temperatures from 20 to 28 °C promotes germination in some species, such as *Magnolia punduana* and *M. champaca* belonging to the *Magnolia* sect. *Michelia*, a group consisting of species confined to tropical Asia (Silvertown 1999, Fernando *et al.* 2013, Iralu & Upadhyaya 2016). Nevertheless, in our study, the prior stratification and the subsequent exposure of the seeds to temperature fluctuation increased the percent germination of *M. alejandrinae*. Exposure to cold and warm periods is a process that occurs naturally in forest species. Species such as the Fabaceae, inhabiting pine and oak forests, are found in environments susceptible to frost and generally present physiological dormancy (Jurado & Flores 2005). Temperature is a primary factor to stimulate germination and regulate changes in the state of dormancy (Vleeshouwers *et al.* 1995, Benech-Arnold *et al.* 2000). The low temperatures in the high mountains of the Sierra Madre Oriental could facilitate the germination of *M. alejandrinae* seeds during fall, but field experiments are needed to prove this hypothesis. This low temperature could also facilitate assisted migration to immediately higher elevations as shown in *Magnolia vovidesii* (also a member of sect. *Macrophylla*), having an increase in relative growth rates and survival for saplings, and could become a promising conservation strategy for cloud forest trees to mitigate the impacts of climate change (García-Hernández & Toledo-Aceves 2020).

Several works on *Magnolia* germination have used treatments to break dormancy, including imbibition, cold moist stratification, acid (chemical) and mechanical scarification, the use of hydrogen peroxide and even hormones such as gibberellic acid (GA3) (Saldaña-Acosta *et al.* 2001, Corral-Aguirre & Sánchez-Velásquez 2006, Vásquez-Morales & Sánchez-Velásquez 2011, Iralu & Upadhyaya 2016, Jacobo-Pereira *et al.* 2016, Vásquez-Morales & Ramírez-Marcial 2019). However, this study shows that *M. alejandrinae* seeds exposed to fluctuating temperatures (8/18 °C) enhanced the percentage of germination in comparison to 18/18 °C.

Evans (1933) used fluctuating temperatures to germinate *Magnolia grandiflora* L., obtaining 10 % of seeds germination below 29 °C, while 40 % germination under alternating temperatures of 10/23 °C. The international rules for seed testing (AOSA 2017), recommend 45 days of pre-chilling followed by alternating temperatures of 20/30 °C for *M. grandiflora*. For other species, such as *M. officinalis*, with alternated temperatures of 25/30 °C, achieve 59 % germination, while temperatures of 20/30 °C achieved 65 % germination (Xiao 2010). These results are similar to those reported for *M. alejandrinae* under constant temperature (18/18 °C) that reached 62 % germination.

The germination of *M. alejandrinae* seeds began at 31 days after seeding, reaching the seedling stage at 44 days ([Figure 3](#)). In other species of the genus *Magnolia*, variations have been found in the number of days to onset germination. For example, the seeds of *M. grandiflora* germinate after 60 days of storage in vermiculite (Hanchey & Kimbrough 1954); *Magnolia perezfarrerae* A. Vázquez & Gómez-Domínguez in 75 days; *Magnolia sharpii* Miranda in 45 days (Vásquez-Morales & Ramírez-Marcial 2019) and *M. punduana* in 212 days (Iralu & Upadhyaya 2016).

Magnolia alejandrae germinates in fewer days than the previously mentioned *Magnolia* species, may be as a mechanism to reduce desiccation mortality (Yirdaw & Leinonen 2002).

Rapid germination is a good indicator to assess the speed of occupation of a species in a given environment (Ferreira *et al.* 2001). In this respect, the germination at t50 of *M. alejandrae* was influenced by temperature and site interaction, having significant differences between population provenance under constant temperature treatment, with an average of 38.4 days. In the case of *M. vovidesii*, it takes 39.4 days to germinate 50 % of the seeds (Toledo-Aceves 2017), matching that of *M. alejandrae* in the Los San Pedros population under constant temperature but is higher than the seeds from El Farallón in the two temperature treatments (Table 5). Similarly, species from the tropical montane cloud forest, such as *Carpinus caroliniana* Walt., require 36.5 days to germinate 50 % of the seeds after being stored for two months, matching the results for *M. alejandrae* under fluctuating temperatures. Other species, like *L. styraciflua*, require only 5.5 days to germinate 50 % of the seeds (Linera & Pérez 2005), reflecting the capacity of the species from the tropical montane cloud forest to use environmental resources differentially.

In summary, we demonstrate that 1) *Magnolia alejandrae* seeds are neutral photoblastic and 2) light quality and fluctuating temperatures have a direct effect on germination; this is relevant in understanding how environmental factors, such as temperature and light, influence the initial stage of seed development. The environmental factors required for germination vary from one species to another, hence, being relevant to recognize the abiotic and biotic factors necessary for seed germination to determine the type of dormancy a species presents; likewise, microclimatic requirements are fundamental for the seeds to become established since these directly influence the obtaining of seedlings for population recovery. However, further ecophysiological studies of *Magnolia alejandrae* seeds are needed, such as the embryo/endosperm relationship, rupture of the scleroteca, successful *in situ* germination, establishment, and survival.

Acknowledgments

The authors are thankful to the Autonomous University of Tamaulipas for financing of the project (PFI2015-03) granted to FRZ and PFI2016-EB-41 to ERM. SIGY was recipient of a Ph.D. fellowship by National Council for Science and Technology, Mexico (449249).

Literature cited

AOSA [Association of Official Seed Analysts]. 2017. Rules for testing seeds. 270 pp. <https://analyzeseeds.com/wp-content/uploads/2018/03/2017-AOSA-Rules-Volume-3.pdf> (accessed March 14, 2021).

Arrieta S, Suárez F. 2006. Scots pine (*Pinus sylvestris* L.) plantations contribute to the regeneration of holly (*Ilex aquifolium* L.) in mediterranean central Spain. *European Journal of Forest Research* **125**: 271-279. DOI: <https://doi.org/10.1007/s10342-006-0121-y>

Baskin CC, Baskin JM. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. *American Journal of Botany* **75**: 286-305. DOI: <https://doi.org/10.2307/2443896>

Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. *Seed Science Research* **14**: 1-16. DOI: <https://doi.org/10.1079/SSR2003150>

Baskin JM, Baskin CC. 2008. Some considerations for adoption of Nikolaeva's formula system into seed dormancy classification. *Seed Science Research* **18**: 131-137. DOI: <https://doi.org/10.1017/S096025850803674X>

Baskin CC, Baskin JM. 2014. *Seeds: ecology, biogeography, and evolution of dormancy and germination*, San Diego: Elsevier Academic Press. pp. 459-557. ISBN 978-012-4166-83-7

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software* **67**: 1-48. DOI: <https://doi.org/10.18637/jss.v067.i01>

Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM. 2000. Environmental control of dormancy in weed seed banks in soil. *Field Crops Research* **67**: 105-122. DOI: [https://doi.org/10.1016/S0378-4290\(00\)00087-3](https://doi.org/10.1016/S0378-4290(00)00087-3)

Bewley JD, Black M. 1994. *Seeds: Physiology of development and germination*. New York: Plenum Press. DOI: <https://doi.org/10.1007/978-1-4899-1002-8>

Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. Germination. In: Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H, eds. *Seeds. Physiology of development, Germination and Dormancy*. New York: Springer, pp. 133-182. DOI: <https://doi.org/10.1007/978-1-4614-4693-4>

Black P, McCormick R, Jame M, Pedder D. 2006. Learning how to learn and assessment for learning: A theoretical inquiry. *Research Papers in Education* **21**: 119-132. DOI: <https://doi.org/10.1080/02671520600615612>

Bond WJ, Honig M, Maze KE. 1999. Seed size and seedling emergence: an allometric relationship and some ecological implications. *Oecologia* **120**:120-132. DOI: <https://doi.org/10.1007/s004420050841>

Callaway DJ. 1994. *The world of magnolias*. Portland, USA: Timber Press. ISBN 978-088-1922-36-3

Chávez-Cortázar A, Oyama K, Ochoa-Zavala M, Mata-Rosas M, Veltjen E, Samain MS, Quesada M. 2021. Conservation genetics of relict tropical species of *Magnolia* (section *Macrophylla*). *Conservation Genetics* **22**: 259-273. DOI: <https://doi.org/10.1007/s10592-021-01334-5>

Corral-Aguirre J, Sánchez-Velásquez LR. 2006. Seed ecology and germination treatments in *Magnolia dealbata*: an endangered species. *Flora-Morphology, Distribution, Functional. Ecology of Plants* **201**: 227-232. DOI: <https://doi.org/10.1016/j.flora.2005.07.004>

Crawley MJ. 2007. The R Book. *Statistical Papers* **50**: 445-446. DOI: <https://doi.org/10.1007/s00362-008-0118-3>

de Queiroz K. 1998. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: De Queiroz K, Berlocher SH, eds. *Endless forms: Species and speciation*. New York: Oxford University Press, pp. 57-75.

de Queiroz K. 2007. Species concepts and species delimitation. *Systematic Biology* **56**: 879-886. DOI: <https://doi.org/10.1080/10635150701701083>

Del Tredici P. 1981. *Magnolia virginiana* in Massachusetts. *Arnoldia* **41**: 36-49.

Dunn PK, Smyth GK. 2018. Generalized Linear Models: Inference. In: *Generalized Linear Models with examples in R*. New York: Springer, pp. 265-296. DOI: https://doi.org/10.1007/978-1-4419-0118-7_7

Evans CR. 1933. Germination behavior of *Magnolia grandiflora*. *Botanical Gazette* **94**: 729-754. DOI: <https://doi.org/10.1086/334344>

Fernando MTR, Jayasuriya KG, Walck JL, Wijetunga A. 2013. Identifying dormancy class and storage behaviour of champak (*Magnolia champaca*) seeds, an important tropical timber tree. *Journal of the National Science Foundation of Sri Lanka* **41**: 141-146. DOI: <https://doi.org/10.4038/jnsfsr.v41i2.5708>

Fenner M, Thompson K. 2005. *The Ecology of Seeds*. Cambridge: Cambridge University Press, DOI: <https://doi.org/10.1017/CBO9780511614101>

Ferreira AG, Cassol B, Rosa SGT, Silveira TS, Stival AL, Silva AA. 2001. Germinação de sementes de Asteraceae nativas no Rio Grande do Sul, Brasil. *Acta Botanica Brasilica* **15**: 231-242. DOI: <https://doi.org/10.1590/S0102-33062001000200009>

Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* **37**: 4302-4315. DOI: <https://doi.org/10.1002/joc.5086>

Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination: Tansley review. *New Phytologist* **171**: 501-523. DOI: <https://doi.org/10.1111/j.1469-8137.2006.01787.x>

Flores J, González-Salvaterra C, Jurado E. 2016. Effect of light on seed germination and seedling shape of succulent species from Mexico. *Journal of Plant Ecology*. **9**: 174-179. DOI: <https://doi.org/10.1093/jpe/rtv046>

Fox J, Weisberg S. 2019. *An R Companion to Applied Regression*. Thousand Oaks CA: SAGE Publications. ISBN: 978-154-4336-47-3

Galván-Hernández DM, Octavio-Aguilar P, Bartolo-Hernández C de J, García-Montes MA, Sánchez-González A, Ramírez-Bautista A, Vovides A. 2020. Current Status of *Magnolia vovidesii* (Magnoliaceae, Magnoniales): New data on population trends, spatial structure, and disturbance threats. *Tropical Conservation Science* **13**: 1-12 DOI: <https://doi.org/10.1177/1940082920923894>

Gallegos-Mendoza SM, Ortega-Peña AS, Jacobo-Pereira C, Vázquez-García JA. 2019. Pruebas de germinación en semillas de *Magnolia pacifica* y *M. vallartensis*. Consortium for Conservation of Neotropical Magnolias. <https://www.magnoliamexico2019.org/> (accessed October 16, 2021).

Gallardo-Yobal SI, Chacón-Hernández JC, Reyes-Zepeda F, Vázquez-García JA, Monjarás-Barrera JI, Ordaz-Silva S, López-Sánchez IV. 2020. *Leptoglossus dilaticollis* Guérin-Méneville (Hemiptera: Coreidae) occurrence on *Magnolia alejandrae* García-Mor. & Iamonico (Magnoliaceae) in Northeast Mexico. *Proceedings of the Entomological Society of Washington* **122**: 1011-1014. DOI: <https://doi.org/10.4289/0013-8797.122.4.1011>

García-Hernández MA, Toledo-Aceves T. 2020. Is there potential in elevational assisted migration for the endangered *Magnolia vovidesii*? *Journal for Nature Conservation* **53**: 125782. <https://doi.org/10.1016/j.jnc.2019.125782>

García-Morales LJ, Iamonico D, Jiménez JG. 2017. Nomenclatural remarks on Magnolia sect. *Macrophylla* (Magnoliaceae), with description of a new species from North America (Tamaulipas, Mexico). *Phytotaxa* **309**: 238-244. DOI: <https://doi.org/10.11646/phytotaxa.309.3.4>

González de León S, Briones O, Aguirre A, Mehltreter K, Pérez-García B. 2021. Germination of an invasive fern responds better than native ferns to water and light stress in a Mexican cloud forest. *Biological Invasions* **23**: 3187-3199. DOI: <https://doi.org/10.1007/s10530-021-02570-z>

González-Zertuche L, Orozco-Segovia A. 1996. Métodos de análisis de datos en la germinación de semillas, un ejemplo: *Manfreda brachystachya*. *Boletín de la Sociedad Botánica de México* **58**: 15-30. <https://doi.org/10.17129/botscl.1484>

Grime JP, Mason G, Curtis AV, Rodman J, Band SR. 1981. A comparative study of germination characteristics in a local flora. *The Journal of Ecology* **69**: 1017-1059. DOI: <https://doi.org/10.2307/2259651>

Hanchey RH, Kimbrough WD. 1954. *Magnolia grandiflora* seed germination tests. In: Proceedings, Association of Southern Agricultural Workers; 1954. Dallas, TX. <https://www.fs.usda.gov/nsl/Wpsm%202008/M&N%20gen-era.pdf> (accessed March 14, 2021).

Holdsworth MJ, Bentsink L, Soppe WJ. 2008. Molecular networks regulating *Arabidopsis* seed maturation, after-ripening, dormancy and germination. *New Phytologist* **179**: 33-54. DOI: <https://doi.org/10.1111/j.1469-8137.2008.02437.x>

Holm S. 1979. A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics* **6**: 65-70.

Ibarra-Martínez MV. 2020. *Relaciones filogenéticas y filogeografía de Magnolia sect. Macrophylla en México*. MSc. Thesis Universidad de Guadalajara.

Iralu V, Upadhyaya K. 2016. Dormancy, storability, and germination of seeds in *Magnolia punduana* (Magnoliaceae). *Botany* **94**: 967-973. DOI: <https://doi.org/10.1139/cjb-2016-0056>

ISTA [International Rules for Seed Testing, International Seed Testing Association]. 2017. Bassersdorf, Switzerland. <https://www.seedtest.org/en/home.html> (accessed March 14, 2021).

Jacobo-Pereira C, Romo-Campos R, Flores J. 2016. Germinación de semillas de *Magnolia pugana* (Magnoliaceae), especie endémica y en peligro de extinción del occidente de México. *Botanical Sciences* **94**: 575-584. DOI: <https://doi.org/10.17129/botscl.512>

Jurado E, Flores J. 2005. Is seed dormancy under environmental control or bound to plant traits? *Journal of Vegetation Science* **16**: 559-564. DOI: <https://doi.org/10.1111/j.1654-1103.2005.tb02396.x>

Kisanuki H, Oguro H, Nakai A, Setsuko S, Nishimura N, Tomaru N. 2008. The soil seed bank of the threatened plant *Magnolia stellata* is subordinate to the emergence of current-year seedlings. *Journal of Forest Research* **13**: 143-146. DOI: <https://doi.org/10.1007/s10310-008-0066-8>

Linera GW, Pérez RAP. 2005. Microhabitat conditions for germination and establishment of two tree species in the mexican montane cloud forest. *Agrociencia* **39**: 457-464.

Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, Commander LE, Westcott DA, Cherry H, Finch-Savage WE. 2015. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. *Biological Reviews* **90**: 31-59. DOI: <https://doi.org/10.1111/brv.12095>

Pearson TRH, Burslem DFRP, Mullins CE, Dalling JW. 2002. Germination ecology of neotropical pioneers: Interact-

ing effects of environmental conditions and seed size. *Ecology* **83**: 2798-2807. DOI: [https://doi.org/10.1890/0012-9658\(2002\)083\[2798:GEONPI\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2002)083[2798:GEONPI]2.0.CO;2)

Pons TL. 2000. Seed responses to light. In: Fenner M. eds. *Seeds: The Ecology of Regeneration in Plant Communities*. Wallingford UK: CABI. pp. 237-260. DOI: <https://doi.org/10.1079/9780851994321.0000>

Probert RJ. 2000. The role of temperature in the regulation of seed dormancy and germination. In M Fenner, eds. *Seeds: The ecology of regeneration in plant communities*. Wallingford: CABI Press, pp. 261-292. DOI: <https://doi.org/10.1079/9780851994321.0261>

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org>

Ramírez-Bamonde ES, Sánchez-Velásquez LR, Andrade-Torres A. 2005. Seedling survival and growth of three species of mountain cloud forest in Mexico, under different canopy treatments. *New Forests* **30**: 95-101. DOI: <https://doi.org/10.1007/s11056-004-5397-5>

Saldaña-Acosta A, Zuloaga-Aguilar MS, Jardel E. 2001. Germinación de *Acer skutchii* Rehder y *Magnolia iltisiana* Vázquez en la Reserva de la Biosfera Sierra de Manantlán, Jalisco, México. *Forestá Veracruzana* **3**: 1-8.

Sánchez-González A, Gutiérrez-Lozano M, Domínguez-Yescas R, Hernández-Álvarez AG, Ortega-Peña AS, & Vázquez-García JA. 2021. *Magnolia zotictla* (*Magnolia* sect. *Macrophylla*, Magnoliaceae): a new species from the southern Sierra Madre Oriental, México. *Phytotaxa* **513**: 271-281. DOI: <https://doi.org/10.11646/phytotaxa.513.4.1>

Silvertown J. 1999. Seed ecology, dormancy, and germination: A modern synthesis from Baskin and Baskin. *American Journal of Botany* **86**: 903-905. DOI: <https://doi.org/10.2307/2656711>

Simpson RL, Leck MA, Parker VT. 1989. Seed banks: General concepts and methodological issues. In: Leck MA, Parker VT, Simpson RL, eds. *Ecology of soil seed banks*. London: Academic Press, pp. 3-8. ISBN: 978-032-3148-65-8

Subbiah A, Ramdhani S, Pammerer NW, Macdonald AHH, Sershen S. 2019. Towards understanding the incidence and evolutionary history of seed recalcitrance: An analytical review. *Perspectives in Plant Ecology, Evolution and Systematics* **37**: 11-19. DOI: <https://doi.org/10.1016/j.ppees.2019.01.001>

Toledo-Aceves T. 2017. Germination rate of endangered cloud forest trees in Mexico: Potential for *ex situ* propagation. *Journal of Forest Research* **22**: 61-64. DOI: <https://doi.org/10.1080/13416979.2016.1273083>

Tsuboi H, Nakamura S, Schäfer E, Wada M. 2012. Red light-induced phytochrome relocation into the nucleus in *adiantum capillus-veneris*. *Molecular Plant* **5**: 611-618. DOI: <https://doi.org/10.1093/mp/ssr119>

Vásquez-Morales SG, Sánchez-Velázquez LR, Pineda-López R. 2010. Las semillas de la magnolia. *La Ciencia y el Hombre* **23**: 37-40.

Vásquez-Morales SG, Ramírez-Marcial N. 2019. Seed germination and population structure of two endangered tree species: *Magnolia perezfarrerae* and *Magnolia sharpii*. *Botanical Sciences* **97**: 2-12. DOI: <https://doi.org/10.17129/botsci.1977>

Vásquez-Morales SG, Sánchez-Velásquez LR. 2011. Seed ecology and pre-germinative treatments in *Magnolia schiedeana* Schlecht, an endangered species from Mexico. *Journal of Food, Ecology and Agriculture* **99**: 604-608.

Vázquez-García JA, Domínguez-Yescas R, Pedraza-Ruiz R, Sánchez-González A, Muñiz-Castro MA. 2015. *Magnolia rzedowskiana* (Magnoliaceae), a new species of section *Macrophylla* from the central Sierra Madre Oriental, Mexico. *Acta botánica mexicana* **112**: 19-36. DOI: <https://doi.org/10.21829/abm112.2015.1086>

Vázquez-García JA, Domínguez-Yescas R, Velazco-Macías C, Shalisko V, Merino-Santi RE. 2016a. *Magnolia nuevoleonensis* sp. nov. (Magnoliaceae) from northeastern Mexico and a key to species of section *Macrophylla*. *Nordic Journal of Botany* **34**: 48-53. DOI: <https://doi.org/10.1111/njb.00800>

Vázquez-García JA, Muñiz-Castro MÁ, Dahuja-Machoa A, Osorio-Muñoz EA, Hernández-Vera G, Ortega-Peña AS, Romo-Campos RL, Jacobo-Pereira C, Álvarez de R N, Shalisko V. 2021a. How to save endangered magnolias? From population biology to conservation action: The case of allopatric radiation in western Mexico. In: Kumar, S. (Ed.), *Endangered Plants*. London, UK, IntechOpen. DOI: <https://doi.org/10.5772/intechopen.94346>

Vázquez-García JA, Neill D, Asanza M, Pérez ÁJ, Arroyo F, Dahua A, et al. 2016b. *Magnolias de Ecuador: En Riesgo de Extinción*. Ecuador: Universidad Estatal Amazónica. ISBN: 978-607-8328-02-4.

Vázquez-García JA, Yescas RD, Luna-Vega I, Rodríguez-Ramírez EC, & Rodríguez-Pérez C. 2021b. Corn cob flower, *Magnolia mixteca* (M. sect. *Macrophylla*, Magnoliaceae): a new species endemic to the Alto Balsas Basin (Baja Mixteca), in the Pacific slopes of Oaxaca, Mexico. *Phytotaxa* **522**: 200-210. DOI: <https://doi.org/10.11646/phytotaxa.522.3.3>

Venable DL, Brown JS. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. *The American Naturalist* **131**: 360-384. DOI: <https://doi.org/10.1086/284795>

Vleeshouwers LM, Bouwmeester HJ, Karssen CM. 1995. Redefining seed dormancy: An attempt to integrate physiology and ecology. *The Journal of Ecology* **83**: 1031-1037. DOI: <https://doi.org/10.2307/2261184>

Vovides AP, Iglesias CG. 1996. Seed Germination of *Magnolia dealbata* Zucc. (Magnoliaceae), An endangered species from Mexico, *HortScience* **31**: 877-877. <https://doi.org/10.21273/HORTSCI.31.5.877>

Whitmore TC. 1996. A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. *Man and the Biosphere Series* **17**: 3-40.

Xia Q, Ando M, Seiwa K. 2016. Interaction of seed size with light quality and temperature regimes as germination cues in 10 temperate pioneer tree species. *Functional Ecology* **30**: 866-874. DOI: <https://doi.org/10.1111/1365-2435.12584>

Xiao S. 2010. Seed germinating characteristics of endangered plant *Magnolia officinalis*. *China Journal of Chinese Matera Medica* **35**: 419-422.

Yirdaw E, Leinonen K. 2002. Seed germination responses of four afromontane tree species to red/far-red ratio and temperature. *Forest Ecology and Management* **168**: 53-61. DOI: [https://doi.org/10.1016/S0378-1127\(01\)00719-8](https://doi.org/10.1016/S0378-1127(01)00719-8)

Zhou J, Kulkarni MG, Huang LQ, Guo LP, Van Staden J. 2012. Effects of temperature, light, nutrients and smoke-water on seed germination and seedling growth of *Astragalus membranaceus*, *Panax notoginseng* and *Magnolia officinalis* - highly traded Chinese medicinal plants. *South African Journal of Botany* **79**: 62-70. DOI: <https://doi.org/10.1016/j.sajb.2011.11.004>

Editor de sección: Joel Flores

Author contributions: SIGY: idea conception, field work, laboratory work, analysis, and writing. ERM: idea conception, analysis, writing and final revision. SCN: final revision. FRZ: idea conception and final revision. AMO: final revision and field work. JAVG: final revision.