

Mitochondria-based medicine

Salvador Vázquez-Vega^{1§}, José D. Martínez-Ezquerro^{2,3§}, Sergio Sánchez-García²,
Edwin R. Marka-Castro⁴, and Fernando Minauro-Sanmiguel^{5*}

¹Unit of Epidemiological and Health Services Research, Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI; ²Unit of Epidemiological and Health Services Research, Aging Area, IMSS, Centro Médico Nacional Siglo XXI; ³Center for Complexity Sciences (C3), Universidad Nacional Autónoma de México; ⁴Centro Médico Nacional Siglo XXI Hospital de Especialidades "Bernardo Sepúlveda Gutiérrez", IMSS; ⁵Unit of Medical Research in Human Genetics, IMSS, Centro Médico Nacional Siglo XXI. Mexico City, Mexico

§Comparten la posición de primer autor.

Abstract

At the balance between human health and disease (from the very first moments to the end of life), the mitochondrion is central players because of its metabolic role in adenosine triphosphate synthesis, cell signaling, immune response, and other processes of clinical interest. On the other hand, impairments at the optimal mitochondria function have important consequences in complex diseases, such as heart disease, diabetes, and cancer, among others. These mitochondrial impairments can occur at any age damaging multiple body systems, which have prompted the mitochondrial medicine development. Since mitochondrial diseases have great variability in their clinical manifestations, early studies were centered on mitochondrialopathies, however nowadays, this focus has broadened to understand and encompass the mitochondrial role of in diseases development of both pediatric and adult age. The mitochondria potential to improve diagnostic, prognostic, and treatment response strategies has been revealed by experimental approaches using proteomics, genomics, and metabolomics to identify clinical biomarkers showing disease development. Thus, the perspective of mitochondria-based medicine recognizes the importance of generating scientific evidence related to mitochondria and their role in pathological conditions from a comprehensive approach.

Keywords: Mitochondria. Mitochondrial diseases. Chronic non-communicable diseases. Metabolic diseases.

Medicina basada en mitocondrias

Resumen

En el equilibrio entre la salud y la enfermedad de un individuo (desde los primeros instantes de su vida y durante el resto de ella), la mitocondria tiene un papel central en el correcto funcionamiento del metabolismo. Además, su papel es primordial en la síntesis de ATP, en la señalización celular, la respuesta inmune, entre otros procesos de interés clínico. Por otro lado, las afecciones al funcionamiento óptimo de la mitocondria tienen consecuencias importantes en las enfermedades complejas, tal es el caso de las enfermedades cardíacas, la diabetes y el cáncer, entre otras. Estas afecciones en la función mitocondrial pueden ocurrir a cualquier edad y dañar a múltiples sistemas del cuerpo lo que ha impulsado el desarrollo de la medicina mitocondrial, pues las enfermedades mitocondriales pueden presentar una gran variabilidad en sus manifestaciones clínicas. Inicialmente, el estudio se enfocó en las mitocondriopatías, actualmente su enfoque se ha ampliado para

*Correspondencia:

Fernando Minauro-Sanmiguel

E-mail: misaf73@gmail.com

1665-1146/© 2024 Hospital Infantil de México Federico Gómez. Published by Permanyer. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Date of reception: 18-04-2024

Date of acceptance: 04-10-2024

DOI: 10.24875/BM HIM.24000058

Available online: 28-02-2025

Bol Med Hosp Infant Mex. 2025;82(1):7-14

www.bmhim.com

comprender y abarcar el papel de la mitocondria en el desarrollo de enfermedades, tanto de la edad pediátrica como de la edad adulta. El potencial de la mitocondria para mejorar las estrategias de diagnóstico, pronóstico y respuesta al tratamiento ha sido revelado por abordajes experimentales que emplean a la proteómica, la genómica y la metabolómica, para identificar biomarcadores con utilidad clínica que muestran el desarrollo de enfermedades. Por lo que la perspectiva de la medicina basada en mitocondrias reconoce la importancia de la generación de la evidencia científica relacionada con las mitocondrias y su papel en condiciones patológicas desde un enfoque integral.

Palabras clave: Mitocondria. Enfermedades mitocondriales. Enfermedades crónicas no transmisibles. Enfermedades metabólicas.

Introduction

The mitochondrion is the cellular organelle that regulates metabolism, cell signaling, and immune response; therefore, it requires coordination with other organelles and cellular niches to maintain cellular homeostasis. Disease disrupts this homeostasis or balance, and mitochondria register these changes, defining useful elements in recognizing and managing different diseases^{1,2}. This relationship directly impacts medicine, as understanding the mitochondria-health-disease axis could improve decision-making and generate solutions in the context of mitochondria-based medicine.

Mitochondria possesses their own genome (mitochondrial DNA [mtDNA]); in humans, it contains 37 genes, 13 of which encode proteins related to oxidative phosphorylation (OXPHOS, the adenosine triphosphate [ATP] synthesis process)³; however, it contains a significant diversity of proteins (approximately 2000), such that the majority are encoded and imported from the nucleus⁴. mtDNA can also vary: a cell contains between 100 and 10,000 copies³, which can have subtle differences and form populations (heteroplasmy) that could influence the health/disease phenotype. Furthermore, mitochondria communicate with virtually all cellular structures both intrinsically and extrinsically, as they make use of various extracellular structures (nanotubes, vesicles, and bloodstream) that allow them to establish long-distance communication; thus, they have also become attractive tools for the design of novel therapies^{5,6}.

Mitochondrial medicine

Initially, mitochondrial medicine focused on mitochondriopathies (inherited metabolic disorders that affect ATP synthesis)⁷. These diseases primarily present in childhood, although they can also appear in adults; they lack well-defined diagnostic criteria and treatment protocols, their symptoms are nonspecific,

and the molecular defect is difficult to pinpoint, thus requiring different methodological strategies to resolve these ambiguities⁸.

Mitochondriopathies are frequently confused with other pathologies (neuropathies, movement disorders, or heart diseases)^{9,10}, which can delay their diagnosis. For example, in cardiac diseases (one of the most frequent pediatric problems), mitochondrial alterations can go unnoticed and be treated inappropriately; hypertrophic cardiomyopathy¹¹ and tachycardias¹² associated with mitochondrial disease represent 20-40% of cases and present significantly higher mortality (71%) compared to patients without mitochondrial alterations (26%)¹¹. This reveals that mitochondrial alterations are of utmost importance because, although they appear rare, their consequences can be substantial.

One of the most effective traditional approaches for determining mitochondriopathies is through catalytic activity assays that allow the identification of functional defects. However, these require various resources and involve invasive procedures (biopsies). At present, some strategies improve the diagnosis of mitochondriopathies; the proteins FGF21 and GDF15 (two mitokines found circulating in the blood) reflect mitochondrial damage and identify disease carriers¹³. Meanwhile, omic platforms define molecules that could guide a more accurate diagnosis and provide better monitoring of these diseases^{14,15}. The diagnosis of a mitochondriopathy requires understanding the defect at the genetic level; conventional molecular biology strategies such as Sanger sequencing and polymerase chain reaction have relative success ($\approx 6\%$) in determining genetic defects, in contrast to massive genome/exome sequencing strategies that achieve close to 45-60%, positioning themselves as the best diagnostic strategy^{15,16}.

On the other hand, proteomic analysis of primary human skin fibroblast cultures from patients with mitochondriopathy allows the detailing of the molecular mechanisms at the protein level¹⁷. Through metabolomics,

easily accessible biomarkers (metabolites) have been proposed with potential clinical utility in the development and treatment response of these diseases. Implementing these approaches improves the diagnosis of mitochondrialopathies; however, their widespread use still requires corresponding clinical validation.

Mitochondrial alterations beyond mitochondrialopathies

Non-communicable chronic diseases (NCDs) are long-term conditions and are the leading cause of death worldwide (80%)¹⁸. In these conditions, mitochondrial alterations can be found from their onset¹⁹ and impact different processes that can be used to identify, monitor, or treat these diseases (Table 1), as well as extend diagnostic options and develop better mitochondria-targeted treatments (Table 2)^{19,20}.

This includes pediatric patients, as their main health conditions (obesity, diabetes, infections, among others) are related to mitochondria; therefore, the mitochondrial approach is very important in developing diagnostic tests and effective treatments. Mitochondria-related biomolecules (nucleic acids, proteins, and metabolites) can define useful elements in the stratification and pathophysiology of these diseases^{21,22}. For example, in intractable childhood epilepsy, there are various mitochondrial aspects²³, such as variations between copy number and mtDNA damage^{24,25} that are involved.

The outer mitochondrial membrane contains transporter complexes that activate the immune system: the translocase of the outer membrane, the sorting and assembly machinery and import machinery, as well as proteins sensitive to Damage Associated Molecular Patterns²⁶, whose alteration could indicate preferential signaling pathways associated with NCDs. Proteomic analysis of brain tumors in children and adults shows relevant participation of mitochondrial proteins; in fact, for glioblastomas, there are proposals for molecular classification that include mitochondrial categories^{21,22}. Furthermore, in breast cancer, mitochondrial cristae are altered²⁷, and their evaluation could improve diagnosis and clinical monitoring, as their integrity and size are associated with the degree or advancement of malignancy²⁸; in contrast, in gastric cancer, some mitochondrial proteins involved in energy metabolism (OXPHOS, TCA), mitochondrial dynamics (fusion/fission), and mitophagy²⁹ could function as early markers of the disease.

In cancer, energy metabolism (ATP synthesis) shifts in favor of anaerobic glycolysis (Warburg effect) outside

the mitochondria^{30,31}, such that mitochondria redirect their functions (Fig. 1)^{30,32}. Based on this change, a bioenergetic signature was established to categorize prognosis in various types of cancer³³. Furthermore, analysis of the mitochondrial proteome can distinguish different stages of cancer, with specific molecular events additional to this change in energy metabolism³⁴.

The distribution of mitochondria in the cell fluctuates and is found in different configurations, from bacteria-like units to tubular conglomerates extending and forming contact with other organelles³⁵. Mitochondrial dynamics (fusion/fission processes) change notably in different pathologies, making their monitoring relevant in distinguishing health/disease. The mitochondrial arrangement reflects the metabolic-functional state and cellular health. A mitochondrial network increases oxidative capacity and is related to good health, while fragmentation into small units could indicate stress or the repair/degradation of damaged elements³⁵.

Mitochondrial dynamics is a quality control mechanism that requires specific proteins; some, like dynamin-like protein and dynamin-related protein, are related to processes involved in multiple pathologies³⁶. Mitochondria continuously fluctuate in number, function, and form in response to inter- and intracellular stimuli, whether due to changes in location or metabolic rate (Fig. 1), grouping them according to energy demands³⁵.

Many pathologies involve mitochondrial dynamics; obesity, for example, has a particular interest in medical care as it is one of the main health problems in the pediatric population, and it implies and predicts other health problems such as infertility, hypertension, high cholesterol, and fatty liver, among others. Childhood obesity can lead to adult obesity with other health risks such as cardiovascular conditions and increased mortality rates³⁷. It is interesting to note that these changes are described from the neonatal period and involve intrauterine processes since mothers with obesity during pregnancy have children who retain these changes after birth^{38,39}. In this context, mitochondrial defects are usually found in energy metabolism, mtDNA mutations, increased oxidative stress, and, as mentioned, changes in mitochondrial dynamics. As a result, various therapeutic strategies targeting mitochondria have been proposed, such as the induction of thermogenesis or the use of natural molecules targeting mitochondria⁴⁰, like MOTS-c, which, in addition to decreasing body fat, regulates insulin sensitivity and metabolic homeostasis^{41,42}.

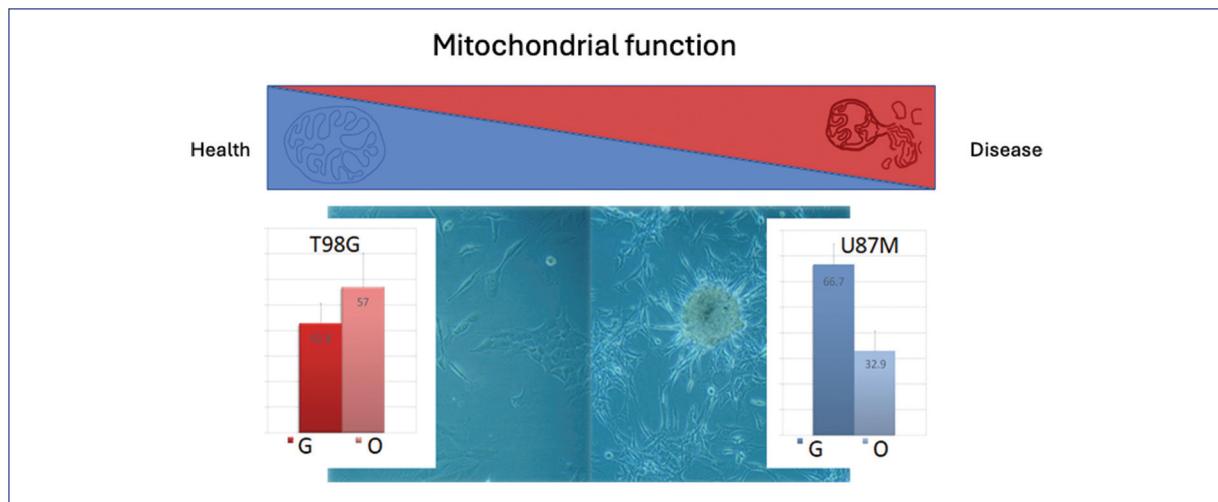
In this context, genomic variants and mitochondrial populations should be investigated considering their

Table 1. ECNTs with mitochondrial defects in their pathogenesis

Disease	Mitochondrial alteration	Cellular alterations
Obesity	Fragmentation, overproduction of mtROS, reduction of ETC components, decreased ATP synthesis, impaired membrane potential	Increased proliferation and differentiation, metabolic shift, and cell death.
Insulin resistance	Fragmentation, Ca ²⁺ handling, mtROS production, MAM deregulation	Defective insulin-related signaling, decreased glucose uptake, GLUT4 translocation, defective insulin signaling, insulin resistance.
Type 2 diabetes mellitus	Respiratory uncoupling, decreased ATP synthesis, mitophagy, exacerbated fission/fusion	Decreased insulin secretion.
Cancer	Reduction of PGC-1 α , increased mitophagy and glycolysis, moderate mtDNA mutations, metabolic hyperactivity	Metabolic shift, exacerbated biosynthesis, proliferation, tumorigenesis, aggressiveness, cell migration, and invasion.
Cardiovascular diseases	mtDNA damage, fragmentation, MAM deregulation, mtROS overproduction, Ca ²⁺ handling defects, decreased oxygen consumption	Proliferation, hypertrophy, Ca ²⁺ overload, energy crisis, impaired contractility, cell death.

mtROS: mitochondrial reactive oxygen species; ETC: electron transport chain; ATP: adenosine triphosphate; MAM: mitochondria-associated membranes; mtDNA: mitochondrial DNA (modified from 19).

Table 2. Treatment of NCDs through mitochondria-targeted molecules (modified from 20)


Type	Effect	Disease
Antioxidants	ROS neutralizers, SIRT activators based on CoQ	Neurodevelopment (Rett, Duchenne), Parkinson's, chronic kidney disease, among others.
Metabolism modulators	Niacin derivatives, metabolic (creatine, metformin), AMP kinase activators	Obesity, type 1 diabetes mellitus, myocardial infarction, liver disease (non-alcoholic).
PtPm inhibitors	Translocators, cyclophilin D	Acute kidney injury, Alzheimer's disease.

NCDs: non-communicable diseases; ROS: reactive oxygen species; SIRT: sirtuin; CoQ: Coenzyme Q; PtPm: permeability transition pore.

surroundings, as specific contacts with other organelles are established in the mitochondrial microenvironment. A mitochondrion can contact the endoplasmic reticulum (ER) and nucleus, with each interface involving different proteins⁴³. The interaction with the ER is better understood where contacts occur through mitochondria-associated membranes (MAMs)⁴⁴; the proteins located there are required for common activities (mitochondrial dynamics, calcium homeostasis, transport, among others) and become highly responsive metabolic platforms⁴⁴. Regarding nucleus-mitochondria interaction, it has been observed that it regulates OXPHOS performance and determines somatic heteroplasmy dynamics⁴⁵.

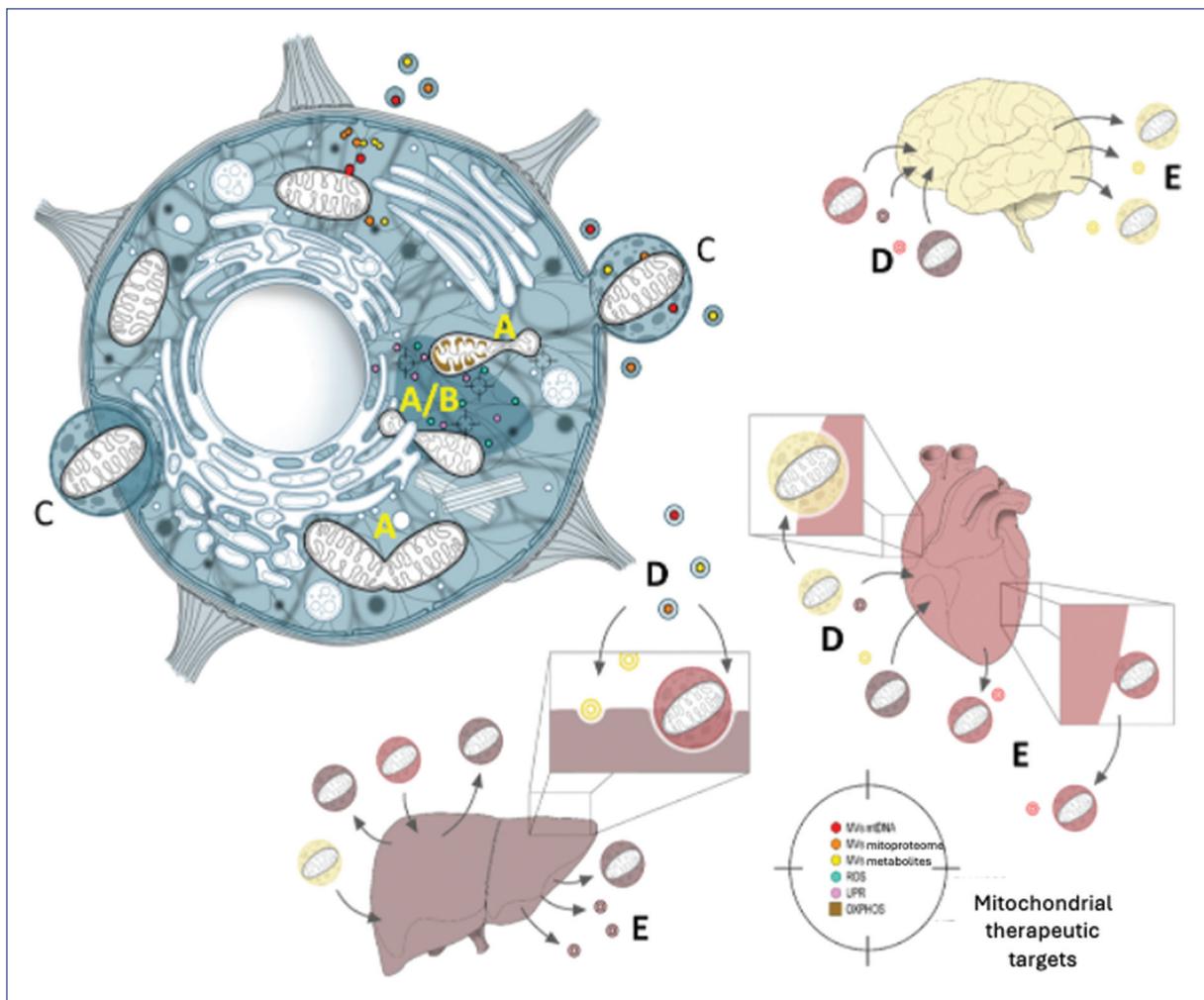
MAMs participate in signaling and maintenance of cellular homeostasis^{44,46}, contain regulatory proteins and tumor suppressors⁴⁷, and activate the immune system, as they harbor inflammasomes (Nlrp3: NOD-[nucleotide-binding oligomerization domain], LRR-Leucine rich

repeats domain and pyrin domain-containing protein 3) which are activated during microbial infections or by interleukin secretion in the inflammatory response^{48,49}. In common pediatric infections, such as *Mycobacterium tuberculosis*, *Proteus mirabilis*, *Escherichia coli*, *Salmonella enterica*, *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Neisseria meningitidis*, and *Plasmodium falciparum*, there is generally an increase in reactive oxygen species, metabolic changes, and apoptosis, which occur through mitochondrial mediation; furthermore, it should be considered that various antibiotic treatments can damage mitochondrial function. Microbial pathogenicity is closely linked to mitochondrial damage, as many products derived from bacterial infections, such as nitric oxide, are respiratory complex inhibitors; the molecular and structural alterations of mitochondria caused by pathogens and treatments show great adaptability and therefore, their potential as therapeutic targets⁵⁰.

Figure 1. The transition to disease as a result of mitochondrial deterioration and resulting homeostatic loss. In cancer, mitochondria can follow the course of the disease and accompany disease progression (red triangle); the same occurs with non-communicable diseases, enabling the search for early markers of various diseases. In health, mitochondria are functional and structurally intact (blue triangle). In a glioblastoma cell model, less aggressive cancer (T98G cells) follows a more oxidative metabolism (O), as occurs in healthy cells, while advanced glioblastoma (U87 cells), where cells tend to form tumors, the metabolism becomes glycolytic (G), and mitochondrial structure is fragmented. This transition is associated with the dominance of certain metabolic pathways and structural changes in the mitochondria.

Other proteins in MAMs are involved in neurodegenerative diseases: Presenilin 1 and 2 (PSEN1 and PSEN2) in Alzheimer's; DJ1, Parkin (Park) 1 and 2, and Pink in Parkinson's; while AKT, mTORC2, GSK3b, and PTEN are involved in diabetes, and Sig1 in breast, liver, and colon cancer, among others⁴⁴.

MAMs also contain chaperones generated during the unfolded protein response (UPR), which is involved in stress response and the biogenesis of various pathologies where nucleus-mitochondria communication is established^{51,52} and induces a response according to the stimulus. For example, when faced with a stressor, a transcriptional response can be activated, producing proteins safeguarded by chaperones while they achieve their functional structure. The UPR is distributed in MAMs^{53,54} and regulates synthesis/alarm (apoptosis) cycles (Figs. 1 and 2), which is exacerbated in various diseases and infections⁵⁵. Therefore, the UPR proteins involved could serve as biomarkers or therapeutic targets.


Therapeutic possibilities

There are several areas of interest for mitochondrial therapeutics, primarily focused on disease diagnosis, prognosis, and treatments. One of these approaches is through extracellular vesicles (EVs)⁵⁶, which function in biomolecule transport and communication between

cells and tissues^{57,58}. Their content varies according to biological conditions⁵, and one advantage of EVs is that they are found in easily accessible fluids such as blood, saliva, and urine. The content of EVs can reach different tissues and influence the function, signaling, and regulation of various biological processes; they can also contain complete mitochondria or fragments, and there are even mitochondria-derived vesicles whose content has demonstrated diagnostic and therapeutic utility⁵⁹⁻⁶¹. In experimental models, EVs correct the energy imbalance produced by ischemic, dilated, and hypertrophic heart diseases⁶². In disease, the number and diversity of EVs are exacerbated and affect different metabolic pathways^{34,58,59,63}, so identifying their content could benefit the clinical approach to various diseases^{5,63,64}.

Therapeutic targets for mitochondria-based medicine

Mitochondria-based medicine is founded on metabolic changes caused by disease^{32,65,66}, thus functioning as a sensor for different clinical phases and stages, which could help define various biomarkers to facilitate treatment selection. Regarding treatment, there is a wide variety of antioxidant reagents, both natural and designed, that can target mitochondria to prevent, modulate, or treat NCDs⁶⁷. For example, mitocans prevent cancer

Figure 2. Mitochondria have great communication capacity at intra- and intercellular levels with various capabilities that can be used as therapeutic targets: At the intracellular level, fusion/fission (A/B) can signal different events in non-communicable disease pathogenesis as the damage caused leads to mitochondrial dysfunction. Likewise, mitochondria obtain information from the environment (unfolded protein response response, mitochondria-associated membranes), communicate with other cell organelles, and carry diverse information in extracellular vesicles (C, MVs) where they can even be contained completely and, in turn, can be directed to other targets or tissues such as brain, heart, or liver among others, through the bloodstream (D). The mitochondrial content they carry could activate (incoming arrows) a response to disease or release warning messages (E, outgoing arrows), a useful process in designing therapeutic strategies.

progression or drug resistance, and several of these can be easily manipulated^{68,69}. Mitochondria have great inter- and intracellular communication capacity, making them novel therapeutic options, such as mitochondrial transplantation, which was conceived to restore or recover optimal functional and structural states of cells comprising the organ^{70,71}. Mitochondrial transplantation emerges as a treatment strategy due to mitochondria's ability to transfer from one cell to another, particularly when mitochondrial damage exists. It could thus function as a treatment for diseases where typical therapies have not been effective. The process involves obtaining

mitochondria (from adipose tissue, liver, or muscle) from a donor and transplanting them intranasally or by injection (systemic delivery) and has been tested primarily in murine models. Transfer can be facilitated using peptides that aid membrane absorption. At present, the technique's application focuses mainly on assisted reproduction to prevent transmission of mitochondrial diseases from mother to child; however, it has not been applied as a treatment for children who already have diseases⁷². Research is currently being conducted to evaluate its viability and safety as therapy for pediatric mitochondrial diseases^{73,74} such as Leigh syndrome, Mitochondrial

Encephalopathy with Lactic Acidosis and Stroke-like episodes, Kearns-Sayre syndrome, Leber's Hereditary Optic Neuropathy, or mtDNA depletion syndrome.

There are still several challenges regarding mitochondrial transplantation for treating existing diseases, as ethical and biosafety considerations must be addressed. However, it is important to note that although the therapeutic potential is promising, widespread clinical application requires more research⁷⁵. While the clinical potential of mitochondria is evident, there are limitations to their implementation. Much of our current information comes from biological models⁷⁶ or has only been determined in small population samples and may vary. In addition, proteins with multiple functions require further studies about their role. Such is the case of ATP synthase and its intrinsic inhibitor (IF1)⁷⁷ or sigma 1 receptor (a MAM chaperone)⁷⁸, which perform multiple functions according to their location or interactions. Therefore, the identification and validation of mitochondria-related biomarkers, as well as the development of targeted therapies, offer new perspectives in disease diagnosis and treatment, making mitochondria-based medicine a field of research and clinical application of growing relevance. Thus, information about mitochondrial function and its byproducts becomes central aspects in the health/disease balance that can be approached as potential therapeutic targets (Fig. 2).

Conclusions

Mitochondria-based medicine emerges as a promising field of research and clinical application for treating diseases acquired in childhood or NCDs. This approach focuses on understanding how mitochondrial alterations can trigger and contribute to developing these diseases. Mitochondria-based medicine contributes to developing options targeting these organelles, offering new perspectives on disease understanding and treatment, including personalized approaches.

In a context where complex and multifactorial diseases represent a significant challenge for contemporary medicine, mitochondria-based medicine opens new opportunities to advance patient care and quality of life.

Acknowledgments

The authors thank Carlos Saldaña for his help with the design and visualization of figure 2.

Funding

The authors declare that they have not received funding.

Conflicts of interest

The authors declare no conflicts of interest.

Ethical considerations

Protection of humans and animals. The authors declare that no experiments involving humans or animals were conducted for this research.

Confidentiality, informed consent, and ethical approval. The authors have followed their institution's confidentiality protocols, obtained informed consent from patients, and received approval from the Ethics Committee. The SAGER guidelines were followed according to the nature of the study.

Declaration on the use of artificial intelligence.

The authors declare that no generative artificial intelligence was used in the writing of this manuscript.

References

1. Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria related cell death modalities and disease. *Front Cell Dev Biol.* 2022;10:832356.
2. Yapa NM, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. *FEBS Lett.* 2021;595:1184-204.
3. Chinnery PF, Hudson G. Mitochondrial genetics. *Br Med Bull.* 2013;106:135-59.
4. Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. *Biol Cell.* 2021;113:375-400.
5. Shamughaipriya S, Langford D, Natarajaseenivasan K. Inter and intracellular mitochondrial trafficking in health and disease. *Ageing Res Rev.* 2020;62:101128.
6. Al Amir Dache Z, Thierry AR. Mitochondria-derived cell-to-cell communication. *Cell Rep.* 2023;42:112728.
7. DiMauro S. A brief history of mitochondrial pathologies. *Int J Mol Sci.* 2019;20:5643.
8. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. *Nat Rev Dis Primers.* 2016;2:16080.
9. Flønes IH, Tzoulis C. Movement disorders in mitochondrial disease: a clinicopathological correlation. *Curr Opin Neurol.* 2018;31:472-83.
10. Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. *Tex Heart Inst J.* 2013;40:385-94.
11. Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial diseases and cardiomyopathies. *Can J Cardiol.* 2015;31:1360-76.
12. Heinzmann D, Klingel K, Müller K, Kumbrink J, Kirchner T, Schreieck J, et al. Mitochondrial dynamics in tachycardiomyopathy. *Cell Physiol Biochem.* 2019;52:435-8.
13. Li Y, Li S, Qiu Y, Zhou M, Chen M, Hu Y, et al. Circulating FGF21 and GDF15 as biomarkers for screening, diagnosis, and severity assessment of primary mitochondrial disorders in children. *Front Pediatr.* 2022;10:851534.
14. Rahman J, Rahman S. Mitochondrial medicine in the omics era. *Lancet.* 2018;391:2560-74.
15. Legati A, Reyes A, Nasca A, Invernizzi F, Lamantea E, Tiranti V, et al. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. *Biochim Biophys Acta.* 2016;1857:1326-35.
16. Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial diseases: a diagnostic revolution. *Trends Genet.* 2020;36:702-17.
17. Salvador-Severo K, Gómez-Caudillo L, Quezada H, García-Trejo JJ, Cárdenas-Conejo A, Vázquez-Memije ME, et al. Mitochondrial proteomic profile of complex IV deficiency fibroblasts: rearrangement of oxidative phosphorylation complex/supercomplex and other metabolic pathways. *Bol Med Hosp Infant Mex.* 2017;74:175-80.
18. Gong JB, Yu XW, Yi XR, Wang CH, Tuo XP. Epidemiology of chronic noncommunicable diseases and evaluation of life quality in elderly. *Aging Med (Milton).* 2018;1:64-6.
19. Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, et al. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? *Endocr Rev.* 2020;41:bnaa005.

20. Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. *Sci Transl Med.* 2016;8:326rv3.
21. Garofano L, Migliozzi S, Oh YT, D'Angelo F, Najac RD, Ko A, et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. *Nat Cancer.* 2021;2:141-56.
22. Lasorella A, Iavarone A. The making of the glioblastoma classification. *Br J Cancer.* 2021;125:4-6.
23. Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, et al. Epilepsy: mitochondrial connections to the "sacred" disease. *Mitochondrion.* 2023;72:84-101.
24. Luna B, Bhatia S, Yoo C, Felty Q, Sandberg DI, Duchowny M, et al. Proteomic and mitochondrial genomic analyses of pediatric brain tumors. *Mol Neurobiol.* 2015;52:1341-63.
25. Luna B, Bhatia S, Yoo C, Felty Q, Sandberg DI, Duchowny M, et al. Bayesian network and mechanistic hierarchical structure modeling of increased likelihood of developing intractable childhood epilepsy from the combined effect of mtDNA variants, oxidative damage, and copy number. *J Mol Neurosci.* 2014;54:752-66.
26. Banoth B, Cassel SL. Mitochondria in innate immune signaling. *Transl Res.* 2018;202:52-68.
27. Vincent AE, Ng YS, White K, Davey T, Mannella C, Falkous G, et al. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. *Sci Rep.* 2016;6:30610.
28. Putignani L, Raffa S, Pescosolido R, Rizza T, Del Chierico F, Leone L, et al. Preliminary evidences on mitochondrial injury and impaired oxidative metabolism in breast cancer. *Mitochondrion.* 2012;12:363-9.
29. Yang H, Li Y, Hu B. Potential role of mitochondria in gastric cancer detection: fission and glycolysis. *Oncol Lett.* 2021;21:439.
30. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. *Biochem Soc Trans.* 2016;44:1499-505.
31. Warburg O. On respiratory impairment in cancer cells. *Science.* 1956;124:269-70.
32. Obre E, Rossignol R. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. *Int J Biochem Cell Biol.* 2015;59:167-81.
33. Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Charroso M, et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. *Biochem J.* 2004;378:17-20.
34. Gómez-Caudillo L, Ortega-Lozano AJ, Martínez-Batlíjar ÁG, Rosas-Vargas H, Minauro-Sanmiguel F, Encarnación-Guevara S. Principal component analysis on LCMS/MS and 2DEMALDITOF in glioblastoma cell lines reveals that mitochondria act as organelle sensors of the metabolic state in glioblastoma. *Oncol Rep.* 2020;44:661-73.
35. Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. *Trends Immunol.* 2018;39:6-18.
36. Chan DC. Mitochondrial dynamics and its involvement in disease. *Annu Rev Pathol.* 2020;15:235-59.
37. Wang J, Lin X, Zhao N, Dong G, Wu W, Huang K, et al. Effects of mitochondrial dynamics in the pathophysiology of obesity. *Front Biosci.* 2022;27:107.
38. Abraham M, Collins CA, Flewelling S, Camazine M, Cahill A, Cade WT, et al. Mitochondrial inefficiency in infants born to overweight African-American mothers. *Int J Obes.* 2018;42:1306-16.
39. Silveira MA, Marcondes JP, Lara JR, Scarano WR, Calderón IM, Rudge MV, et al. Mitochondrial-related gene associated to obesity can be modulated by in utero hyperglycemic environment. *Reprod Toxicol.* 2019;85:59-64.
40. Zheng Y, Yang N, Pang Y, Gong Y, Yang H, Ding W, et al. Mitochondria-associated regulation in adipose tissues and potential reagents for obesity intervention. *Front Endocrinol.* 2023;14:1132342.
41. Reynolds JC, Lai RW, Woodhead JS, Joly JH, Mitchell CJ, Cameron-Smith D, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. *Nat Commun.* 2021;12:470.
42. Zheng Y, Wei Z, Wang T. MOTS-c: a promising mitochondrial-derived peptide for therapeutic exploitation. *Front Endocrinol.* 2023;14:1120533.
43. Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. *Proc Natl Acad Sci U S A.* 2020;117:12109-20.
44. Perrone M, Caroccia N, Genovese I, Missiroli S, Modesti L, Pedriali G, et al. The role of mitochondria-associated membranes in cellular homeostasis and diseases. *Int Rev Cell Mol Biol.* 2020;350:119-96.
45. Lechuga-Vieco AV, Latorre-Pellicer A, Johnston IG, Prata G, Gileadi U, Justo-Méndez R, et al. Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasm dynamics. *Sci Adv.* 2020;6:eaba5345.
46. Paterniani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial oxidative stress and "mito-inflammation": actors in the diseases. *Biomedicines.* 2021;9:216.
47. Marchi S, Giorgi C, Opara M, Duszynski J, Wieckowski MR, Pinton P. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. *Mol Cell Oncol.* 2014;1:e956469.
48. Elliott EL, Miller AN, Banoth B, Iyer SS, Stotland A, Weiss JP, et al. Cutting edge: mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. *J Immunol.* 2018;200:3047-52.
49. Mills EL, Kelly B, O'Neill LA. Mitochondria are the powerhouses of immunity. *Nat Immunol.* 2017;18:488-98.
50. Romero-Cordero S, Kirwan R, Nogueira-Julian A, Cardellach F, Fortuny C, Morén C. A mitocentric view of the main bacterial and parasitic infectious diseases in the pediatric population. *Int J Mol Sci.* 2021;22:3272.
51. Wang S, Gao K, Liu Y. UPR coordinates immunity to maintain mitochondrial homeostasis and animal fitness. *Mitochondrion.* 2018;41:9-13.
52. Anderson NS, Haynes CM. Folding the mitochondrial UPR into the integrated stress response. *Trends Cell Biol.* 2020;30:428-39.
53. Jovaisaité V, Auwerx J. The mitochondrial unfolded protein response-synchronizing genomes. *Curr Opin Cell Biol.* 2015;33:74-81.
54. Saito A, Imaizumi K. Unfolded protein response-dependent communication and contact among endoplasmic reticulum, mitochondria, and plasma membrane. *Int J Mol Sci.* 2018;19:3215.
55. Zhu L, Zhou Q, He L, Chen L. Mitochondrial unfolded protein response: an emerging pathway in human diseases. *Free Radic Biol Med.* 2021;163:125-34.
56. Zhang S, Mulder C, Riddle S, Song R, Yue D. Mesenchymal stromal/stem cells and bronchopulmonary dysplasia. *Front Cell Dev Biol.* 2023;11:1247339.
57. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. *Blood Rev.* 2013;27:31-9.
58. Liu D, Dong Z, Wang J, Tao Y, Sun X, Yao X. The existence and function of mitochondrial component in extracellular vesicles. *Mitochondrion.* 2020;54:122-7.
59. Todkar K, Chikhi L, Desjardins V, El-Mortada F, Pépin G, Germain M. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. *Nat Commun.* 2021;12:1971.
60. Puhm F, Afonyushkin T, Resch U, Obermayer G, Rohde M, Penz T, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. *Circ Res.* 2019;125:43-52.
61. Martínez-Ezquerro JD. El Epigenoma Circulante; 2020. Available from: <https://osf.io/87wbu>
62. Ikeda G, Santoso MR, Tada Y, Li AM, Vaskova E, Jung JH, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. *J Am Coll Cardiol.* 2021;77:1073-88.
63. Berridge MV, Neuzil J. The mobility of mitochondria: intercellular trafficking in health and disease. *Clin Exp Pharmacol Physiol.* 2017;44 Suppl 1:15-20.
64. Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bossola M, Landi F, et al. Generation and release of mitochondrial-derived vesicles in health, aging and disease. *J Clin Med Res.* 2020;9:1440.
65. Burns JS, Manda G. Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. *Int J Mol Sci.* 2017;18:2755.
66. Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. *Mol Aspects Med.* 2020;71:100842.
67. Mani S, Swargiary G, Singh KK. Natural agents targeting mitochondria in cancer. *Int J Mol Sci.* 2020;21:6992.
68. Oliver D, Reddy PH. Dynamics of dynamin-related protein 1 in Alzheimer's disease and other neurodegenerative diseases. *Cells.* 2019;8:961.
69. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. *Int J Biochem Cell Biol.* 2013;45:2288-301.
70. McCully JD, Cowan DB, Emani SM, Del Nido PJ. Mitochondrial transplantation: from animal models to clinical use in humans. *Mitochondrion.* 2017;34:127-34.
71. Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. *Cell Biosci.* 2022;12:66.
72. Zou W, Slone J, Cao Y, Huang T. Mitochondria and their role in human reproduction. *DNA Cell Biol.* 2020;39:1370-8.
73. Zhou M, Yu Y, Luo Y, Luo X, Zhang Y, Zhou X, et al. Mitochondrial transplantation: a unique treatment strategy. *J Cardiovasc Pharmacol.* 2022;79:759-68.
74. Koene S, Hendriks JC, Dirks I, de Boer L, de Vries MC, Janssen MC, et al. International paediatric mitochondrial disease scale. *J Inherit Metab Dis.* 2016;39:705-12.
75. Kubat GB. Mitochondrial transplantation and transfer: the promising method for diseases. *Turk J Biol.* 2023;47:301-12.
76. Malty RH, Jessulat M, Jin K, Musso G, Vlasblom J, Phanse S, et al. Mitochondrial targets for pharmacological intervention in human disease. *J Proteome Res.* 2015;14:5-21.
77. Gatto C, Grandi M, Solaini G, Baracca A, Giorgio V. The F1Fo-ATPase inhibitor protein IF1 in pathophysiology. *Front Physiol.* 2022;13:917203.
78. Hayashi T. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. *J Pharmacol Sci.* 2015;127:2-5.