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ABSTRACT

Aim/background: in view of the growing demand
for food, new methodologies are needed to improve the
genomic selection (GS) methodology to obtain more pro-
ductive plant varieties and there is empirical evidence that
GS it is revolutionizing plant breeding for food production
around the world. Methods: since the prediction models play
a key role in GS, for this reason Montesinos-Lépez et al. (2018)
proposed the item based collaborative filtering (IBCF) algo-
rithm for Genomic prediction. For this reason, in this paper
we compare the IBCF algorithm with the most popular ge-
nomic prediction model called the Genomic Best Linear Un-
biased Prediction (GBLUP). Results: We found that the GBLUP
is superior than the IBCF model, but the IBCF is competitive
to the GBLUP model since produced very similar predictions,
but with the large advantage that it is extremely efficient in
terms of time for implementation. Conclusions: we found
that the GBLUP is better than the IBCF algorithm but the IBCF
is more than 400 times more efficient than the GBLUP model
in terms of time for implementation. Limitations: The main
limitation of the study is that it was performed in univariate
terms and it is possible that the IBCF will perform better with
multivariate data.
Key words: GBLUP, Item Based Collaborative Filtering, Genom-
ic Selection, Comparison, Prediction accuracy.

RESUMEN

Objetivo / antecedentes: en vista de la creciente de-
manda de alimentos, se necesitan nuevas metodologias para
mejorar la seleccién gendmica (GS) para obtener variedades
de plantas mds productivas y en menor tiempo y existe
evidencia que la SG esta revolucionando el mejoramiento
de plantas que ayudara a incrementar la produccién de ali-
mentos a nivel mundial. Métodos: dado que los modelos de
prediccion juegan un papel clave en GS, Montesinos-Lopez
etal. (2018) propusieron el algoritmo de filtrado colaborativo
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(IBCF) para la prediccién gendmica. Por esta razén, en este
articulo comparamos el algoritmo IBCF con el modelo de
prediccion genémica mas popular denominado mejor pre-
dictor lineal insesgado Bayesiano (GBLUP). Resultados: En-
contramos que el GBLUP es superior en capacidad predictiva
al modelo IBCF, pero el IBCF es competitivo con el modelo
GBLUP ya que produjo predicciones muy similares, pero con
la ventaja de que es eficiente en términos de tiempo de
implementacion. Conclusiones: encontramos que el GBLUP
es mejor que el algoritmo IBCF, pero el IBCF es 400 veces
mas eficiente que el modelo GBLUP en términos de tiempo
de implementacién. Limitaciones: la principal limitacién del
estudio es que se realizé en términos univariados y es posible
que el IBCF se desempefie mejor con datos multivariados.
Palabras clave: GBLUP, filtrado colaborativo, seleccién geno-
mica, comparacién, capacidad predictiva.

INTRODUCTION

After 17 years of coining “Genomic Selection (GS)” it
has been possible to accelerate the processes of plant breed-
ing by reducing the cycles to obtain a new variety using the
information from genetic markers, since genetic markers
have become more economical and accessible. Although
GS has become popular in plant and animal breeding pro-
grams, in order to improve this methodology, the predictive
accuracy of GS models needs to be improved, because GS
trains predictive models using phenotypic and genotypic
information of the training sample and makes predictions for
the validation sample (with only genomic information) using
these models.

GS prediction tools are mostly Bayesian models, be-
cause they have demonstrated good predictive performance
and are able to function well under the context where there
are more independent variables (markers) than observations.
However, these models are generally very demanding in
terms of execution time, also the different variations of Bayes-
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ian methods, such as Bayes A, Bayes B, Bayes Ridge Regres-
sion, etc., do not provide a great improvement in prediction
accuracy (Mota et al., 2018). Therefore, there are consensus of
the need for more efficient predictive models for the genom-
ic selection, since the quantity of data collected (genotypic
and genotypic) in breeding programs continues to increase,
and we want to extract useful knowledge from these data to
improve the selection process of plants and animals.

For this reason, Montesinos-Lépez et al. (2018) pro-
posed the use of the ltem Based Collaborative Filtering (IBCF)
methodology for the context of GS, invention attributed
to Amazon No. US6266649B1 (2001); this methodology
has become fundamental to improve the performance of
electronic commerce, and has been used efficiently in sites
such as Amazon, where it is used for the recommendation of
books and other products for sale, as well as in various web-
sites dedicated to products sale, to recommend users similar
products (Wei et al., 2012).

This methodology provides several advantages, one
is its simplicity compared to Bayesian models, another, the
computational efficiency, even in the processing of large
amounts of data. However, its successful performance
depends strongly on the amount of correlation between
traits or environments. Since, the genetic variability between
plants of the same species is low in comparison to other
taxonomic kingdoms like animalia, we can expect high cor-
relation rates between individuals, allowing in theory a good
performance of IBCF. The implementation of this methodol-
ogy is based in the calculation of a matrix of relationships or
similarity matrix between traits (or environments) and there
are different ways to calculate this matrix (Wei et al., 2012),
as the Pearson’s correlation, cosine similarity among others.

It is important to point out, that there is an R package
for implementing this methodology to the GS context called
IBCEMTME (Montesinos-Lopez et al., 2018). This package
allows users to implement the IBCF algorithm to data sets
commonly found in GS that has multi-environment, multi-
trait and simultaneous multi-trait and multi-environment
data sets.

For this reason, this research carried out a compara-
tive study between IBCF and Genomic Best Linear Unbiased
Prediction (GBLUP) model. We performed prediction accuracy
between the two models using six real data sets from maize
and wheat, using cross validation.

MATERIALS AND METHODS
Statistical models

Equation (1) is the model used under the GBLUP
model. Where  represents the normal response ob-
served in the -th line in the j-th environment, where

i=12,.,Lj=12 ]
yl]:El+G]+EGl]+€l] (M

Note that E represents the j-th environment, G repre-
sents the genomic effect of the j-th line and is assumed as a
random effect distributed as G=(G,,...,G,)’~N(0,G, 02), where
G, denotes the genomic relationship matrix calculated as

suggested by Van (2008) and o denotes the genomic va-
riance. On the other hand EG, is the interaction between the
genomic effect of the j-line with the i-th environment and is
also assumed as a random effect distributed as G=(EG,,,...
EG,)'~N(0,G, ® I 02), where 02 denotes the variance of the
interaction of genotype by environments. Finally, g is the
random error term associated with the j-th line in the i-th en-
vironment distributed N(0,o§), where oﬁ denotes the residual
variance.

On the other hand, to make the prediction of all traits
simultaneously we propose the model given in equation (2),

Yijk = EGye + ETy + TGij + ETGyjie + €ijic (2)

Where Y 1S the response variable in the i-th environ-
ment, j-th line and k-th trait, ET, represents an interaction
between the i-th environment and k-th trait, GT, represents
an interaction between the genomic effect of the j-th line and
the k-th trait and is assumed as a random effect 1G=(TG,,,...
TG )'~N(0,G,®I, 0Z), where o7 denotes the variance of the
interaction of genotype by trait. EGT, represents the triple
interaction between the i-th environment, j-th line and k-th
trait and is assumed as a random effect, and is distributed as
ETG=(ETG,”,...,ETGU,)T~N(0,II®G1®IK oEf;T), where oEéT denotes
the variance of the three way interaction, while € is a ran-
dom error term corresponding to the i-th environment, j-th
line and k-th trait, and is assumed to be distributed N(0,o§),
where o?denotes the residual variance. It is important to
mention that the implementation of the model given in
equation (1) was done using the GFR package provided in
the publication of Montesinos-Lépez et al. (2018) while the
second model given in equation (2) was implemented in the
R package BGLR (de los Campos and Pérez-Rodriguez, 2016).
We performed a total of 20,000 iterations; 5,000 samples
were used for inference because the first 15,000 were used as
burn-in to decrease the MCMC errors in prediction accuracy.

Item based collaborative filtering (IBCF)

The IBCF algorithm is very popular with electron-
ic-commerce web sites for recommending items and prod-
ucts, where they use inputs about a customer’s interests to
generate a list of recommended items. This algorithm was
recently implemented in genomic selection and proved to
be comparable to conventional whole-genome prediction
models when the correlation between traits and environ-
ments was moderate or high (Montesinos-Lépez et al., 2018).
The IBCF algorithm works by building a database of users’
(lines) preferences for items (trait-environment combination).
For example, Table 1a provides raw phenotypic data with six
lines evaluated in two different environments (E1 and E2) for
two different traits (T1 and T2) with both traits in different
scales, also this raw phenotypic data set has 4 missing values
(with NA). Then we standardize by column ([zijz(yij-u)crj’)] each
column of Table 1a (except the first one), where i denotes the
users (lines) and j denotes the columns (trait-environment
combinations), and we form the standardized information in
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Table 1b. In this example i =1,...,6,j=1,2...,4, U, is the mean
of column j and o, denotes the standard deviation of column
j. Also, for comparison purposes we know that the true values
forthe missing valuesare:y, =14.0971,y,,=5.3511,y,,=8.9786
and y,,=8.2019 respectivelly. Then we calculated the Pearson
correlation between Table 1b columns (trait-environment
combinations) shown in Table 1c. Next with the following
formula, we calculate the predictions for the missing pheno-
types of line jin item j (Sarwar et al., 2001; Montesinos-Lépez
etal., 2018).

Vij = uj + 05 2y, 3)
, _ Zjeni) ZiWi .

Where =75 5w, is the predicted scaled phenoty-
pe for user (line) i on item (trait-environment) j. N(j) denotes
the items rated by user (line) i most similar to item j, w; is
the weight between items j and j” and the weights used in
formula (3) are obtained from an item-to-item similarity
matrix built using the Pearson’s correlation (Given in Table

1c), which provides information on how similar an item is to
another item.

Table 1. Example of item based collaborative filtering (IBCF). (a) Raw phe-
notypic data, (b) Standardized phenotypic data and (c) matrix of correlation
of standardized phenotypic data. Line denotes lines, T1 denotes traits 1,
while E1, E2, E3 and E4 environments 1, 2, 3 and 4 respectively.

Tabla 1. Ejemplo de filtrado colaborativo (IBCF). (a) Datos fenotipicos sin
procesar, (b) Datos fenotipicos estandarizados y (c) matriz de correlacion
de datos fenotipicos estandarizados. Line denota lineas, T1 denota rasgo 1,
mientras que E1, E2, E3 y E4, ambientes 1, 2, 3 y 4 respectivamente.

Raw phenotipic data (a)

Line T1_E1 T1_E2 T1_E3 T1_E4
Line1 13.43869 10.042283 7.833255 3.346331
Line2 NA 10.206126 7.539531 4.009220
Line3 15.98278 10.758225 8.103404 NA
Line4 13.28755 NA 7.508226 2.305872
Line5 15.12665 10.625251 4.835037
Standardized phenotipic data (b)

Line T1_E1 T1_E2 T1_E3 T1_E4
Linel -0.7763412 -1.0793621 0.3117081 -0.2598054
Line2 NA -0.5957629 -0.7388356 0.3601804
Line3 1.1595774 1.0338048 1.2779277 NA
Line4 -0.8913464 NA -0.8508002 -1.2329245
Line5 0.5081103 0.6413202 NA 1.1325495
Matrix of correlation (c)

Line T1_E1 T1_E2 T1_E3 T1_E4
T1_E1 1.000 0.9869829 0.8643881 0.9402111
T1_E2 0.9869829 1.0000000 0.7193678 0.9830228
T2_E1 0.8643881 0.7193678 1.0000000 0.2130462
T2_E2 0.9402111 0.9830228 0.2130462 1.0000000

Next, we illustrate how to calculate the four missing
values using formula (1). First, we calculate the scaled pre-
dicted value fory,,

5 —0.5957 x 0.9869 + —0.7388 x 0.8643 + 0.3601 x 0.9402

a T [0.9869] + |0.8643] + [0.9402] = -03181

L
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Then the predicted value of y, in its original scale is
equal to

P,y = 22104 + 11 = —0.3181 x 1.3141 + 14.4589 = 14.0408

This mean that the predicted value of line 2 in
trait-environment combination 1(9, ) is 14.0408 wich is close
to the true value 14.0971. Next, we show how to calculate
the predicted value for the missing value §,,; first the scaled
predicted values are equal to

5 11595 x0.9402 + 1.0338 x 0.9830 + 1.2779 X 0.2130

= =1.1135
o 10.9402| + [0.9830] + [0.2130]

Then the predicted value of y,, in its original scale is
equal to

Pan = 234 X 04 + 14 = 1.1135 X 1.0691 + 3.6241 = 4.8146

Now the predicted value of line 3 in trait-environment
combination 4 (934) is 4.8146 wich is close to the true value
5.3511. Then, we present the scaled predicted response for
line 4 and trait-environment combination 2, y,,, which is

5 _—08913x 09869 + —08508x 07193+ ~12329x09830 _ .,
‘2= 10.9869] + 10.7193] +10.9830| -

Then the predicted value of y,,in its original scale is
equal to

Dyp = B4z X 0 + pp = —1.0053 x 0.3388 + 10.4079 = 10.0673

This mean that the predicted value of line 4 in trait-en-
vironment combination 2 (¢, ) is 10.0673 wich is close to the
true value 8.9786. Finally, we present the scaled predicted
value of line 5 in the trait-environment combination 3,

. 05081 x 0.8643 + 0.6413 X 0.7193 + 1.1325 x 0.2130
Doy = = 0.6354
10.8643| + [0.7193] + |0.2130]

Then the predicted value of y,, in its original scale is
equal to

953 =253 X 05 + 3 = 0.6354 X 0.2795 + 7.7461 = 7.9237

This mean that the predicted value of line 5 in trait-en-
vironment combination 3 (953) is 7.9237 wich is close to the
true value 8.2019.

As we can see with this example the calculations are
easy but laborious, but the IBCEMTME packages do this job
automatically and the data set required can be on different
scales (not standardized) for the traits, that is, the traits are
allows to be measured on different scales. Internally, the IBCF.
MTME package standardize ([Z,-j=(y,j'ﬂ)0j"]) each column of
the data set given in Table 2 (that shows the format of the
type of data required) for the training data set obtained in
each random partition. This implies that to use the formula
given in equation (3) for making predictions about trait-envi-
ronment combinations, after standardizing is calculated the
similarity matrix resulting from the corresponding training
data set of a partition selected from the whole data set in Ta-
ble 2. Therefore, the predictions obtained by using equation
(3) with the parameters estimates required obtained with the
training data set corresponding to each partition and the
predictions are done for the observations in testing data set.
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Evaluation of the prediction accuracy

Two cross-validation schemes were used to assess the
prediction accuracy of both models. Both schemes simulate
two key situations that breeders often witness. The first
corresponds to a cross validation with 10 random partitions,
which simulates situations where some lines have been
evaluated in some environments but in others are lost. The
percentage of missing values correspond to 20% of the lines
of each data set, in other words, 80% of the observations in
the data sets have been used to train the models.

The second scheme simulates a situation with a
non-evaluable trait in all the lines in an environment, but
is present in the remaining environments. In this case, in-
formation from known data in other environments is used,
and the evaluation of the prediction can benefit from the
loan of information between lines across environments, and
between correlated traits. From the variety of methods used
to compare the predictive ability, we used Pearson’s correla-
tion and we report the average of the 10 random partitions.
Models with a higher correlation indicate better predictions.

Statistical software

The statistical software R version 3.5.0 (R Core Team,
2018), was used using the external packages IBCFMTME
version 1.2-5 and the GFR package which includes different
tools that provide some points for prediction models im-
plementation in the GS context, this package was used in
version 0.9-12 (Montesinos-Lopez et al., 2018).

Real data sets

This research analyzed six different real datasets
obtained from various studies, the data are available in the
following link, below is a description of the content of each
data set.

Maize dataset

This data set is based on that of Montesinos-Lépez
et al. (2017). It is composed of a sample of 309 maize lines
evaluated for three traits: anthesis-silking interval (ASI), plant
height (PH), grain yield (GY), each of them evaluated in three
optimal storm environments (Env1, Env2 and Env3). The total
number of genomes by sequencing (GBS) data were 681,257
single nucleotide polymorphisms (SNPs), and, after filtering
for missing values and minor allele frequency, were used
158,281 SNPs for the analyses. We have identified this data
set as Maize. For more details, see the study of Montesinos-
Lopezetal. (2017).

Maize Hel dataset

This data set is based on the data used in the study
of Cuevas et al. (2018). It consists of a sample of 247 maize
lines evaluated in 2015 in three environments corresponding
to Nova Mutum (NM) in the state of Mato Grosso, Pato de
Minas (PM) and Ipiagu (IP) in the state of Minas Gerais, Brazil.
The traits evaluated were: Ear height (EH), PH and GY. The

HEL parent lines were genotyped with an Affymetrix Axiom
Maize Genotyping Array of 616 K SNPs with standard quality
controls removing markers with a Call Rate 0.95.This data set
differs from the cited study is the elimination of unmeasured
maize lines in one of the traits, as well as two environments
where the three traits had not been measured in an effort to
have a balanced data set, in the same way they were remo-
ved from the genomic matrix. We have identified this data
set as Maize_HEL. For more details, see the study of Cuevas
etal. (2018).

Maize USP dataset

This data set is based on the data used in the study of
Cuevas et al. (2018). It consists of 720 lines of corn evaluated
in Piracicaba and Anhumas, Brazil, each with two levels of
nitrogen fertilization (N): Ideal N (IN) and Low N (LN) for a
total of four artificial environments (PIN, PLN, AIN and ALN),
for three traits (EH, PH, GY). Like the data set Maize_HEL, the
Maize_USP parent lines were genotyped with an Affymetrix
Axiom Maize Genotyping Array of 616 K SNPs with standard
quality controls removing markers with a Call Rate 0.95 in
addition. Like the above data set, it differs from the data from
the cited study in the removal of lines that did not contain all
its complete measurements to have a balanced data set. We
have identified this data set as Maize_USP. For more details,
see the study of Cuevas et al. (2018).

Wheat BGLR dataset

This data set is based on the data used in the study of
Crossa et al. (2010) and it is preloaded in the BGLR package.
It consists of 599 wheat lines evaluated in four different en-
vironments. The 599 wheat lines were genotyped using 1447
Diversity Array Technology (DArT) markers. The markers with
a minor allele frequency (MAF) (0.05) were removed, and
missing genotypes were imputed using samples from the
marginal distribution of marker genotypes. The number of
DArT markers after edition was 1279. We have identified this
data set as Wheat_BGLR. For more details, see the study of
Crossa etal. (2010).

Wheat IBCF dataset

This data set is based on the data used in the study
of Montesinos-Lopez et al. (2016) a multi-environment single
trait model for assessing genotype \u00d7 environment
interaction (G \u00d7 E and it is preloaded in the IBCFMTME
package. It consists of a sample of 250 lines of wheat grown
during the 2013-2014 harvest season in Ciudad Obregon, So-
nora, Mexico. The trials were planted in mid-November and
grown in beds with 5 and 2 irrigations plus drip irrigation.
Four traits were recorded: (1) Days to heading (DT) which co-
rresponds to the number of days from germination until 50%
of the peaks in each plot appeared, (2) GY corresponding to
the total grain yield of the plot after maturity, (3) PH recorded
in centimeters, and (4) the vegetative index (NDVI) was calcu-
lated from the data collected through a hyperspectral cham-
ber. Genotyping-by-sequencing was used for genome-wide
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genotyping. Single nucleotide polymorphisms were called
across all lines using the TASSEL GBS pipeline anchored to
the genome assembly of Chinese Spring. Single nucleotide
polymorphism calls were extracted, and markers filtered
so that percent missing data did not exceed 80% and 20%,
respectively. Individuals with 80% of missing marker data
were removed, and markers were recorded as 2, 0, and 1, in-
dicating homozygous for the minor allele, heterozygous, and
homozygous for the major allele, respectively. Next, markers
with 0.01 minor allele frequency were removed, and missing
data imputed with the marker mean. A total of 12,083 mar-
kers remained after marker editing. We have identified this
data set as Wheat_IBCF. For more details, see the study of
Montesinos-Lopez et al. (2016) a multi-environment single
trait model for assessing genotype \u00d7 environment
interaction.

Wheat Iranian dataset

This data set is based on the data used in the study of
Crossa et al. (2016). It consists of 2374 wheat lines that were
evaluated in field (D) and heat (H) drought experiments at the
CIMMYT experimental station near Ciudad Obregén, Sonora,
Mexico (27°20’ N, 109°54’' W, 38 meters above sea level), du-
ring the Obregén 2010-2011 cycle. Two traits were evaluated
(DTM days at maturity and DTH days to heading). From a total
of 40,000 markers, after quality control 39,758 markers were
used. We have identified this data set as Wheat_Iranian. For
more details, see the study of (Crossa et al., 2016).

RESULTS

The results are discussed in seven sections, one for
each data set. Each section has three subsections, the first
one explains the prediction accuracy under the first type of
cross validation (CV1), the second the predictions resulting
of the second cross validation and the third provide a com-
parison in terms of time of implementation between the IBCF
and the GBLUP model.

Maize dataset

Figure 1 shows two types of predictions using the two
implemented models GBLUP and IBCF. First, the predictions
are presented using the breeding values (phenotypic values
adjusted using the markers) and these are the values that will
be predicted. In the second case, the goal is to predict the
phenotypic values. Under the GBLUP model, two models are
fitted with genomic information and without the genomic
information.

The best predictions are observed under the scena-
rio for breeding values compared with that for phenotypic
values, which is to be expected, since it eliminates the un-
certainty by the adjustment to the phenotypic values by the
markers to obtain the breeding values. When breeding values
are predicted, it is observed that the best predictions in most
of the trait-environment combinations have been obtained
through the IBCF model, because when comparing these re-
sults with the GBLUP model, differences can be appreciated
in most cases (8 out of 9 trait-environment combinations).

Only in the trait-environment ASI-Env3 is similar between
the predictive capabilities of both models, the rest of the
combinations IBCF model is superior to GBLUP (Figure 1).

On the other hand, when using phenotypic values, we
can observe similar results between IBCF and GBLUP without
the genetic values. The GBLUP obtains significantly lower
predictive capacities only in two points and these correspond
to the ASl and PH traits for environment 1. When comparing
the GBLUP with genetic values versus the IBCF, we found that
7 out of 9 trait-environment combinations are different and
GBLUP shows better prediction accuracy (Figure 1).
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Figure 1. Prediction accuracy of CV1 obtained with Pearson’s correlation
for both models IBCF and GBLUP, using phenotypic values and breeding
values as the response variable for the Maize data set. The results of
average Pearson’s correlation correspond to the testing set of a cross
validation with 10 random partitions with 80% for training and 20% for
testing.

Figura 1. Capacidad predictiva de CV1 obtenida con la correlacién de
Pearson para ambos modelos IBCF y GBLUP, utilizando valores fenotipicos
y valores genéticos como variable respuesta para el conjunto de datos de
Maize. Los resultados de la correlacién promedio de Pearson corresponden
al conjunto de prueba de una validacion cruzada con 10 particiones
aleatorias con 80% para entrenamiento y 20% para prueba.

Figure 2 show the same two types of cross-validation
given in Figure 1. However, now the predictions were made
for all lines of one environment for each trait, using the re-
maining data as training data (CV2).

When predicting breeding values, the GBLUP model
proved to be superior. In ASl trait in all environments, we ob-
tained the best predictions under the GBLUP model. While in
GY trait, the best predictions were observed only in the first
environment, while in the remaining environments the best
predictions were observed under the IBCF model (Figure 2).

On the other hand, using phenotypic values, we ob-
serve that using the GBLUP model without genetic values

—
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results in better predictions for the ASI trait in the three
environments and for the PH trait in environments 2. While
including the genetic values gives better predictions only for
PH trait in environment 1 (Figure 2).
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Figure 2. Predictive accuracy of CV2 obtained with Pearson’s correlation
for the two models IBCF and GBLUP, using phenotypic values and breeding
values as the response variable for the Maize data set. Pearson’s correlation
are reported for each trait-environment combination.

Figura 2. Capacidad predictiva de CV2 obtenida con la correlaciéon de
Pearson para los dos modelos IBCF y GBLUP, utilizando valores fenotipicos
y valores geneticos como variable de respuesta para el conjunto de datos
de Maize. La correlacion de Pearson se informa para cada combinacion de
rasgo-ambiente.

Finally, we compared the runtimes of GBLUP vs. IBCF
for Maize data using the breeding values and found that the
GBLUP takes 35.48 seconds to implement while the IBCF
takes only 2.5 seconds, which means that the IBCF is 14.19
times faster than the GBLUP model (Table 2).

Maize HEL dataset

Figure 3 show two types of predictions for both type
of models under CV1 cross validation, the first for predic-
ting the breeding values and the second for predicting the
phenotypic values. We cannot observe gain between the
scenarios where breeding values have been predicted aga-
inst the scenarios where phenotypic values were predicted
for the Maize_HEL data set. When the breeding values were
predicted the results obtained are quite similar (2 of 9 combi-
nations are different) under both models, with the exception
for the GY trait in the IP and PM environments, where the
best predictions accuracies were obtained by the IBCF model
(Figure 3).

We can observe for the analysis performed using the
phenotypic values, that the results obtained with the GBLUP
model with (and without) the genomic values are similar to

the results obtained with the IBCF model (only 1 out of 9
combination is different) this difference was obtained for the
GY trait in the NM environment (Figure 3).
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Figure 3. Prediction accuracy under CV1 with Pearson’s correlation for
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Maize_HEL data set. The results of average
Pearson correlation correspond to a cross validation with 10 partitions with
80 % for training and 20% of testing.

Figura 3. Capacidad predictiva bajo CV1 con la correlacion de Pearson
para los modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Maize_HEL.
Los resultados de la correlacion promedio de Pearson corresponden a una
validacién cruzada con 10 particiones con 80% para entrenamiento y 20%
de prueba.

Figure 4 also give the same two types of predictions

than in Figure 3, but implemented with the CV2 cross vali-
dation. Better predictions were obtained under the scenario
where breeding values were predicted than under the scena-
rio where phenotypic values were predicted. When breeding
values were predicted, small differences were observed bet-
ween both models, except in the trait-environment combi-
nation that corresponds to the GY trait in the IP environment
where the best predictions were under the IBCF model. On
the other hand, for the three trait-environment combinations
that correspond to the PH the best predictions were obser-
ved with the GBLUP model (Figure 4).
When the phenotypic values were predicted, the results ob-
tained with the GBLUP model without using the genotypic
values are similar to those obtained with the IBCF model,
although in the trait-environment combination GY-NM,
lower predictions were obtained with the IBCF model. Finally,
with the GBLUP model with genomic information we obser-
ved low predictions for the GY trait for the environments IP
and PM (Figure 4).
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Figure 4. Prediction accuracy under CV2 with Pearson’s correlation for two
models IBCF and GBLUP, using phenotypic values and breed

ing values as the response variable for the Maize_HEL data set. Pearson’s
correlation results correspond to each trait-environment combination.
Figura 4. Capacidad predictiva bajo CV2 con la correlaciéon de Pearson
para dos modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Maize_HEL.
Los resultados de la correlacion de Pearson corresponden a cada
combinacion de rasgo-ambiente.

Finally, we compared the runtimes of GBLUP versus
IBCF for the Maize_HEL data set using the breeding values
and we found that the GBLUP takes 31.23 seconds to imple-
ment while the IBCF takes only 0.79 seconds, which means

Figure 6, as Figure 5, also shows two types of predic-
tions with breeding values and phenotypic values, but with
the cross validation, CV2. We obtained better predictions
under the scenario predicting breeding values, than under
the scenario where phenotypic values are predicted. When
predicting breeding values, we observed the best predic-
tions under the GBLUP model for all the trait-environment
combinations.

On the other hand, for the results predicting the phe-
notypic values, we observe similar results with the IBCF and
GBLUP models that takes into account the genomic values,
exceptin some points where the IBCF had deficiencies. These
correspond to the GY trait for all the environments, as well as
some points where it has obtained better predictive capaci-
ties; these correspond to the PH trait for all the environments.
However, when the genomic values were removed from the
GBLUP model, was the best for all the trait-environment
combinations.

Finally, we compared the runtimes of GBLUP versus
IBCF for the Maize_USP data set with breeding values and
we found that the GBLUP takes 275.58 seconds to implement
while the IBCF takes only 2.95 seconds, which is equivalent
to the IBCF being 93.42 times faster than the GBLUP model
(Table 2).
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Figure 5. Prediction accuracy under CV1 with Pearson’s correlation for
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Maize_USP data set. The results of average
Pearson’s correlation correspond to a cross validation with 10 partitions
with 80 % for training and 20% of testing.

Figura 5. Capacidad predictiva bajo CV1 con la correlacion de Pearson para
los modelos IBCF y GBLUP, utilizando valores fenotipicos y valores genéticos
como variable respuesta para el conjunto de datos Maize_USP. Los resulta-
dos de la correlacion promedio de Pearson corresponden a una validacién
cruzada con 10 particiones con 80% para entrenamiento y 20% de prueba

Wheat BGLR dataset

Figure 7 shows two types of predictions for both type
of models, under CV1 cross validation. The best predictions
were under the scenario that predicts the breeding values
compared with the scenario that predicts the phenotypic
values for the Wheat_BGLR data set. When the breeding
values were predicted, it is observed that the IBCF was better
in 3 out of 4 combinations than the GBLUP (Figure 7). On the
other hand, when using the phenotypic values, it is evident
that the GBLUP model without genomic information is quite
similar to the IBCF model. While the for the GBLUP model
with the genomic information produced the lower predic-
tions (Figure 7)

Finally, we compared the runtimes for the GBLUP
versus the IBCF for the Wheat_BGLR data using the breeding
values and we found that the GBLUP takes 197.82 seconds
to implement, while the IBCF takes only 0.66 seconds, which
means that the IBCF is 299.73 times faster than the GBLUP
model (Table 2).

Wheat IBCF dataset

Figure 8 presents two types of predictions for both
type of models, the first for predicting the breeding values
and the second for predicting the phenotypic values. For
these cases, CV1 cross validation has been used.
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Figure 6. Prediction accuracy under CV2 with Pearson’s correlation for two
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Maize_USP data set. Pearson’s correlation
results correspond to each trait-environment combination.

Figura 6. Capacidad predictiva bajo CV2 con la correlacion de Pearson
para dos modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Maize_USP.
Los resultados de la correlacion de Pearson corresponden a cada
combinacion de rasgo-ambiente.

When the breeding values were predicted, it is obser-
ved that the models obtain similar predictions because only
4 of 12 combinations are different and three of them result
in better predictions for the IBCF model, this correspond to
PH trait in the Bed2IR and Bed5IR environments and GY trait
in the Drip environment. In addition, the remaining combi-
nation corresponds to GY trait in Bed5IR environment that
result in better prediction for the GBLUP model (Figure 8).

Meanwhile for the analysis performed using the phe-
notypic values, we can observe that in general the GBLUP
without using the genomic information was the worst in
terms of prediction performance than the other two methods
(IBCF and GBLUB with genomic information) (Figure 8).

Two types of predictions using the two models GBLUP
and IBCF are presented in Figure 9 with breeding values and
phenotypic values, but with the cross validation, CV2. When
predicting breeding values, remarkable differences are ob-
served between both models, it is observed that under the
GLBUP the best predictions were observed for traits DH and
GY, while under the IBCF method the best predictions were
observed under trait NDVI (Figure 9). While, for the results
obtained when using the phenotypic values, we observe the
same pattern, but the GBLUP model with or without genetic
information produced similar predictive capacities (Figure 9).

Finally, we compared the runtimes for the GBLUP vs.
IBCF for Wheat_IBCF data using the breeding values and we
found that the GBLUP takes 34.28 seconds to implement

Trait x Environment
Figure 7. Prediction accuracy under CV1 with Pearson’s correlation for
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Wheat_BGLR data set. The results of average
Pearson correlation correspond to a cross validation with 10 partitions with
80 % for training and 20% of testing.
Figura 7. Capacidad predictiva bajo CV1 con la correlacion de Pearson
para los modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Wheat_BGLR.
Los resultados de la correlacion promedio de Pearson corresponden a una
validacion cruzada con 10 particiones con 80% para entrenamiento y 20%
de prueba.

while the IBCF takes only 1.03 seconds, which means that the
IBCF is 33.28 times faster than the GBLUP model (Table 2).

Wheat Iranian dataset

Figure 10 presents two types of predictions for both
type of models, the first for predicting the breeding values
and the second for predicting the phenotypic values. For
these cases, CV1 cross validation has been used.

We can observe little gain between the scenarios
when using breeding values against the scenarios using
phenotypic values to predict for the Wheat Iranian data set.
When the breeding values are predicted, it is observed that
no great differences in the predictions between both models
because 3 of 4 combinations are quite similar (Figure 10).
When using the phenotypic values, it is evident that results
obtained with the GBLUP model without the genomic values
are better than those obtained with the IBCF model and the
GBLUP model with genomic information. However, the IBCF
was better than the GBLUP model with genomic information
(Figure 10).

Two types of predictions were performed with the
GBLUP and IBCF models in Figure 11 with breeding values
and phenotypic values, but with the cross validation, CV2. We
obtained better predictions under the breeding values sce-
nario. Under predicted breeding values, the results obtained
under the IBCF model are higher than those obtained by the
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Figure 8. Prediction accuracy under CV1 with Pearson’s correlation for
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Wheat_IBCF data set. The results of average
Pearson’s correlation correspond to a cross validation with 10 partitions
with 80 % for training and 20% of testing.

Figura 8. Capacidad predictiva bajo CV1 con la correlacion de Pearson
para los modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Wheat_IBCF.
Los resultados de la correlacion promedio de Pearson corresponden a una
validacién cruzada con 10 particiones con 80% para entrenamiento y 20%
de prueba.
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Figure 9. Prediction accuracy under CV2 with Pearson’s correlation for two
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Wheat_IBCF data set. Pearson’s correlation
results correspond to each trait-environment combination.
Figura 9. Capacidad predictiva bajo CV2 con la correlaciéon de Pearson
para dos modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos Wheat_
IBCF. Los resultados de correlacion de Pearson corresponden a cada
combinacion de rasgo-ambiente.
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GBLUP model in all the traits for all the environments (Figure
1). While, for the results obtained when using phenotypic
values, the same pattern is observed, that is the IBCF was the
best; however, the GBLUP model without the genetic infor-
mation was better in prediction accuracy than the GBLUP
with genomic information (Figure 11).
Finally, we compared the runtimes for the GBLUP vs.
IBCF for Wheat Iranian data using the breeding values
and we found that the GBLUP takes 1152.36 seconds to
implement while the IBCF takes only 2.19 seconds, which
means that the IBCF is 526.19 times faster than the GBLUP
model (Table 2).

Time of execution between the models IBCF and GBLUP
Table 2 shows the execution times in seconds im-

plemented by each model, showing that the IBCF model is

able to process information more quickly, in the case of the
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Figure 10. Prediction accuracy under CV1 with Pearson’s correlation for
models IBCF and GBLUP, using phenotypic values and breeding values as
the response variable for the Wheat_lIranian data set. The results of average
Pearson correlation correspond to a cross validation with 10 partitions with
80 % for training and 20% of testing.

Figura 10. Capacidad predictiva bajo CV1 con la correlacién de Pearson
para los modelos IBCF y GBLUP, utilizando valores fenotipicos y valores ge-
néticos como variable respuesta para el conjunto de datos Wheat_Iranian.
Los resultados de la correlacion promedio de Pearson corresponden a una
validacion cruzada con 10 particiones con 80% para entrenamiento y 20%
de prueba.

smaller data sets used in this research, as: Maize, Maize_ HEL
and Wheat_IBCF show a difference ratio between the GBLUP
and IBCF models between 15 and 33 times faster, while for
the larger data sets used in this research, such as Maize_USP,
Wheat_BGLR and Wheat_Iranian, a difference ratio between
both models between 93 and 526 times faster is shown.
Itisimportant to note that on average across data sets
the GBLUP model requires 286.12 seconds to adjust the mo-
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del, while IBCF requires only 1.68 seconds on average, that
is, the IBCF method is 169.63 times faster than the GBLUP
model.
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Figure 11. Prediction accuracy under CV2 with Pearson’s correlation for
two models IBCF and GBLUP, using phenotypic values and breeding values
as the response variable for the Wheat Iranian data set. Pearson’s correla-
tion results correspond to each trait-environment combination.

Figura 11. Capacidad predictiva bajo CV2 con la correlacién de Pearson
para dos modelos IBCF y GBLUP, utilizando valores fenotipicos y valores
genéticos como variable respuesta para el conjunto de datos de trigo irani.
Los resultados de la correlaciéon de Pearson corresponden a cada combina-
cién de rasgo-ambiente.

DISCUSSION

The results show that the IBCF methodology is com-
petitive in terms of predictability compared to the GBLUP
model. Montesinos-Lopez et al. (2018) mention that the
greater the correlation between the traits and between the
environments, the better the performance of the model, and
so their recommendation is emphasized for large data sets
with many traits and moderately correlated environments. It
should be noted that in the Maize and Wheat_BGLR data set,
the IBCF methodology was better than the GBLUP model; on
the other hand, in the Maize and Wheat_lIranian data set, the
GBLUP model obtained better predictive capabilities when
using the phenotypic values. Furthermore, the predictive
capabilities have been similar between both methodologies
when predicting the breeding values Maize_Hel, Maize_USP,
Wheat_IBCF, Wheat_Iranian. Whereas, for phenotypic values
in the Maize and Wheat_Iranian datasets the GBLUP model
without the genomic values was the best, as well as in the
Maize_USP, Wheat_BGLR datasets the GBLUP model with
the genomic values was the best. In addition, the GBLUP
methodology was less efficient in terms of prediction
accuracy in the Wheat_USP and Wheat_BGLR datasets for
phenotypic prediction, than the IBCF methodology, only

Table 2. Execution time in seconds, of the GBLUP and IBCF method. Ratio
was obtained as the division of the time in seconds required by the GBLUP
model and the time required under the IBCF method.

Tabla 2. Tiempo de ejecuciéon en segundos, del método GBLUP e IBCF.

La relacion (ratio) se obtuvo como la divisién del tiempo en segundos
requerida por el modelo GBLUP y el tiempo requerido por el método IBCF.

Dataset GBLUP IBCF Ratio
Maize 35.48 25 14.19
Maize_HEL 21.23 0.79 26.87
Maize_USP 275.58 2.95 93.42
Wheat_BGLR 197.82 0.66 299.73
Wheat_IBCF 34.28 1.03 33.28
Wheat_lranian 1152.36 2.19 526.19
Mean 286.12 1.68 169.63

when not taking into account the marker information in the
GBLUP model. We also found that when 