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ABSTRACT
Aim/background: in view of the growing demand 

for food, new methodologies are needed to improve the 
genomic selection (GS) methodology to obtain more pro-
ductive plant varieties and there is empirical evidence that 
GS it is revolutionizing plant breeding for food production 
around the world. Methods: since the prediction models play 
a key role in GS, for this reason Montesinos-López et al. (2018) 
proposed the item based collaborative filtering (IBCF) algo-
rithm for Genomic prediction. For this reason, in this paper 
we compare the IBCF algorithm with the most popular ge-
nomic prediction model called the Genomic Best Linear Un-
biased Prediction (GBLUP). Results: We found that the GBLUP 
is superior than the IBCF model, but the IBCF is competitive 
to the GBLUP model since produced very similar predictions, 
but with the large advantage that it is extremely efficient in 
terms of time for implementation. Conclusions: we found 
that the GBLUP is better than the IBCF algorithm but the IBCF 
is more than 400 times more efficient than the GBLUP model 
in terms of time for implementation. Limitations: The main 
limitation of the study is that it was performed in univariate 
terms and it is possible that the IBCF will perform better with 
multivariate data.
Key words: GBLUP, Item Based Collaborative Filtering, Genom-
ic Selection, Comparison, Prediction accuracy.

RESUMEN
Objetivo / antecedentes: en vista de la creciente de-

manda de alimentos, se necesitan nuevas metodologías para 
mejorar la selección genómica (GS) para obtener variedades 
de plantas más productivas y en menor tiempo y existe 
evidencia que la SG está revolucionando el mejoramiento 
de plantas que ayudará a incrementar la producción de ali-
mentos a nivel mundial. Métodos: dado que los modelos de 
predicción juegan un papel clave en GS, Montesinos-López 
et al. (2018) propusieron el algoritmo de filtrado colaborativo 

(IBCF) para la predicción genómica. Por esta razón, en este 
artículo comparamos el algoritmo IBCF con el modelo de 
predicción genómica más popular denominado mejor pre-
dictor lineal insesgado Bayesiano (GBLUP). Resultados: En-
contramos que el GBLUP es superior en capacidad predictiva 
al modelo IBCF, pero el IBCF es competitivo con el modelo 
GBLUP ya que produjo predicciones muy similares, pero con 
la ventaja de que es eficiente en términos de tiempo de 
implementación. Conclusiones: encontramos que el GBLUP 
es mejor que el algoritmo IBCF, pero el IBCF es 400 veces 
más eficiente que el modelo GBLUP en términos de tiempo 
de implementación. Limitaciones: la principal limitación del 
estudio es que se realizó en términos univariados y es posible 
que el IBCF se desempeñe mejor con datos multivariados.
Palabras clave: GBLUP, filtrado colaborativo, selección genó-
mica, comparación, capacidad predictiva.

INTRODUCTION
After 17 years of coining “Genomic Selection (GS)” it 

has been possible to accelerate the processes of plant breed-
ing by reducing the cycles to obtain a new variety using the 
information from genetic markers, since genetic markers 
have become more economical and accessible. Although 
GS has become popular in plant and animal breeding pro-
grams, in order to improve this methodology, the predictive 
accuracy of GS models needs to be improved, because GS 
trains predictive models using phenotypic and genotypic 
information of the training sample and makes predictions for 
the validation sample (with only genomic information) using 
these models.

GS prediction tools are mostly Bayesian models, be-
cause they have demonstrated good predictive performance 
and are able to function well under the context where there 
are more independent variables (markers) than observations. 
However, these models are generally very demanding in 
terms of execution time, also the different variations of Bayes-



137
Volumen XXII, Número 2

Montesinos-López et al: Benchmarking between item based collaborative / XXII (2): 136-146 (2020)

137

ian methods, such as Bayes A, Bayes B, Bayes Ridge Regres-
sion, etc., do not provide a great improvement in prediction 
accuracy (Mota et al., 2018). Therefore, there are consensus of 
the need for more efficient predictive models for the genom-
ic selection, since the quantity of data collected (genotypic 
and genotypic) in breeding programs continues to increase, 
and we want to extract useful knowledge from these data to 
improve the selection process of plants and animals.

For this reason, Montesinos-López et al. (2018) pro-
posed the use of the Item Based Collaborative Filtering (IBCF) 
methodology for the context of GS, invention attributed 
to Amazon No. US6266649B1 (2001); this methodology 
has become fundamental to improve the performance of 
electronic commerce, and has been used efficiently in sites 
such as Amazon, where it is used for the recommendation of 
books and other products for sale, as well as in various web-
sites dedicated to products sale, to recommend users similar 
products (Wei et al., 2012).

This methodology provides several advantages, one 
is its simplicity compared to Bayesian models, another, the 
computational efficiency, even in the processing of large 
amounts of data. However, its successful performance 
depends strongly on the amount of correlation between 
traits or environments. Since, the genetic variability between 
plants of the same species is low in comparison to other 
taxonomic kingdoms like animalia, we can expect high cor-
relation rates between individuals, allowing in theory a good 
performance of IBCF. The implementation of this methodol-
ogy is based in the calculation of a matrix of relationships or 
similarity matrix between traits (or environments) and there 
are different ways to calculate this matrix (Wei et al., 2012), 
as the Pearson’s correlation, cosine similarity among others.

It is important to point out, that there is an R package 
for implementing this methodology to the GS context called 
IBCF.MTME (Montesinos-López et al., 2018). This package 
allows users to implement the IBCF algorithm to data sets 
commonly found in GS that has multi-environment, multi-
trait and simultaneous multi-trait and multi-environment 
data sets. 

For this reason, this research carried out a compara-
tive study between IBCF and Genomic Best Linear Unbiased 
Prediction (GBLUP) model. We performed prediction accuracy 
between the two models using six real data sets from maize 
and wheat, using cross validation.

MATERIALS AND METHODS
Statistical models

Equation (1) is the model used under the GBLUP 
model. Where  represents the normal response ob-
served in the -th line in the j-th environment, where  

𝑖𝑖 = 1,2, … , 𝐼𝐼; 𝑗𝑗 = 1,2, … 𝐽𝐽. 
 			 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑗𝑗 + 𝐸𝐸𝐺𝐺𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖   	       (1)

Note that Ei represents the j-th environment, G repre-
sents the genomic effect of the j-th line and is assumed as a 
random effect distributed as G=(G1,…,GJ )

T∼N(0,G1 σG
2), where  

G1 denotes the genomic relationship matrix calculated as 

suggested by Van (2008) and σG
2 denotes the genomic va-

riance. On the other hand EGij is the interaction between the 
genomic effect of the j-line with the i-th environment and is 
also assumed as a random effect distributed as G=(EG11,…
,EGIJ )

T∼N(0,G1 ⨂ II σGE
2), where σGE

2  denotes the variance of the 
interaction of genotype by environments. Finally,  εij is the 
random error term associated with the j-th line in the i-th en-
vironment distributed N(0,σe

2), where σe
2  denotes the residual 

variance.
On the other hand, to make the prediction of all traits 

simultaneously we propose the model given in equation (2), 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝐺𝐺𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑇𝑇𝑗𝑗𝑗𝑗 + 𝑇𝑇𝐺𝐺𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖                                                         			         (2)

Where yijk is the response variable in the i-th environ-
ment, j-th line and k-th trait, ETik represents an interaction 
between the i-th environment and k-th trait, GTjk represents 
an interaction between the genomic effect of the j-th line and 
the k-th trait and is assumed as a random effect TG=(TG11,…
,TGJI)

T∼N(0,G1⨂Ik σGT
2 ), where σGT

2 denotes the variance of the 
interaction of genotype by trait. EGTijk represents the triple 
interaction between the i-th environment, j-th line and k-th 
trait and is assumed as a random effect, and is distributed as 
ETG=(ETG111,…,ETGIJI)

T∼N(0,II⨂G1⨂IK σEGT
2   ), where σEGT

2    denotes 
the variance of the three way interaction, while  εijk is a ran-
dom error term corresponding to the i-th environment, j-th 
line and k-th trait, and is assumed to be distributed N(0,σε

2), 
where  σε

2 denotes the residual variance. It is important to 
mention that the implementation of the model given in 
equation (1) was done using the GFR package provided in 
the publication of Montesinos-López et al. (2018) while the 
second model given in equation (2) was implemented in the 
R package BGLR (de los Campos and Pérez-Rodríguez, 2016). 
We performed a total of 20,000 iterations; 5,000 samples 
were used for inference because the first 15,000 were used as 
burn-in to decrease the MCMC errors in prediction accuracy.

Item based collaborative filtering (IBCF)
The IBCF algorithm is very popular with electron-

ic-commerce web sites for recommending items and prod-
ucts, where they use inputs about a customer’s interests to 
generate a list of recommended items. This algorithm was 
recently implemented in genomic selection and proved to 
be comparable to conventional whole-genome prediction 
models when the correlation between traits and environ-
ments was moderate or high (Montesinos-López et al., 2018). 
The IBCF algorithm works by building a database of users’ 
(lines) preferences for items (trait-environment combination). 
For example, Table 1a provides raw phenotypic data with six 
lines evaluated in two different environments (E1 and E2) for 
two different traits (T1 and T2) with both traits in different 
scales, also this raw phenotypic data set has 4 missing values 
(with NA). Then we standardize by column ([zij=(yij-μj)σj 

-1)] each 
column of Table 1a (except the first one), where i denotes the 
users (lines) and j denotes the columns (trait-environment 
combinations), and we form the standardized information in 
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Table 1b. In this example i =1,…,6, j =1,2…,4, μj,  is the mean 
of column j and σj denotes the standard deviation of column 
j. Also, for comparison purposes we know that the true values 
for the missing values are: y21=14.0971, y34=5.3511, y42=8.9786 
and y53=8.2019 respectivelly. Then we calculated the Pearson 
correlation between Table 1b columns (trait-environment 
combinations) shown in Table 1c. Next with the following 
formula, we calculate the predictions for the missing pheno-
types of line i in item j (Sarwar et al., 2001; Montesinos-López 
et al., 2018).

𝑦̂𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗 𝑧̂𝑧𝑖𝑖𝑖𝑖,                                         	       (3)

Where 𝑧̂𝑧𝑖𝑖𝑖𝑖 =
∑ 𝑧𝑧𝑖𝑖𝑖𝑖´𝑤𝑤𝑗𝑗𝑗𝑗′𝑗𝑗´𝜖𝜖𝑁𝑁𝑖𝑖(j) 

∑ |𝑤𝑤𝑗𝑗𝑗𝑗′|𝑗𝑗´𝜖𝜖𝑁𝑁𝑖𝑖(j)
 is the predicted scaled phenoty-

pe for user (line) i on item (trait-environment) j. Ni(j) denotes 
the items rated by user (line) i most similar to item  j, wjj is 
the weight between items j and j´ and the weights used in 
formula (3) are obtained from an item-to-item similarity 
matrix built using the Pearson’s correlation (Given in Table 
1c), which provides information on how similar an item is to 
another item.

Table 1. Example of item based collaborative filtering (IBCF). (a) Raw phe-
notypic data, (b) Standardized phenotypic data and (c) matrix of correlation 
of standardized phenotypic data. Line denotes lines, T1 denotes traits 1, 
while E1, E2, E3 and E4 environments 1, 2, 3 and 4 respectively.
Tabla 1. Ejemplo de filtrado colaborativo (IBCF). (a) Datos fenotípicos sin 
procesar, (b) Datos fenotípicos estandarizados y (c) matriz de correlación 
de datos fenotípicos estandarizados. Line denota líneas, T1 denota rasgo 1, 
mientras que E1, E2, E3 y E4, ambientes 1, 2, 3 y 4 respectivamente.

Raw phenotipic data (a)

Line T1_E1 T1_E2 T1_E3 T1_E4
Line1 13.43869 10.042283 7.833255 3.346331
Line2 NA 10.206126 7.539531 4.009220
Line3 15.98278 10.758225 8.103404 NA
Line4 13.28755  NA 7.508226 2.305872
Line5 15.12665 10.625251 4.835037
Standardized phenotipic data (b)
Line T1_E1 T1_E2 T1_E3 T1_E4
Line1 -0.7763412 -1.0793621  0.3117081 -0.2598054
Line2 NA -0.5957629 -0.7388356  0.3601804
Line3 1.1595774  1.0338048  1.2779277         NA
Line4 -0.8913464         NA -0.8508002 -1.2329245
Line5 0.5081103  0.6413202         NA 1.1325495
Matrix of correlation (c) 
Line T1_E1 T1_E2 T1_E3 T1_E4
T1_E1 1.000 0.9869829 0.8643881 0.9402111
T1_E2 0.9869829 1.0000000 0.7193678 0.9830228
T2_E1 0.8643881 0.7193678 1.0000000 0.2130462
T2_E2 0.9402111 0.9830228 0.2130462 1.0000000

Next, we illustrate how to calculate the four missing 
values using formula (1). First, we calculate the scaled pre-
dicted value for y21

𝑧̂𝑧21 =
−0.5957 × 0.9869 + −0.7388 × 0.8643 + 0.3601 × 0.9402

|0.9869| + |0.8643| + |0.9402| = −0.3181 

 

Then the predicted value of  y21 in its original scale is 
equal to

𝑦𝑦21 = 𝑧̂𝑧21 𝜎𝜎.1 + 𝜇𝜇.1 = −0.3181 × 1.3141 + 14.4589 = 14.0408 

 This mean that the predicted value of line 2 in 
trait-environment combination 1( ŷ21) is 14.0408 wich is close 
to the true value 14.0971. Next, we show how to calculate 
the predicted value for the missing value ŷ34 ; first the scaled 
predicted values are equal to

𝑧̂𝑧34 =
1.1595 × 0.9402 + 1.0338 × 0.9830 + 1.2779 × 0.2130

|0.9402| + |0.9830| + |0.2130| = 1.1135 

 
Then the predicted value of y34 in its original scale is 

equal to

𝑦𝑦34 = 𝑧̂𝑧34 × 𝜎𝜎.4 + 𝜇𝜇.4 = 1.1135 × 1.0691 + 3.6241 = 4.8146 

 Now the predicted value of line 3 in trait-environment 
combination 4 (ŷ34) is 4.8146 wich is close to the true value 
5.3511. Then, we present the scaled predicted response for 
line 4 and trait-environment combination 2, y42, which is

𝑧̂𝑧42 =
−0.8913 × 0.9869 + −0.8508 × 0.7193 + −1.2329 × 0.9830

|0.9869| + |0.7193| + |0.9830| = −1.0053 

 Then the predicted value of y42 in its original scale is 
equal to

𝑦𝑦42 = 𝑧̂𝑧42 × 𝜎𝜎.2 + 𝜇𝜇.2 = −1.0053 × 0.3388 + 10.4079 = 10.0673 

 This mean that the predicted value of line 4 in trait-en-
vironment combination 2 (ŷ42) is 10.0673 wich is close to the 
true value 8.9786. Finally, we present the scaled predicted 
value of line 5 in the trait-environment combination 3,

𝑧̂𝑧53 =
0.5081 × 0.8643 + 0.6413 × 0.7193 + 1.1325 × 0.2130

|0.8643| + |0.7193| + |0.2130| = 0.6354 

 Then the predicted value of y53 in its original scale is 
equal to

𝑦𝑦53 = 𝑧̂𝑧53 × 𝜎𝜎.3 + 𝜇𝜇.3 = 0.6354 × 0.2795 + 7.7461 = 7.9237 

 
This mean that the predicted value of line 5 in trait-en-

vironment combination 3 (ŷ53) is 7.9237 wich is close to the 
true value 8.2019.

As we can see with this example the calculations are 
easy but laborious, but the IBCF.MTME packages do this job 
automatically and the data set required can be on different 
scales (not standardized) for the traits, that is, the traits are 
allows to be measured on different scales. Internally, the IBCF.
MTME package standardize ([zij=(yij-μj)σj

-1]) each column of 
the data set given in Table 2 (that shows the format of the 
type of data required) for the training data set obtained in 
each random partition. This implies that to use the formula 
given in equation (3) for making predictions about trait-envi-
ronment combinations, after standardizing is calculated the 
similarity matrix resulting from the corresponding training 
data set of a partition selected from the whole data set in Ta-
ble 2. Therefore, the predictions obtained by using equation 
(3) with the parameters estimates required obtained with the 
training data set corresponding to each partition and the 
predictions are done for the observations in testing data set.
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Evaluation of the prediction accuracy
Two cross-validation schemes were used to assess the 

prediction accuracy of both models. Both schemes simulate 
two key situations that breeders often witness. The first 
corresponds to a cross validation with 10 random partitions, 
which simulates situations where some lines have been 
evaluated in some environments but in others are lost. The 
percentage of missing values correspond to 20% of the lines 
of each data set, in other words, 80% of the observations in 
the data sets have been used to train the models.

The second scheme simulates a situation with a 
non-evaluable trait in all the lines in an environment, but 
is present in the remaining environments. In this case, in-
formation from known data in other environments is used, 
and the evaluation of the prediction can benefit from the 
loan of information between lines across environments, and 
between correlated traits. From the variety of methods used 
to compare the predictive ability, we used Pearson´s correla-
tion and we report the average of the 10 random partitions. 
Models with a higher correlation indicate better predictions.

Statistical software
The statistical software R version 3.5.0 (R Core Team, 

2018), was used using the external packages IBCF.MTME 
version 1.2-5 and the GFR package which includes different 
tools that provide some points for prediction models im-
plementation in the GS context, this package was used in 
version 0.9-12 (Montesinos-López et al., 2018).

Real data sets
This research analyzed six different real datasets 

obtained from various studies, the data are available in the 
following link, below is a description of the content of each 
data set.

Maize dataset
This data set is based on that of Montesinos-López 

et al. (2017). It is composed of a sample of 309 maize lines 
evaluated for three traits: anthesis-silking interval (ASI), plant 
height (PH), grain yield (GY), each of them evaluated in three 
optimal storm environments (Env1, Env2 and Env3). The total 
number of genomes by sequencing (GBS) data were 681,257 
single nucleotide polymorphisms (SNPs), and, after filtering 
for missing values and minor allele frequency, were used 
158,281 SNPs for the analyses. We have identified this data 
set as Maize. For more details, see the study of Montesinos-
López et al. (2017).

Maize Hel dataset
This data set is based on the data used in the study 

of Cuevas et al. (2018). It consists of a sample of 247 maize 
lines evaluated in 2015 in three environments corresponding 
to Nova Mutum (NM) in the state of Mato Grosso, Pato de 
Minas (PM) and Ipiaçú (IP) in the state of Minas Gerais, Brazil. 
The traits evaluated were: Ear height (EH), PH and GY. The 

HEL parent lines were genotyped with an Affymetrix Axiom 
Maize Genotyping Array of 616 K SNPs with standard quality 
controls removing markers with a Call Rate  0.95. This data set 
differs from the cited study is the elimination of unmeasured 
maize lines in one of the traits, as well as two environments 
where the three traits had not been measured in an effort to 
have a balanced data set, in the same way they were remo-
ved from the genomic matrix. We have identified this data 
set as Maize_HEL. For more details, see the study of Cuevas 
et al. (2018).

Maize USP dataset
This data set is based on the data used in the study of 

Cuevas et al. (2018). It consists of 720 lines of corn evaluated 
in Piracicaba and Anhumas, Brazil, each with two levels of 
nitrogen fertilization (N): Ideal N (IN) and Low N (LN) for a 
total of four artificial environments (PIN, PLN, AIN and ALN), 
for three traits (EH, PH, GY). Like the data set Maize_HEL, the 
Maize_USP parent lines were genotyped with an Affymetrix 
Axiom Maize Genotyping Array of 616 K SNPs with standard 
quality controls removing markers with a Call Rate  0.95 in 
addition. Like the above data set, it differs from the data from 
the cited study in the removal of lines that did not contain all 
its complete measurements to have a balanced data set. We 
have identified this data set as Maize_USP. For more details, 
see the study of Cuevas et al. (2018).

Wheat BGLR dataset
This data set is based on the data used in the study of 

Crossa et al. (2010) and it is preloaded in the BGLR package. 
It consists of 599 wheat lines evaluated in four different en-
vironments. The 599 wheat lines were genotyped using 1447 
Diversity Array Technology (DArT) markers. The markers with 
a minor allele frequency (MAF) (0.05) were removed, and 
missing genotypes were imputed using samples from the 
marginal distribution of marker genotypes. The number of 
DArT markers after edition was 1279. We have identified this 
data set as Wheat_BGLR. For more details, see the study of 
Crossa et al. (2010).

Wheat IBCF dataset
This data set is based on the data used in the study 

of Montesinos-López et al. (2016) a multi-environment single 
trait model for assessing genotype \u00d7 environment 
interaction (G \u00d7 E and it is preloaded in the IBCF.MTME 
package. It consists of a sample of 250 lines of wheat grown 
during the 2013-2014 harvest season in Ciudad Obregon, So-
nora, Mexico. The trials were planted in mid-November and 
grown in beds with 5 and 2 irrigations plus drip irrigation. 
Four traits were recorded: (1) Days to heading (DT) which co-
rresponds to the number of days from germination until 50% 
of the peaks in each plot appeared, (2) GY corresponding to 
the total grain yield of the plot after maturity, (3) PH recorded 
in centimeters, and (4) the vegetative index (NDVI) was calcu-
lated from the data collected through a hyperspectral cham-
ber. Genotyping-by-sequencing was used for genome-wide 



140
Volumen XXII, Número 2

Montesinos-López et al: Biotecnia / XXII (2): 136-146 (2020)

140

genotyping. Single nucleotide polymorphisms were called 
across all lines using the TASSEL GBS pipeline anchored to 
the genome assembly of Chinese Spring. Single nucleotide 
polymorphism calls were extracted, and markers filtered 
so that percent missing data did not exceed 80% and 20%, 
respectively. Individuals with 80% of missing marker data 
were removed, and markers were recorded as 2, 0, and 1, in-
dicating homozygous for the minor allele, heterozygous, and 
homozygous for the major allele, respectively. Next, markers 
with 0.01 minor allele frequency were removed, and missing 
data imputed with the marker mean. A total of 12,083 mar-
kers remained after marker editing. We have identified this 
data set as Wheat_IBCF. For more details, see the study of 
Montesinos-López et al. (2016) a multi-environment single 
trait model for assessing genotype \u00d7 environment 
interaction.

Wheat Iranian dataset
This data set is based on the data used in the study of 

Crossa et al. (2016). It consists of 2374 wheat lines that were 
evaluated in field (D) and heat (H) drought experiments at the 
CIMMYT experimental station near Ciudad Obregón, Sonora, 
Mexico (27°20′ N, 109°54′ W, 38 meters above sea level), du-
ring the Obregón 2010-2011 cycle. Two traits were evaluated 
(DTM days at maturity and DTH days to heading). From a total 
of 40,000 markers, after quality control 39,758 markers were 
used. We have identified this data set as Wheat_Iranian. For 
more details, see the study of (Crossa et al., 2016).

RESULTS
The results are discussed in seven sections, one for 

each data set. Each section has three subsections, the first 
one explains the prediction accuracy under the first type of 
cross validation (CV1), the second the predictions resulting 
of the second cross validation and the third provide a com-
parison in terms of time of implementation between the IBCF 
and the GBLUP model. 
Maize dataset

Figure 1 shows two types of predictions using the two 
implemented models GBLUP and IBCF. First, the predictions 
are presented using the breeding values (phenotypic values 
adjusted using the markers) and these are the values that will 
be predicted. In the second case, the goal is to predict the 
phenotypic values. Under the GBLUP model, two models are 
fitted with genomic information and without the genomic 
information. 

The best predictions are observed under the scena-
rio for breeding values compared with that for phenotypic 
values, which is to be expected, since it eliminates the un-
certainty by the adjustment to the phenotypic values by the 
markers to obtain the breeding values. When breeding values 
are predicted, it is observed that the best predictions in most 
of the trait-environment combinations have been obtained 
through the IBCF model, because when comparing these re-
sults with the GBLUP model, differences can be appreciated 
in most cases (8 out of 9 trait-environment combinations). 

Only in the trait-environment ASI-Env3 is similar between 
the predictive capabilities of both models, the rest of the 
combinations IBCF model is superior to GBLUP (Figure 1).

On the other hand, when using phenotypic values, we 
can observe similar results between IBCF and GBLUP without 
the genetic values. The GBLUP obtains significantly lower 
predictive capacities only in two points and these correspond 
to the ASI and PH traits for environment 1. When comparing 
the GBLUP with genetic values versus the IBCF, we found that 
7 out of 9 trait-environment combinations are different and 
GBLUP shows better prediction accuracy (Figure 1).

Figure 1. Prediction accuracy of CV1 obtained with Pearson´s correlation 
for both models IBCF and GBLUP, using phenotypic values and breeding 
values as the response variable for the Maize data set. The results of 
average Pearson´s correlation correspond to the testing set of a cross 
validation with 10 random partitions with 80% for training and 20% for 
testing.
Figura 1. Capacidad predictiva de CV1 obtenida con la correlación de 
Pearson para ambos modelos IBCF y GBLUP, utilizando valores fenotípicos 
y valores genéticos como variable respuesta para el conjunto de datos de 
Maize. Los resultados de la correlación promedio de Pearson corresponden 
al conjunto de prueba de una validación cruzada con 10 particiones 
aleatorias con 80% para entrenamiento y 20% para prueba.

Figure 2 show the same two types of cross-validation 
given in Figure 1. However, now the predictions were made 
for all lines of one environment for each trait, using the re-
maining data as training data (CV2).

When predicting breeding values, the GBLUP model 
proved to be superior. In ASI trait in all environments, we ob-
tained the best predictions under the GBLUP model. While in 
GY trait, the best predictions were observed only in the first 
environment, while in the remaining environments the best 
predictions were observed under the IBCF model (Figure 2).

On the other hand, using phenotypic values, we ob-
serve that using the GBLUP model without genetic values 
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results in better predictions for the ASI trait in the three 
environments and for the PH trait in environments 2. While 
including the genetic values gives better predictions only for 
PH trait in environment 1 (Figure 2).

Figure 2. Predictive accuracy of CV2 obtained with Pearson´s correlation 
for the two models IBCF and GBLUP, using phenotypic values and breeding 
values as the response variable for the Maize data set. Pearson´s correlation 
are reported for each trait-environment combination.
Figura 2. Capacidad predictiva de CV2 obtenida con la correlación de 
Pearson para los dos modelos IBCF y GBLUP, utilizando valores fenotípicos 
y valores geneticos como variable de respuesta para el conjunto de datos 
de Maize. La correlación de Pearson se informa para cada combinación de 
rasgo-ambiente.

Finally, we compared the runtimes of GBLUP vs. IBCF 
for Maize data using the breeding values and found that the 
GBLUP takes 35.48 seconds to implement while the IBCF 
takes only 2.5 seconds, which means that the IBCF is 14.19 
times faster than the GBLUP model (Table 2). 

Maize HEL dataset
Figure 3 show two types of predictions for both type 

of models under CV1 cross validation, the first for predic-
ting the breeding values and the second for predicting the 
phenotypic values. We cannot observe gain between the 
scenarios where breeding values have been predicted aga-
inst the scenarios where phenotypic values were predicted 
for the Maize_HEL data set. When the breeding values were 
predicted the results obtained are quite similar (2 of 9 combi-
nations are different) under both models, with the exception 
for the GY trait in the IP and PM environments, where the 
best predictions accuracies were obtained by the IBCF model 
(Figure 3). 

We can observe for the analysis performed using the 
phenotypic values, that the results obtained with the GBLUP 
model with (and without) the genomic values are similar to 

the results obtained with the IBCF model (only 1 out of 9 
combination is different) this difference was obtained for the 
GY trait in the NM environment (Figure 3). 

Figure 3. Prediction accuracy under CV1 with Pearson´s correlation for 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Maize_HEL data set. The results of average 
Pearson correlation correspond to a cross validation with 10 partitions with 
80 % for training and 20% of testing.
Figura 3. Capacidad predictiva bajo CV1 con la correlación de Pearson 
para los modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Maize_HEL. 
Los resultados de la correlación promedio de Pearson corresponden a una 
validación cruzada con 10 particiones con 80% para entrenamiento y 20% 
de prueba.

Figure 4 also give the same two types of predictions 
than in Figure 3, but implemented with the CV2 cross vali-
dation. Better predictions were obtained under the scenario 
where breeding values were predicted than under the scena-
rio where phenotypic values were predicted. When breeding 
values were predicted, small differences were observed bet-
ween both models, except in the trait-environment combi-
nation that corresponds to the GY trait in the IP environment 
where the best predictions were under the IBCF model. On 
the other hand, for the three trait-environment combinations 
that correspond to the PH the best predictions were obser-
ved with the GBLUP model (Figure 4).
When the phenotypic values were predicted, the results ob-
tained with the GBLUP model without using the genotypic 
values are similar to those obtained with the IBCF model, 
although in the trait-environment combination GY-NM, 
lower predictions were obtained with the IBCF model. Finally, 
with the GBLUP model with genomic information we obser-
ved low predictions for the GY trait for the environments IP 
and PM (Figure 4).
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Figure 4. Prediction accuracy under CV2 with Pearson´s correlation for two 
models IBCF and GBLUP, using phenotypic values and breed
ing values as the response variable for the Maize_HEL data set. Pearson´s 
correlation results correspond to each trait-environment combination.
Figura 4. Capacidad predictiva bajo CV2 con la correlación de Pearson 
para dos modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Maize_HEL. 
Los resultados de la correlación de Pearson corresponden a cada 
combinación de rasgo-ambiente.

Finally, we compared the runtimes of GBLUP versus 
IBCF for the Maize_HEL data set using the breeding values 
and we found that the GBLUP takes 31.23 seconds to imple-
ment while the IBCF takes only 0.79 seconds, which means

Figure 6, as Figure 5, also shows two types of predic-
tions with breeding values and phenotypic values, but with 
the cross validation, CV2. We obtained better predictions 
under the scenario predicting breeding values, than under 
the scenario where phenotypic values are predicted. When 
predicting breeding values, we observed the best predic-
tions under the GBLUP model for all the trait-environment 
combinations.

On the other hand, for the results predicting the phe-
notypic values, we observe similar results with the IBCF and 
GBLUP models that takes into account the genomic values, 
except in some points where the IBCF had deficiencies. These 
correspond to the GY trait for all the environments, as well as 
some points where it has obtained better predictive capaci-
ties; these correspond to the PH trait for all the environments. 
However, when the genomic values were removed from the 
GBLUP model, was the best for all the trait-environment 
combinations.

Finally, we compared the runtimes of GBLUP versus 
IBCF for the Maize_USP data set with breeding values and 
we found that the GBLUP takes 275.58 seconds to implement 
while the IBCF takes only 2.95 seconds, which is equivalent 
to the IBCF being 93.42 times faster than the GBLUP model 
(Table 2).

that the IBCF is 26.87 times faster than the GBLUP 
model (Table 2).

Maize USP dataset
Figure 5 presents under CV1 cross validation, two 

types of predictions for both type of models, the first for 
predicting the breeding values and the second for predicting 
the phenotypic values. We can observe a gain in the scenario 
where breeding values have been predicted against the sce-
narios where phenotypic values were predicted for the Mai-
ze_USP data set. When the breeding values were predicted, 
the results obtained are quite similar (9 of 12 combinations 
are similar) and of those different two of them favor the IBCF 
model and one the GBLUP model (Figure 5). While for the 
analysis performed using the phenotypic values, it is evident 
that the results obtained with the IBCF and GBLUP model 
without the genomic values are better to the results obtai-
ned with GBLUP model with the genomic values. However, 
the GBLUP model without the genomic values are similar to 
the results obtained with the IBCF model (Figure 5). 

Figure 5. Prediction accuracy under CV1 with Pearson´s correlation for 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Maize_USP data set. The results of average 
Pearson´s correlation correspond to a cross validation with 10 partitions 
with 80 % for training and 20% of testing.
Figura 5. Capacidad predictiva bajo CV1 con la correlación de Pearson para 
los modelos IBCF y GBLUP, utilizando valores fenotípicos y valores genéticos 
como variable respuesta para el conjunto de datos Maize_USP. Los resulta-
dos de la correlación promedio de Pearson corresponden a una validación 
cruzada con 10 particiones con 80% para entrenamiento y 20% de prueba 

Wheat BGLR dataset
Figure 7 shows two types of predictions for both type 

of models, under CV1 cross validation. The best predictions 
were under the scenario that predicts the breeding values 
compared with the scenario that predicts the phenotypic 
values for the Wheat_BGLR data set. When the breeding 
values were predicted, it is observed that the IBCF was better 
in 3 out of 4 combinations than the GBLUP (Figure 7). On the 
other hand, when using the phenotypic values, it is evident 
that the GBLUP model without genomic information is quite 
similar to the IBCF model. While the for the GBLUP model 
with the genomic information produced the lower predic-
tions (Figure 7)

Finally, we compared the runtimes for the GBLUP 
versus the IBCF for the Wheat_BGLR data using the breeding 
values and we found that the GBLUP takes 197.82 seconds 
to implement, while the IBCF takes only 0.66 seconds, which 
means that the IBCF is 299.73 times faster than the GBLUP 
model (Table 2).

Wheat IBCF dataset
Figure 8 presents two types of predictions for both 

type of models, the first for predicting the breeding values 
and the second for predicting the phenotypic values. For 
these cases, CV1 cross validation has been used.



143
Volumen XXII, Número 2

Montesinos-López et al: Benchmarking between item based collaborative / XXII (2): 136-146 (2020)

143

When the breeding values were predicted, it is obser-
ved that the models obtain similar predictions because only 
4 of 12 combinations are different and three of them result 
in better predictions for the IBCF model, this correspond to 
PH trait in the Bed2IR and Bed5IR environments and GY trait 
in the Drip environment. In addition, the remaining combi-
nation corresponds to GY trait in Bed5IR environment that 
result in better prediction for the GBLUP model (Figure 8). 

Meanwhile for the analysis performed using the phe-
notypic values, we can observe that in general the GBLUP 
without using the genomic information was the worst in 
terms of prediction performance than the other two methods 
(IBCF and GBLUB with genomic information) (Figure 8).

Two types of predictions using the two models GBLUP 
and IBCF are presented in Figure 9 with breeding values and 
phenotypic values, but with the cross validation, CV2. When 
predicting breeding values, remarkable differences are ob-
served between both models, it is observed that under the 
GLBUP the best predictions were observed for traits DH and 
GY, while under the IBCF method the best predictions were 
observed under trait NDVI (Figure 9). While, for the results 
obtained when using the phenotypic values, we observe the 
same pattern, but the GBLUP model with or without genetic 
information produced similar predictive capacities (Figure 9). 

Finally, we compared the runtimes for the GBLUP vs. 
IBCF for Wheat_IBCF data using the breeding values and we 
found that the GBLUP takes 34.28 seconds to implement 

while the IBCF takes only 1.03 seconds, which means that the 
IBCF is 33.28 times faster than the GBLUP model (Table 2).

Wheat Iranian dataset
Figure 10 presents two types of predictions for both 

type of models, the first for predicting the breeding values 
and the second for predicting the phenotypic values. For 
these cases, CV1 cross validation has been used.

We can observe little gain between the scenarios 
when using breeding values against the scenarios using 
phenotypic values to predict for the Wheat Iranian data set. 
When the breeding values are predicted, it is observed that 
no great differences in the predictions between both models 
because 3 of 4 combinations are quite similar (Figure 10). 
When using the phenotypic values, it is evident that results 
obtained with the GBLUP model without the genomic values 
are better than those obtained with the IBCF model and the 
GBLUP model with genomic information. However, the IBCF 
was better than the GBLUP model with genomic information 
(Figure 10).

Two types of predictions were performed with the 
GBLUP and IBCF models in Figure 11 with breeding values 
and phenotypic values, but with the cross validation, CV2. We 
obtained better predictions under the breeding values sce-
nario. Under predicted breeding values, the results obtained 
under the IBCF model are higher than those obtained by the 

Figure 6. Prediction accuracy under CV2 with Pearson´s correlation for two 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Maize_USP data set. Pearson´s correlation 
results correspond to each trait-environment combination.
Figura 6. Capacidad predictiva bajo CV2 con la correlación de Pearson 
para dos modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Maize_USP. 
Los resultados de la correlación de Pearson corresponden a cada 
combinación de rasgo-ambiente.

Figure 7. Prediction accuracy under CV1 with Pearson´s correlation for 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Wheat_BGLR data set. The results of average 
Pearson correlation correspond to a cross validation with 10 partitions with 
80 % for training and 20% of testing.
Figura 7. Capacidad predictiva bajo CV1 con la correlación de Pearson 
para los modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Wheat_BGLR. 
Los resultados de la correlación promedio de Pearson corresponden a una 
validación cruzada con 10 particiones con 80% para entrenamiento y 20% 
de prueba.
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GBLUP model in all the traits for all the environments (Figure 
11). While, for the results obtained when using phenotypic 
values, the same pattern is observed, that is the IBCF was the 
best; however, the GBLUP model without the genetic infor-
mation was better in prediction accuracy than the GBLUP 
with genomic information (Figure 11).

Finally, we compared the runtimes for the GBLUP vs. 
IBCF for Wheat_Iranian data using the breeding values 
and we found that the GBLUP takes 1152.36 seconds to 
implement while the IBCF takes only 2.19 seconds, which 
means that the IBCF is 526.19 times faster than the GBLUP 
model (Table 2).

Time of execution between the models IBCF and GBLUP
Table 2 shows the execution times in seconds im-

plemented by each model, showing that the IBCF model is 
able to process information more quickly, in the case of the 

Figure 8. Prediction accuracy under CV1 with Pearson´s correlation for 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Wheat_IBCF data set. The results of average 
Pearson´s correlation correspond to a cross validation with 10 partitions 
with 80 % for training and 20% of testing.
Figura 8. Capacidad predictiva bajo CV1 con la correlación de Pearson 
para los modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Wheat_IBCF. 
Los resultados de la correlación promedio de Pearson corresponden a una 
validación cruzada con 10 particiones con 80% para entrenamiento y 20% 
de prueba.

Figure 9. Prediction accuracy under CV2 with Pearson´s correlation for two 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Wheat_IBCF data set. Pearson´s correlation 
results correspond to each trait-environment combination.
Figura 9. Capacidad predictiva bajo CV2 con la correlación de Pearson 
para dos modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos Wheat_
IBCF. Los resultados de correlación de Pearson corresponden a cada 
combinación de rasgo-ambiente.

Figure 10. Prediction accuracy under CV1 with Pearson´s correlation for 
models IBCF and GBLUP, using phenotypic values and breeding values as 
the response variable for the Wheat_Iranian data set. The results of average 
Pearson correlation correspond to a cross validation with 10 partitions with 
80 % for training and 20% of testing.
Figura 10. Capacidad predictiva bajo CV1 con la correlación de Pearson 
para los modelos IBCF y GBLUP, utilizando valores fenotípicos y valores ge-
néticos como variable respuesta para el conjunto de datos Wheat_Iranian. 
Los resultados de la correlación promedio de Pearson corresponden a una 
validación cruzada con 10 particiones con 80% para entrenamiento y 20% 
de prueba.

smaller data sets used in this research, as: Maize, Maize_HEL 
and Wheat_IBCF show a difference ratio between the GBLUP 
and IBCF models between 15 and 33 times faster, while for 
the larger data sets used in this research, such as Maize_USP, 
Wheat_BGLR and Wheat_Iranian, a difference ratio between 
both models between 93 and 526 times faster is shown. 

It is important to note that on average across data sets 
the GBLUP model requires 286.12 seconds to adjust the mo-
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del, while IBCF requires only 1.68 seconds on average, that 
is, the IBCF method is 169.63 times faster than the GBLUP 
model.

Figure 11. Prediction accuracy under CV2 with Pearson´s correlation for 
two models IBCF and GBLUP, using phenotypic values and breeding values 
as the response variable for the Wheat Iranian data set. Pearson´s correla-
tion results correspond to each trait-environment combination.
Figura 11. Capacidad predictiva bajo CV2 con la correlación de Pearson 
para dos modelos IBCF y GBLUP, utilizando valores fenotípicos y valores 
genéticos como variable respuesta para el conjunto de datos de trigo iraní. 
Los resultados de la correlación de Pearson corresponden a cada combina-
ción de rasgo-ambiente.

DISCUSSION
The results show that the IBCF methodology is com-

petitive in terms of predictability compared to the GBLUP 
model. Montesinos-López et al. (2018) mention that the 
greater the correlation between the traits and between the 
environments, the better the performance of the model, and 
so their recommendation is emphasized for large data sets 
with many traits and moderately correlated environments. It 
should be noted that in the Maize and Wheat_BGLR data set, 
the IBCF methodology was better than the GBLUP model; on 
the other hand, in the Maize and Wheat_Iranian data set, the 
GBLUP model obtained better predictive capabilities when 
using the phenotypic values. Furthermore, the predictive 
capabilities have been similar between both methodologies 
when predicting the breeding values Maize_Hel, Maize_USP, 
Wheat_IBCF, Wheat_Iranian. Whereas, for phenotypic values 
in the Maize and Wheat_Iranian datasets the GBLUP model 
without the genomic values was the best, as well as in the 
Maize_USP, Wheat_BGLR datasets the GBLUP model with 
the genomic values was the best. In addition, the GBLUP 
methodology was less efficient in terms of prediction 
accuracy in the Wheat_USP and Wheat_BGLR datasets for 
phenotypic prediction, than the IBCF methodology, only 

Table 2. Execution time in seconds, of the GBLUP and IBCF method. Ratio 
was obtained as the division of the time in seconds required by the GBLUP 
model and the time required under the IBCF method.
Tabla 2. Tiempo de ejecución en segundos, del método GBLUP e IBCF. 
La relación (ratio) se obtuvo como la división del tiempo en segundos 
requerida por el modelo GBLUP y el tiempo requerido por el método IBCF.

Dataset GBLUP IBCF Ratio

Maize 35.48 2.5 14.19

Maize_HEL 21.23 0.79 26.87

Maize_USP 275.58 2.95 93.42

Wheat_BGLR 197.82 0.66 299.73

Wheat_IBCF 34.28 1.03 33.28

Wheat_Iranian 1152.36 2.19 526.19

Mean 286.12 1.68 169.63

when not taking into account the marker information in the 
GBLUP model. We also found that when predicting breeding 
values, the IBCF methodology performed better than when 
predicting the phenotypic values as shown in the results 
obtained by the Wheat_Iranian, Wheat_BGLR, Maize_USP, 
Maize_HEL & Maize data sets in the cross-validation analysis 
with random partitions.

There are reports that the IBCFF methodology works 
better in terms of predictive capacity when the number of 
traits and environments is considerably large and there is a 
moderate or high correlation between them. It is therefore 
suggested that this methodology be used in this context. 
However, here was tested in the extreme situation with few 
environments and traits and with low correlation between 
traits and environments and even in this context the predic-
tions of the IBCF methodology were competitive to those of 
the GBLUP model. The lower prediction accuracy observed 
for the IBCF compared to the GBLUP model are compensa-
ted in terms of computational resources required since this 
methodology is extremely efficient in terms of execution 
time, since we found that it is at least 14 times faster than 
the GBLUP model. In addition, it is important to point out the 
IBCF methodology is not a model-based approach for this 
reason has the limitation that not allows estimating variance 
and covariance components of traits or environments. 

CONCLUSIONS
This paper presents a comparison between the IBCF 

algorithm and the most popular genomic selection model 
called GBLUP using six real data sets. The results showed 
that the IBCF model had good predictive capabilities using 
only phenotypic values, although using breeding values, 
better predictions can be observed than the GBLUP model. 
However, in general the GBLUP model was better than the 
IBCF algorithm. However, we found that the predictions of 
the IBCF methodology are competitive with the advantage 
that is very efficient in terms of the computational resources 
required since we found that the IBCF methodology is at least 
14-times faster than the GBLUB model. For these reasons, we 
believe that the IBCF is an interesting and practical tool for 
implementing genomic selection in breeding programs.
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