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ABSTRACT

The aim of this work was to evaluate the response of
Phaseolus vulgaris plants to oxidative stress by cadmium in
leaves and roots at different concentrations (0 (control), 0.25,
0.50 and 1 uM). We assessed oxidative stress by the contents
of hydrogen peroxide (H,0,) and malondialdehyde (MDA), as
well as protein content. Likewise, we determined the antiox-
idant enzymatic activity of the superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX) and guaiacol per-
oxidase (GPX) enzymes. The results demonstrated a decrease
in protein content of roots and leaves, starting with the
addition of 0.25 uM Cd, but the MDA content and H,O, levels
increased with the addition of 0.25, 0.50 and 1 uM Cd, this
due to the formation of reactive oxygen species. The SOD,
APX and GPX enzymatic activity increased in roots treated
with 0.25 uM Cd, but these enzymes decreased to higher
concentrations (0.50 and 1 uM). On the other hand, the activ-
ity of CAT increased in leaves exposed to 0.5 and 1 uM of Cd.
These results indicate that these antioxidant enzymes can act
simultaneously in the elimination of reactive oxygen species.
Keywords: cadmium, oxidative stress, antioxidant enzymes,
Phaseolus vulgaris

RESUMEN

El objetivo del presente estudio fue evaluar la res-
puesta de plantas de Phaseolus vulgaris al estrés oxidativo
causado por el cadmio en hojas y raices en diferentes concen-
traciones, las cuales fueron 0 (control), 0,25, 0,50 y 1 uM de
cadmio. El estrés oxidativo se evalu6 mediante el contenido
de peréxido de hidrégeno (H,0,) y malondialdehido (MDA),
asi como el contenido de proteina. Asimismo, se determind la
actividad enzimatica antioxidante de las enzimas superoéxido
dismutasa (SOD), catalasa (CAT), ascorbato peroxidasa (APX)
y guaiacol peroxidasa (GPX). Los resultados demostraron
una disminucién en el contenido de proteinas de las raices
y hojas a partir de la concentracién 0.25 uM de Cd, pero el
contenido de MDA y los niveles de H,O, aumentaron con la
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adicion de 0.25,0.50y 1 uM de Cd, esto debido a la formacion
de especies reactivas de oxigeno. La actividad enzimética de
SOD, APX y GPX aumentaron en las raices tratadas con 0.25
UM de Cd, pero estas enzimas disminuyeron a concentracio-
nes mas altas (0.50 y 1 uM). Por otro lado, la actividad de CAT
aumenté en las hojas expuestas a 0.5y 1 uM de Cd. Estos
resultados indican que estas enzimas antioxidantes pueden
actuar simultdaneamente contra la eliminacion de las especies
reactivas de oxigeno.

Palabras clave: cadmio, estrés oxidativo, enzimas antioxi-
dantes, Phaseolus vulgaris

INTRODUCTION

Cadmium is a highly toxic heavy metal that disrupts
physiological processes in plants; this heavy metal induces
oxidative stress and cause cellular damage to plants. Proto-
nation of radical superoxide (0,7) can produce the hydroxyl
radical (OH) and hydrogen peroxide (H,0)) that converts
fatty acids into toxic lipid peroxides and degrade biological
membranes (Weckx and Clijsters, 1996; Lu et al., 2010). Cad-
mium (Cd) is one of the most common heavy metal pollutants
for humans, animals and plants (Wang et al., 2009). It enters
the environment mainly from anthropogenic processes and
agricultural soils (Januskaitiené, 2014), including sources as
pesticides, mining waste and chemical fertilizers (Daud et al.,
2013; Daud et al., 2015). In plants, Cd affects photosynthesis,
while also damaging the light-harvesting complex and pho-
tosystems, reducing chlorophyll biosynthesis (Hu et al., 2009)
and water status, decreasing the transpiration rate due to
stomatal closure (Deng et al., 2014). Although Cd is not invol-
ved in cellular redox reactions, that is to say cannot produce
reactive oxygen species (ROS) directly, it might impair the
respiratory chain, inhibit antioxidant enzymes, and displace
other ions in metalloproteins, which will eventually generate
Fenton reactions (Romero-Puertas et al., 2019).

Fenton reaction consist in the decomposition of hy-
drogen peroxide (H,0,) to highly reactive hydroxyl radical
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(OH) in the presence of iron (Fe): Fe** + H,O, — Fe** ‘OH +
OH- (Bhaduri and Fulekar, 2012). Thus, it induces the produc-
tion of ROS as superoxide radicals (0,7),"0H,H,0, and singlet
oxygen (102) (Sytar et al., 2013). ROS can cause oxidative da-
mage to several cellular constituents, including lipids, prote-
ins and nucleic acids (Lu et al., 2010). In addition, ROS are the
most common initiators of lipid peroxidation in living cells
(Shahid etal.,2014). Some research has shown that thereisan
increased production of H,0, in plants exposed to different
concentrations of Cd, such as in Solanum lycopersicum (No-
gueirol et al., 2016), Pteria vittata (Balestri et al., 2014), Oriza
sativa (Roychoudhury et al., 2012) and in Hygrophila schulla
(Mandal et al., 2015). These radicals affect the permeability
of cell membranes and induce lipid peroxidation, due to the
increased accumulation of ROS (Rellan-Alvarez et al., 2006;
Chamseddine et al., 2009).

However, plants possess defense systems; this defense
systemsin plants include both enzymatic and non-enzymatic
antioxidant defense systems, that work in concert to control
cascades of uncontrolled oxidation and protect plant cells
from oxidative damage (Gill and Tuteja, 2010; Hasanuzzaman
et al, 2012). Antioxidant enzymes are fundamental, they
catalyze or participate directly in generation of ROS (Gill and
Tuteja, 2010; Gill et al., 2013). Antioxidant enzymes in plants
include superoxide dismutase (SOD, EC 1.15.1.9), catalase
(CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11),
and guaiacol peroxidase (GPX, EC 1.11.1.9). Plants use this
defense systems to counteract the effects of oxidative stress
caused by heavy metals (Sharma and Chakraverty, 2013). Be-
cause the O, radical is usually the first to be generated (Gill
and Tuteja, 2010), the SOD enzyme is the first line of defense
as it converts and eliminate radical O, to H,O, (Muradoglu et
al, 1015). However, H,0, is also toxic to cells, so it is necessary
to remove it from cells. The enzymes involved in this process
(CAT, APX and GPX) convert H,O, into water and oxygen.
These biological processes entail maintaining a constant
balance between the antioxidant systems and ROS content
so that the radicals remain at levels compatible with cellular
metabolism (Halliwell, 2006). In this sense, the equilibrium
between a plant’s oxidative and anti-oxidative capacities
determines its fate.

Likewise, Cd affects the morpho-physiological and
biochemical processes of plants, such as germination, growth
and the root/shoot ratio (Ashraf et al., 2015) and can causes
a decrease in biomass production (Ammar et al., 2008). This
can result in a decrease in the production of some crops to
economic importance such as bean cultivation (Phaseolus
vulgaris L.). Because of this, the aim of the present study
was to assess the response of Phaseolus vulgaris plants to
oxidative stress caused by cadmium, and its effects on pro-
tein content, lipid peroxidation and antioxidant enzymes in
leaves and roots.

MATERIALS AND METHODS
Plant material, growth conditions and experimental
design

Plants produced by seeds were grown in semi-hydro-
ponic conditions in plastic pots with perlite and peat moss
(3:1) as substrate. The pots were kept in a greenhouse under
natural light conditions. The composition of the nutrient so-
lution applied it was done according to Chaoui et al. (1997) at
pH 5.5; pots were provided daily with 200 mL of the nutrient
solution. Once the first trifoliate leaf appeared, Cd was added
to the nutrient solution as Cd(NOs)z. The treatments were: 0
(control), 0.25 pM, 0.50 uM, and 1 uM of Cd. After 15 days of
adding Cd, leaves were cut and roots were carefully separa-
ted from the substrate.

Cadmium content determination

Roots and leaves were washed with deionized water
and dried in an oven at 80°C. Then, samples were ground
and stored in polyethylene bags until used in acid digestion.
Approximately 0.5 g (DW) of sample was taken and digested
in 15 mL of concentrated HNO, in a microwave digestor
(MARS 5 CEM). Potency was 1,200 W, pressure 195 psi, and
temperature 210°C. The ramp and hold times were set at
15 and 10 min, respectively. The solution was then filtered
through 42 um filters, and deionized water was added to a
final volume of 100 mL. Cd content was determined using
Microwave Plasma Atomic Emission Spectroscopy (MP-AES)
(Model 4200, Agilent Technologies). All concentrations of Cd
in leaves and roots were reported in mg kg™'.

H,0, content, lipid peroxidation and enzyme assays

H,O, was estimated following the method of Jana and
Choudhuri (1981) and lipid peroxidation was determined
by measuring malondialdehyde (MDA) using the method
of Gérard-Monnier et al. (1998). The MDA concentration was
determined at 1,1,3,3-Tetramethoxypropane (0, 0.5, 1, 2, 3
and 4 uM) as a standard curve. For the determination of the
enzymatic activity 0.5 g of fresh tissue of leaves and roots
were taken and was homogenized in 1 mL of 50 mM Tris-HCl
(pH 7.8) containing 1 mM of EDTA and 2% (w/v) polyvinyl pyr-
rolidone (PVP), using a chilled mortar and pestle, and then
stored in an ice bath. The homogenate was centrifuged at
15,000 g at 4°C for 30 min (HERMELE Labnet, Z233 MK-2).The
supernatant was used to determine SOD, CAT, APX and GPX
activity, and soluble protein content. To measure APX (ascor-
bate peroxidase) activity, the tissue was ground separately
in a homogenizing medium containing 2.0 mM of ascorbate
and the other ingredients (Balestri et al., 2014) all assays were
performed at 25°C. Superoxide dismutase (SOD) activity was
determined following Beyer and Fridovich (1987); catalase
(CAT) activity was measured following Aebi (1981); ascorbate
peroxidase (APX) activity was assayed according to Nakano
and Asada (1981) and guaiacol peroxidase (GPX) activity was
determined according to Kato and Shimizu (1987). Protein
content was determined using Direct Detect’ Infrared Spec-
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trometer equipment with Bovine Serum Albumin (BSA) as
the standard.

Statistical analysis

Data were based from ten independent samples of
each treatment (control, 0.25 pM, 0.50 uM and 1 uM); data
was expressed as mean + standard deviation. Normality was
verified by the Shapiro-Wilk test, and the homogeneity of
variance was tested using Levene’s test. Statistical analyses
were carried out by a one-way analysis of variance (ANOVA)
followed by Games—Howell test for multiple comparisons
using SPSS 20.0 software. A significant difference was consi-
dered at level p < 0.05.

RESULTS AND DISCUSSION
Cadmium content

Cd concentrations in roots increased significantly (p
< 0.001) at higher concentrations of this contaminant in the
nutrient solution; when adding 0.25 uM of Cd, the content in
roots was 2.96 + 0.54 mg kg'; at 0.50 pM, it was 6.52 + 0.66
mg kg'; and at 1 uM, 21.08 + 2.84 mg kg™'. However, no Cd
was detected in leaves at any of the Cd concentrations after
two weeks of contamination (Table 1). On the other hand,
the length of root was reduced with the addition of 0.25 and
0.50 uM of Cd in the nutrient solution, but at T uM, the length
was greater (Fig. 1). In leaves symptoms of phytotoxicity were
observed caused by Cd although Cd was not detected, also
leaves showed symptoms like chlorosis and necrosis, so the
possibility of a very low concentration of Cd in leaves is not
discarded (Fig. 2).

Nevertheless, it has been reported that Cd influences
the absorption and transport of nutrients and compete with
their transport. This is because nutrient transporters show
a wide specificity with divalent metals, including Fe*?, Zn*?,
Mn*? and Cd*? (Liu et al., 2017). The mechanism by which Cd
inhibits the uptake of essential nutrients is not completely
clear (Hédiji et al., 2015). It is assumed that Cd may interfere
with nutrient uptake by affecting the permeability of plasma
membrane and modify the activity of nutrient transporters,
leads to changes in its concentration and composition
(Boulila-Zoghlami et al., 2006; Lépez-Millan et al., 2009; Hédiji
et al.,, 2015). These interactions can cause serious nutritional
deficiencies and the symptoms of chlorosis and necrosis, it
can not only be due to the phytotoxicity produced by Cd,

Table 1. Cadmium content (mg kg') in roots and leaves of Phaseolus
vulgaris plants.

Tabla 1. Contenido de cadmio (mg kg™') en raices y hojas de plantas de
Phaseolus vulgaris.

Organ Control 0.25 UM 0.50 uM 1uM
Roots ND 2.96 +£0.54° 6.52+0.66° 21.08 +2.84°
Leaves ND ND ND ND

ND = Not detectable
Data presented as means + SD (n = 10); different letters indicate significant
differences in each treatment.
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Fig. 1. Phytotoxic effects caused by the accumulation of cadmium in
Phaseolus vulgaris leaves. Control (A), 0.25 uM (A) 0.50 uM (B) and 1 pM (C).
Fig. 1. Efectos fitotoxicos causados por la acumulacion de cadmio en las
hojas de Phaseolus vulgaris. Control (A), 0.25 uM (B) 0.50 uM (C) y 1 uM (D).

being as the nutritional balance in P. vulgaris leaves and roots
could be altered.

Oxidative stress

Exposure to Cd resulted in a significant increase (p
< 0.001) in H,0, content, which was greater at higher Cd
concentrations. The highest production of H,0, in roots and
leaves was in plants treated with 1 uM Cd; however, H,O,
concentrations were always higher in roots than in leaves un-
der all treatments (Fig. 3). The results obtained show that Cd
significantly increased (p < 0.001) MDA content in roots and
leaves of P. vulgaris (Fig. 4A). In roots, MDA content increased
2.0, 3.1 and 5.38 times more than in control (0.25, 0.50 and 1
UM Cd, respectively), while the increases in leaves were 1.6,
4.1 and 7.7, compared to control. Contrary to H,O, content,
lipid peroxidation was more notable in leaves under all
treatments. Finally, protein content decreased significantly
(p < 0.001) in leaves when adding 0.50 and 1 uM of Cd, with
respect to the control (Fig. 4B). However, no significant dif-
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Fig. 2. Phytotoxic effects caused by the accumulation of cadmium in
Phaseolus vulgaris roots. Control (A), 0.25 uM (B) 0.50 uM (C) and 1 uM (D).
Fig. 2. Efectos fitotdxicos causados por la acumulacion de cadmio en las
raices de Phaseolus vulgaris. Control (A), 0.25 uM (B) 0.50 pM (C) y 1 uM (D).
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Fig. 3. Hydrogen peroxide content in leaves and roots of Phaseolus vulgaris
plants exposed to cadmium. Data presented as means + SD (n = 10);
different letters indicate significant differences in each treatment.

Fig. 3. Contenido de peréxido de hidrégeno en las hojas y raices de las
plantas Phaseolus vulgaris expuestas al cadmio. Los datos son presentados
como medias + DE (n = 10); letras diferentes indican diferencias
significativas en cada tratamiento.
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Fig. 4. Malondialdehyde (A) and protein (B) content in leaves and roots of
Phaseolus vulgaris plants exposed to cadmium. Data presented as means
+ SD (n = 10); different letters indicate significant differences between
treatments.

Fig. 4. Contenido de malondialdehido (A) y proteina (B) en las hojas y
raices de plantas de Phaseolus vulgaris expuestas al cadmio. Los datos
son presentados como medias + DE (n = 10); letras diferentes indican
diferencias significativas entre tratamientos.

ferences were observed between treatments with 0.50 and
1 UM of Cd. In roots, as in leaves, protein content decreased
with respect to the control upon adding 0.25, 0.50 and 1 uM
of Cd (p = 0.036; p = 0.035; p = 0.041, respectively).

Both in leaves and roots of P. vulgaris, the increase in
Cd concentrations significantly increased the generation of
H,0, and caused lipid peroxidation with the increase in MDA;
in leaves a greater induction of MDA was observed and in
roots, of H,0.. Evidence has been reported suggesting that
Cd toxicity takes the form of oxidative stress caused by ROS
production (Sanita di Toppi and Gabbrielli, 1999; Gao et
al., 2010). Cd is not involved in cellular redox reactions and
does not produce ROS directly. However, biochemical and
transcriptomic studies show that oxidative stress is one of
the first consequences of Cd toxicity in plants and other
organisms (Romero-Puertas et al., 2019). Although Cd is not
a transition metal, it commonly causes oxidative stress in
plants, but the way to conducting cell damage is far to be
elucidated (Gallego et al., 1996; Groppa et al., 2007; Lin et al.,
2007; lannone et al., 2010).

In plants, H,O, is continuously produced as a product
of various metabolic reactions. On the other hand, it is im-
portant to keep in mind that Cd in leaves was not detected in
any of the treatments, but despite this there were increases
in the content of MDA, H,O, and enzymatic activity. This
could be explained by the fact that H,0, can act as a local and
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systemic signaling molecule against oxidative stress caused
by exposure to heavy metals (Wang et al., 2006; Zayneb et
al., 2015). ROS can also serve as signaling molecules, and a
possible mitigating effect of H,O, derived from Cd stressors
has been proposed (Gill and Tuteja, 2010). In recent years,
several studies have focused on the role of H,0, in response
to tolerance for a wide range of stress conditions, so it is
interesting to see what happens in response to internal and
external stimuli to improve stress tolerance (Cuypers et al.,
2016). This seems to be used positively in plants to activate
multiple stress-sensitive genes, so it is widely accepted that
H,O, is one of the signaling molecules due to its high stability
and mobility (Christou et al., 2014). However, in high concen-
trations, H,0, is harmful to plants and leads to programmed
cell death (Gill and Tuteja, 2010).
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The effect on SOD activity (Fig. 5A) in roots were sig-
nificant with the application of 0.25 uM of Cd (p < 0.001), as it
increased 9.1 times more than in the control; whereas at 0.50
and 1 uM Cd, activity was 8.5 and 5.9 times greater thanin the
control, respectively. In leaves, the activity of this enzyme in-
creased at higher concentrations, and significant differences
were found compared to the control in all Cd treatments (p <
0.001). CAT activity (Fig. 5B) in roots was significantly higher
(p < 0.001) in the treatment with 0.25 uM of Cd (6.9 times
more than in the control) but decreased with the application
of 0.50 and 1 uM Cd. No significant differences were observed
between these two treatments (p = 0.340). In contrast, the
greatest activity of this enzyme in leaves occurred in treat-
ments with 0.50 and 1 uM of Cd (11.6 and 12.1 times more,
respectively), compared to the control (p < 0.001). However,
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Fig. 5. Antioxidant response in leaves and roots of Phaseolus vulgaris plants exposed to Cd. Superoxide dismutase (A); catalase (B); guaiacol
peroxidase (C); and ascorbate peroxidase (D). Data presented as means + SD (n = 10); different letters indicate significant differences between

treatments.

Fig. 5. Respuesta antioxidante en las hojas y raices de plantas Phaseolus vulgaris expuestas a Cd. Superoxido dismutasa (A); catalasa (B);
guaiacol peroxidasa (C); y ascorbato peroxidasa (D). Los datos son presentados como medias + DE (n = 10); letras diferentes indican diferencias

significativas entre tratamientos.
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no significant differences were found (p = 0.996) between
these two treatments (0.50 and 1 uM). Regarding GPX activ-
ity (Fig. 5C), the study found significant differences in roots
among all treatments (p < 0.001). The highest activity was in
the treatment with 0.25 uM of Cd (2.6 times compared to the
control) but was inhibited in treatments with 0.50 and 1T uM
of Cd. In leaves, this enzyme’s activity was lower than in roots
under all treatments. However, in the treatment with 1 uM
of Cd it was 8.1 times higher than in the control (p < 0.001).
Finally, APX activity (Fig. 5D) was significantly higher in roots
(p < 0.01) at the concentration of 0.25 uM of Cd, compared to
all other treatments. In treatments with 0.50 and 1 uM of Cd,
this enzyme’s activity was inhibited; as shown by the finding
that concentrations increased. In terms of leaves, APX activity
increased at concentrations. The highest activity was with 1
MM of Cd (11 times more than the control).

The enzymes considered most important to eliminate
intracellular H,O, levels in plants are CAT, APX and GPX (Al-
fadul and Al-Fredan, 2013). Like SOD, these enzymes showed
a different behavior between leaves and roots of P. vulgaris.
The APX and GPX activity was higher in roots when adding
0.25 uM of Cd, since at 0.50 UM this activity decreased, al-
though it was always greater than in the control. Regarding
CAT, it was inhibited in roots with the addition of 0.50 uM of
Cd, in contrast to leaves where the highest activity was at 0.50
and 1 uM. The decrease in CAT activity in roots of P. vulgaris
can be compensated with a higher APX and GPX activity (0.25
MM Cd), indicating that these two enzymes can act simulta-
neously. Therefore, the decrease in CAT with the increase in
H,O, in roots suggests the sensitivity of this enzyme to Cd
(Roychoudhury et al., 2012). A higher H,O, concentration was
observed in roots than in leaves of P. vulgaris. In addition, the
sensitivity of CAT to O, radicals and Cd levels can cause its
inactivation (Nouairi et al., 2009).

On the other hand, APX plays an important role in the
elimination of H202, but its activity depends on the concen-
tration of metal, and its main function is to quickly eliminate
H202 at the site where it is generated (Asada, 1992; Gill et al.,
2013). GPX can be induced by toxicity generated by heavy
metals and is more efficient than CAT in the elimination of
H202 (Wang et al., 2010; Nadgérska-Socha et al., 2013).
However, it was observed that the CAT enzyme proved to be
more efficient in removing H202 in leaves than in roots of P.
vulgaris. Depending on Cd concentration and plant species,
Cd may inhibit or stimulate the activity of several antioxida-
tive enzymes before any visible symptoms of toxicity appear
(Anjum et al., 2011; Gill et al., 2012; Xu et al., 2014). Excessive
levels of H,O, could be minimized through the activities of
APX and GPX; it may be due to the damage to enzymatic pro-
teins due to the excess of radicals (Lou et al., 2011). This could
explain the fact that in roots after the addition of 0.50 uM Cd,
the excess of free radicals inhibited the enzymatic activity of
APX and GPX.

Other studies have also observed increases or de-
creases in enzymatic activities at different concentrations
of metals. In the case of Brassica juncea, the activity of CAT

and GPX progressively decreased in leaves exposed to 30
MM of Cd, but APX activity was induced (Markovska et al.,
2009). Bankaji et al. (2015) showed that the excess of Cd or Cu
mainly decreased the enzymatic activity of CAT, GPX and APX
in the leaves of Suaeda fruticosa, suggesting that antioxidant
systems are altered by the action of heavy metals. Likewise,
the patterns produced in response to the stress caused by
heavy metals vary in the different organs of the plants, as was
seen in the case of P. vulgaris.

These differences in enzymatic activity can be ex-
plained by the fact that roots are the first organ to come
into direct contact, so a quick and effective response is im-
portant in response to oxidative stress caused by this type of
contaminants (Souza et al., 2015). Some studies have shown
that SOD activity increases due to the stress produced by
Cd, which was observed in P. vulgaris leaves; however, this
enzyme was inhibited in roots by adding 0.50 and 1 uM of Cd.
This reduction may be due to the inactivation of SOD by the
action of H,0, (Namdjoyan et al., 2011). Therefore, the H,0,
produced by SOD must be rapidly metabolized, since it is still
toxic and needs to be converted into H,0 and O, by other
enzymes (Rahoui et al., 2014).

In the other hand, it is also important to note that
no Cd was detected in the leaves in any treatment, though
increases in MDA and H,O, content and enzymatic activity
were observed. This could be explained by the fact that H,0,
can act as a local and systemic signaling molecule against ox-
idative stress caused by exposure to heavy metals (Wang et
al., 2006; Zayneb et al., 2015). ROS can also serve as signaling
molecules, and a possible mitigating effect of H,0, derived
from the stress factors of Cd has been proposed (Gill and
Tuteja, 2010). In recent years, several studies have focused on
the role of H,O, as a response to tolerance for a wide range of
stress conditions, so it is interesting to see what s produced in
response to internal and external stimuli in order to improve
tolerance of stress (Cuypers et al., 2016). This seems to be
used positively in plants to activate multiple stress-sensitive
genes, which is why it is widely-accepted that H,0, is one of
the signaling molecules due to its high stability and mobility
(Christou et al., 2014). However, at high concentrations, H,0,
is actually harmful to plants, and leads to programmed cell
death (Gill and Tuteja, 2010).

The results of this study show that although cadmium
was deposited in roots but not detected in leaves, an enzy-
matic antioxidant response was observed in both roots and
leaves of P. vulgaris. This could be due to the induction of
systematic signaling mechanisms due to oxidative stress that
occurs at roots as a means to protect the leaves. However, it
is possible that Cd accumulates at such low concentrations in
the leaves, so it was not detected.

CONCLUSIONS

Our results suggest the generation of oxidative stress
caused by Cd by the accumulation of MDA and H,0, in leaves
and roots. However, the antioxidant defense system in the
roots of P. vulgaris was not effective enough in the elimina-
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tion of free radicals generated with the addition of 0.50 and
1 uM of Cd.

Regarding the enzymatic activity in leaves, there was
an increase in all concentrations with Cd, although this con-
taminant was not detected, could be due to the induction of
systematic signaling mechanisms caused by oxidative stress
as a means to protect the leaves. Therefore, it is necessary to
carry out further studies on oxidative stress and the antioxi-
dant response at low concentrations of Cd and gain a better
understanding of the connection between ROS production,
antioxidant defense mechanisms and signaling mechanisms
in plants.
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