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ABSTRACT. We evaluated intra-population variation of body 

temperature of the Mexican lizard Sceloporus anahuacus 

(Phrynosomatidae) in Sierra del Ajusco, Mexico. The geographic 

distribution of this lizard is restricted to the higher parts of the 

mountains bordering the south of the Mexican Valley in Mexico 

City. The study of the body temperature of S. anahuacus and its 

relationship with the environment is important because high 

elevation taxa are seriously threatened by climate change. For 

that reason, and compared body temperature between sex, age 

class, reproductive condition and activity state. Overall, mean 

body temperature was 26.2 ± 5.5 °C with a range between 9–39 

°C. We did not find differences between body temperatures of 

males and females. However, we found significant differences 
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depending on activity state in both sexes. In females, body temperature did not vary as a function 

of age class or reproductive status. Instead, we found differences in body temperature between 

males of different age classes. Juveniles had the highest body temperature, probably due to 

differential temperature requirements associated with development. On the other hand, body 

temperature of active and inactive S. anahuacus was strongly associated with environmental 

temperature, perhaps due to sedentary habits and territorial behavior. Exploring why such 

variation exists on body temperature regulation may provide information on factors influencing 

the survivorship of this endemic Mexican lizard. 

 

Key words: thermal ecology; ectotherms; reptiles; pine forest; Sceloporus anahuacus; Mexico 

 

RESUMEN. Evaluamos la variación intrapoblacional de la temperatura corporal de la lagartija 

mexicana Sceloporus anahuacus (Phrynosomatidae) en la Sierra del Ajusco, México. La distribución 

geográfica de esta lagartija se limita a las partes más altas de las montañas que bordean el sur del 

valle mexicano en la Ciudad de México. El estudio de la temperatura corporal de S. anahuacus y 

su relación con el medio ambiente es importante debido a que los taxones de alta elevación están 

seriamente amenazados por el cambio climático. Por esa razón, exploramos la relación de la 

temperatura corporal de S. anahuacus con la temperatura del aire y del sustrato, y comparamos la 

temperatura corporal entre sexos, clase de edad, condición reproductiva y el estado de actividad. 

En general, la temperatura corporal promedio fue de 26.2 ± 5.5 °C con un rango entre 9–39 °C. 

No encontramos diferencias entre las temperaturas corporales de machos y hembras. Sin 

embargo, encontramos diferencias significativas según el estado de actividad de ambos sexos. En 

las hembras, la temperatura corporal no varió en función de la edad o el estado reproductivo. En 

cambio, encontramos diferencias en la temperatura corporal entre machos de diferentes clases de 

edad. Los juveniles tuvieron la temperatura corporal más alta, probablemente debido a los 

requisitos de temperatura diferencial asociados con el desarrollo. Por otro lado, la temperatura 

corporal de S. anahuacus activos e inactivos estuvo fuertemente asociada con la temperatura 

ambiental, tal vez debido a hábitos sedentarios y comportamiento territorial. Explorar por qué 

existe esta variación en la regulación de la temperatura corporal puede proporcionar información 

sobre los factores que influyen en la supervivencia de esta lagartija endémica mexicana. 

 

Palabras clave: ecología térmica; ectotermos; reptiles; bosque de pino; Sceloporus anahuacus; 

México 

 

 

INTRODUCTION 
In squamate reptiles, body temperature exerts a significant influence on a variety of physiological 

and behavioral mechanisms, which have effects on survivorship, growth rate and reproductive 

success (Sinervo & Adolph, 1989). For example, body temperature affects locomotion (Chen et al., 

2003), immune infection (Mondal & Rai, 2001), sensory input (Stevenson et al., 1985), foraging 

ability (Pianka, 1973; Ayers & Shine, 1997), predation risk (Herczeg et al., 2008), food assimilation 

and growth (Angilletta, 2001; Chen et al., 2003; Tattersall et al., 2004; Brown & Griffin, 2005), 

courtship (Stapley, 2006), offspring fitness (Mathies & Andrews, 1997), sex determination (Janzen, 

1994; Juliana et al., 2004), activity period (Llewelyn et al., 2005; López-Alcaide et al., 2014) and 
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microhabitat selection (Pianka, 1973; Angert et al., 2002; Amat et al., 2003; Lara-Reséndiz et al., 

2014). 

 

Importantly, reptile body temperature is constrained by phylogeny (Casas-Andreu & 

Gurrola-Hidalgo, 1993; Andrews, 1998), environment (Gillis, 1991; Angilletta, 2001) and life history 

characteristics like sex (Lee, 1980), reproductive status (Mathies & Andrews, 1997) and age class 

(Lemos-Espinal et al., 1998). Therefore, reptiles mainly use behavioral mechanisms to regulate 

body temperature for optimal function of cellular and organismal processes (Bartholomew, 1982). 

Behavioral thermoregulation includes changes in posture (Kearney, 2001), activity periods (Grant 

& Dunham, 1988) and microhabitat selection (Adolph, 1990). Consequently, they tend to explore 

the temporal and spatial variability of the thermal environment, which promotes a close 

relationship between the organism’s body temperature and the environment (Mathies & Andrews, 

1995). 

 

Genus Sceloporus is composed by 111 species (Uetz et al., 2022) and has a wide latitudinal 

and altitudinal distribution from western Panama in Central America to Washington in the United 

States (Andrews, 1998). Field body temperatures measured during normal activity periods range 

from 14.2–40 °C with an average of 33.9 °C (Bogert, 1949; Sinervo, 1990; Smith & Ballinger, 1994; 

Clusella-Trullas & Chown, 2014). Species for which body temperatures have been measured on 

thermal gradients in the laboratory exhibit preferred temperatures from 28.6–38.8 °C, with an 

average of 33.96 °C (Brattstrom, 1965; McGinnis, 1966; Sinervo & Adolph, 1989; Mathies & 

Andrews, 1997; Andrews et al., 1999). For that reason, genus Sceloporus has long been considered 

to be thermally conservative (Andrews, 1998). However, there is not a consistent pattern between 

field body temperature and preferred temperature in Sceloporus species with respect to latitude 

and altitude (Clusella-Trullas & Chown, 2014). 

 

Sceloporus anahuacus Lara-Góngora, 1983, is a small viviparous phrynosomatid lizard 

inhabiting open pine forest. They are indicators of forest disturbance since they proliferate in areas 

of intense commercial clearing, recovering burns, or any other kind of disturbance that creates a 

more open forest structure (Lara-Góngora, 1983). Until now, the ecology of S. anahuacus is 

relatively unstudied, although there are some contributions concerning thermal ecology (Ávila-

Bocanegra et al., 2012), selected body temperature under laboratory conditions (Lara-Reséndiz & 

García-Vázquez, 2013) and thermal habitat quality (Lara-Reséndiz et al., 2014). However, what is 

usually overlooked in these efforts is that species can be composed of different populations or 

geographical groups across their ranges, which are under different selective pressures deriving in 

an independently potential response to climate (Araújo et al., 2006; Güizado-Rodríguez et al., 

2012). Therefore, the more information we can gather on the temperature relationships of lizards 

across all its distribution ranges, the better we might be able to predict the thermoregulatory 

profiles and propose appropriate conservation strategies. For that reason, in this paper, we 

analyzed the relationship with air and substrate temperatures, and compared body temperature 

between sex, age class, reproductive condition and activity state. 

 

 

 



 

 Güizado-Rodríguez et al.: Body temperatures of Sceloporus anahuacus 

4 

 

MATERIALS AND METHODS 

Study site. This study was carried out in the Ejido Magdalena Petlatalco, Delegación Magdalena 

Contreras, Sierra del Ajusco, Ciudad de México, México, (19º 13’ 15.5” N, 99º 17’ 8.2” W) from 3,500 

to 3,930 meters above sea level. The climate of the study area is temperate semihumid with a mean 

annual temperature of 7.5–13.5 °C and mean annual rainfall of 1,340 mm with less than 5 % of this 

occurring in the winter (García, 1973). Vegetation includes pine forest (Pinus hartwegii) and 

grasslands (Álvarez del Castillo, 1987). 

 

Field work. We collected 539 lizards (active and inactive lizards) during the period from 1,000 to 

1,600 h, from August 2007 through April 2009. This work was part of a project including 

demographic and ecological aspects of S. anahuacus. Each lizard was permanently marked by 

clipping toes, and only one observation per individual was used in statistical analyses. If more than 

one observation was available for an individual, a single observation was chosen at random for 

inclusion in statistical analyses. 

 

Activity state was determined as follows: active lizards were basking on rocks or fallen trees, 

foraging, pursuing mates, whereas inactive lizards were beneath rocks or hidden under vegetation 

and debris in crevices or depressions (Güizado-Rodríguez et al., 2011). Active lizards were captured 

by noosing and returned to their habitat after collecting data. We measured body temperature 

from lizards’ cloaca (Tb) and obtained substrate (Ts on the site where the lizard was first observed) 

and air (Ta 5 cm off the ground) temperatures with a quick-reading thermometer (model 4D2672, 

Miller and Weber, Inc., New York; 0–50 ± 0.2 °C). Care was taken to prevent the temperature from 

being influenced by handling, therefore all data from lizards requiring extensive capture effort was 

excluded for temperature records. To avoid errors, we only analyzed data collected within 10 s 

after capture (Lee, 1980; Gillis, 1991). In addition to Tb, we recorded snout-vent length (SVL) with 

a digital caliper to 0.1 mm and body mass was measured with a Pesola scale (Pesola AG, Baar, 

Switzerland) to the nearest 0.2 g. Sex was determined by examining the sexually dimorphic scales 

and color pattern (Lemos-Espinal et al., 1997a). Female reproductive state (pregnant vs. non-

pregnant) was determined by palpation (Lemos-Espinal et al., 1997b). 

 

Statistics. The assumptions of normality and homogeneity of variances were tested and met with 

Shapiro-Wilk and Bartlett tests, respectively. We performed an Analysis of Covariance by sex to 

evaluate the effect of factors such as age class (offspring, juvenile, adult), activity state (active and 

inactive) and in the case of females, the reproductive condition (reproductive and no reproductive) 

on lizard’s Tb including Ta, Ts and SLV of lizards as covariates. Hypotheses were tested with ANOVA 

(such as F tests). Data are presented as mean ± standard deviation (SD). Statistical analyses were 

performed with XLSTAT (Addinsoft, 2014). Data analysis and statistical software for Microsoft Excel, 

Paris, France; http:// www.xlstat.com) software implementing an α of 0.05 to indicate significance. 

 

 

RESULTS 

Mean Tb for active lizards was 28.31 ± 3.6 °C (17–39 °C, n = 365). On the other hand, mean Tb for 

inactive lizards was 22.01 ± 6.4 (9–33 °C, n = 174). Mean SVL in males was 38.5 ± 9.9 mm (n = 213) 

and in females was 37.6 ± 7.8 mm (n = 326). Mean body mass of males was 2.4 ± 1.8 g (n = 213) 
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and for females was 2.0 ± 1.1 g (n = 326). Tb of individuals with different sex, age class and activity 

state are shown in Table 1. Mean Ta was 17.63 ± 3.11 °C and mean Ts was 19.31 ± 6.46 °C. In 

females, according to the goodness of fit and ANOVA test performed in global factorial ANCOVA 

model, the set of independent variables (age, SVL, reproductive state, activity state, Ta and Ts) 

analyzed significantly explain the variation in lizards’ Tb (R2 = 0.52; F7,283 = 43.857; P <0.0001). 

Furthermore, the Type I sum of squares indicates that the independent variables that provide the 

greatest amount of information on lizards’ Tb were Ts (F1,289 = 201.131; P < 0.0001), Ta (F1,289 

= 66.567; P < 0.0001) and the activity state (F1,289 = 32.947; P < 0.0001) whereas SVL (F1,289 = 

0.303; P = 0.583), age class (F1,289 = 1.508; P = 0.223) and reproductive state (F1,289 = 3.035; P 

= 0.223) did not have an effect on Tb. 

 

 

Table 1. Field body temperature of different sex, age class and activity state in Sceloporus anahuacus. Mean 

(± SD). Abbreviations: M= Male; F= Female; n= number; Mx= Maximum; Mn= Minimum; Off= Offspring; 

Juv= Juvenile; Adu= Adult; Act= Active; Ina= Inactive. 

Sex 
Tb Age Class Activity State 

x±SD n Mx Mn x±SD (°C) n Mx Mn x±SD (°C) n Mx Mn 

M 26.7±5.4 213 36 9 

Off 25.4±4.8 49 32 15 Act 28.58±3.45 149 36 18 

Juv 27.6±4.3 55 34 14 Ina 22.46±6.67 63 33 9 

Adu 26.8±6.0 110 36 9      

F 25.9±5.6 326 39 12 

Off 26.1±4.3 52 32 16 Act 28.12±3.76 216 39 17 

Juv 27.0±5.6 87 39 12 Ina 21.76±6.27 110 33 12 

Adu 25.5±5.8 186 34 12      

 

 

In the case of males, the independent variables (age class, SVL, activity state Ta and Ts) 

analyzed also significantly explain the variation in lizards’ Tb (R2 = 0.57; F6,193 = 43.218; P 

<0.0001). The Type I sum of squares indicates that the independent variables that provide the 

greatest amount of information on lizards’ Tb were Ts (F1,198 = 197.164; P < 0.0001), Ta (F1,198 

= 16.389; P < 0.0001) and the activity state (F1,198 = 38.097; P < 0.0001) whereas SVL (F1,198 = 

1.444; P = 0.238) and age class (F1,198 = 4.769; P = 0.301) did not have an effect on Tb. 

 

On the one hand, the post hoc analysis (Tukey HSD) with a confidence interval of 95 % did 

not detect any significant difference in females Tb between age classes and reproductive condition, 

but a difference was found between females with different activity state (P < 0.0001). In the other 

hand, with respect to males the post hoc analysis identified significant differences between 

individuals with different activity state (P < 0.0001) and age classes (juvenile vs. adult, P = 0.025). 

 

 

DISCUSSION 

Our study provides an examination of field body temperature variability of Sceloporus anahuacus 

at intraspecific level. Although found at a wide range of latitudes and altitudes and in a variety of 

habitats, all Sceloporus species studied maintain similar Tb during activity in nature and in thermal 

gradients in laboratory (Bogert, 1949; Wilhoft & Anderson, 1960; Brattstrom, 1965; Mayhew, 1968; 
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McGinnis, 1966; Mueller, 1970; Avery, 1982; Crowley, 1985). This study showed that active S. 

anahuacus had one of the lowest Tb (28.3 °C) registered for members of genus Sceloporus (Vial, 

1984; Andrews, 1998; Andrews et al., 1999). However, Ávila-Bocanegra et al. (2012) reported a 

significantly warmer Tb (30.88 ± 0.14 °C) for another S. anahuacus population. This may be due to 

the fact that population studied by these authors is located at a lower altitude site (3,200 m) with 

a higher ambient temperature (Ta = 20.88 ± 0.24 °C; Ts = 20.47 ± 0.24 °C) than the registered in 

our study (Ta = 17.63 ± 3.11 °C; Ts = 19.31 ± 6.46 °C).  

 

Such as S. anahuacus, there are other Sceloporus species that show a low Tb like S. 

malachiticus (Tb = 28.6 °C; Vial, 1984), S. mucronatus mucronatus (Tb = 29.4 ± 0.7 °C; Lemos-

Espinal et al., 1997a), S. bicanthalis (Tb = 28.8 ± 0.69 °C; Andrews et al., 1999) and S. palaciosi (Tb 

= 27.82 ± 5.31 °C; Güizado-Rodríguez et al., 2011). This low Tb is presumably due to thermal 

constraints imposed by the spatial and temporal distribution of environmental temperatures that 

determine daily and seasonal activity because usually at high elevations, thermal quality is low 

(Lymburner & Blouin‐Demers, 2020). Lara-Reséndiz et al., (2014) evaluated the thermal habitat 

quality of a lizard community along an altitude gradient, in order to determine if thermal 

environment has an effect on distribution and thermal ecology. Authors suggest that altitude and 

vegetation have an influence on thermal quality, therefore thermal ecology studies should be 

carried out at different spatial scales to understand the factors involved in thermal niche and 

thermoregulation. According to the results showed by the authors, the operative temperatures 

where S. anahuacus lives, had the lowest values compared to other studied sites. This means that 

landscape characteristics, have a influence on the thermal properties of the habitat and therefore 

thermoregulatory opportunities for S. anahuacus.  

 

In thermally challenging habitats, ectotherms may passively reach body temperature in the 

field and not match preferred temperatures. In that situation, ectotherms should thermoregulate, 

frequently being exposed to predators, or otherwise maintain suboptimal temperatures, with the 

concomitant physiological costs (Zamora-Camacho et al., 2016). According to Lara-Reséndiz et al. 

(2014), S. anahuacus habitat has a low thermal quality, therefore, when lizards are under laboratory 

thermal gradients they select a higher body temperature (32.64 ± 2.73 °C, range = 26.0–36.5 °C) 

(Lara-Reséndiz & García-Vázquez, 2013) than in the field (Tb = 28.31 ± 3.6 °C). 

 

Another thermal constrain for S. anahuacus could be the availability of suitable 

microhabitats for thermoregulation due to deforestation, since this activity promotes openness 

patches and reduce habitat heterogeneity and sites available for thermoregulation. Sierra del 

Ajusco is located within the Transverse Volcanic Belt, which has a long history of human 

disturbance that has increased in recent decades due to its boundary with one of the world's 

largest cities, the metropolitan area of Mexico City. These disturbances are the result of increasing 

population density, land use change, forest and wildlife resources exploitation, and the effects of 

contamination (Granados Sánchez et al., 2004). However, as a descriptive study, there were not 

enough data to elucidate the ultimate and proximate causes of the low Tb found in S. anahuacus. 

To further clarify this, we need to address the influence of the spatial distribution of operative 

temperatures on activity and microhabitat use using biophysical models that can provide 
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information to some extent about how this species thermoregulates and will lend insight into the 

observed patterns for these lizards (Heath, 1964). 

 

On the other side, body temperature of S. anahuacus did not differ between sexes; this can 

be due to similar use of microhabitats, activity periods and feeding habits by males and females 

such as in other diurnal lizards (Güizado-Rodríguez et al., 2011). Unlike some sympatric species 

like S. mucronatus, shows a difference in Tb between males and females due to different activity 

periods (e.g., females emerge later than males) or because females may be forced to use sub-

optimal basking sites by males (Lemos-Espinal et al., 1997a). 

 

In addition, we did not find evidence for variation in Tb as a function of reproductive 

condition in females. This may be the result of females being unable to alter their Tb due to 

phylogenetic constraints (Lemos-Espinal et al., 1997b), or because differences between early 

pregnancy-stage and non-pregnant females may be difficult to detect. Another reason could be 

that S. anahuacus females have not had the opportunity to choose microhabitats with better 

thermal conditions; therefore, it is probable that pregnant females do not reach unfavorable body 

temperatures for embryos. Females of some Sceloporus species exhibit lower Tb when gravid or 

pregnant because normal activity temperatures are detrimental to embryos (Van Damme et al., 

1986; Andrews & Rose, 1994). However, Ávila-Bocanegra et al. (2012) found that S. anahuacus 

pregnant females had a higher Tb than non-pregnant females. This is due to the altitude of the 

studied site where S. anahuacus was observed by Ávila-Bocanega et al. (2012). Isidro Fabela at the 

northeastern Estado de México has a lower altitude than the Ajusco where S. anahuacus was 

collected during this study. According to work carried out by Lara-Reséndiz et al. (2014), El Ajusco, 

Ciudad de México is a site with low thermal quality and a highly variable operating temperature 

(To) (-8.5–68.4 °C), therefore, S. anahuacus tends to show a narrow selected body temperature 

(Tsel) with intervals (≤ 2.1 °C), which means that cost of thermoregulation is high for this species 

mainly because conifer forests have greater coverage and the availability of perching sites such as 

rocks, trees or sunny patches on the ground for this high mountain phrynosomatid are scarce. 

 

We also did not find a difference between Tb among different female age classes. This may 

be because the environment lacks a wide range of temperatures, and all age classes are 

constrained to select similar thermal microclimates. However, there are no data about age class 

specific behavior in S. anahuacus; therefore, we need to concentrate our efforts to answer these 

kinds of questions in future studies. In the case of males, we found differences between Tb among 

different age classes. Juveniles had the highest Tb and the offsprings presented the lowest Tb. In 

some diurnal reptiles, juveniles select higher body temperatures than adults (Pérez-Quintero, 

1994), presumably due to differential temperature requirements associated with development 

(Hitchcock & McBrayer, 2006). 

 

Sceloporus lizards are sit-and-wait insectivores that spend much of their time perched 

conspicuously on rocks and fallen trees. For this reason, they maintain a strong relationship with 

the microhabitat temperature. We found a significant relationship between Tb and Ta and Ts in 

both sexes of S. anahuacus. This strong relationship may be due to sedentary habits and territorial 

behavior of Sceloporus (Pianka & Vitt, 2003). Although, Ávila-Bocanegra et al. (2012) found slight 
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variation in body temperature explained by environmental temperatures, which suggest that these 

lizards may be able to regulate their body temperatures to some extent. 
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