HCTA | VOLUMEN 29 | 2019 |
ISSN online 2007-9621
lJmhlidYBEiﬁrySS!i];tﬁEulrﬂ http://doi.org/10.15174/au.2019.2335

Bacterial foraging optimization algorithm with mutation
to solve constrained problems

Algoritmo basado en el Forrajeo de Bacterias con mutacién para resolver problemas
con restricciones

Betania Hernandez-Ocafa!, José Hernandez-Torruco’, Oscar Chavez-Bosquez'*,

Juana Canul-Reich?, Luis Gerardo Montané-Jiménez>

! Divisién Académica de Informatica y Sistemas, Universidad Juérez Auténoma de Tabasco. Carr. Cunduacén-Jalpa Km. 1. Cunduacén, Tabasco,
México. CP 86690. +52(914)336-0616. *E-mail: oscar.chavez@ujat.mx.

?Facultad de Estadistica e Informatica, Universidad Veracruzana.

*Corresponding author

Abstract

A simple version of a Swarm Intelligence algorithm called bacterial foraging optimization algorithm with mutation and
dynamic stepsize (BFOAM-DS) is proposed. The bacterial foraging algorithm has the ability to explore and exploit the
search space through its chemotactic operator. However, premature convergence is a disadvantage. This proposal uses
a mutation operator in a swim, similar to evolutionary algorithms, combined with a dynamic stepsize operator to
improve its performance and allows a better balance between the exploration and exploitation of the search space.
BFOAM-DS was tested in three well-known engineering design optimization problems. Results were analyzed with basic
statistics and common measures for nature-inspired constrained optimization problems to evaluate the behavior of the
swim with a mutation operator and the dynamic stepsize operator. Results were compared against a previous version of
the proposed algorithm to conclude that BFOAM-DS is competitive and better than a previous version of the algorithm.

Keywords: Metaheuristic; mutation operator; dynamic stepsize; engineering problem; performance measures.

Resumen

Se propone una versién simplificada de un algoritmo de Inteligencia Colectiva denominado algoritmo de optimizaciéon
basado en el forrajeo de bacterias con mutacién y tamafio de paso dindmico (BFOAM-DS). Este algoritmo tiene la
habilidad de explorar y explotar el espacio de busqueda mediante su operador quimiotdxico. Sin embargo, la
convergencia prematura es una desventaja particular. Esta propuesta implementa un operador de mutacién en el nado,
similar al utilizado por los algoritmos evolutivos, y un tamafio de paso dindmico para mejorar el desempefio del
algoritmo. BFOAM-DS se prob6 en tres problemas de optimizacion de disefio ingenieril. Los resultados obtenidos fueron
analizados con estadisticas basicas y medidas de rendimiento comunes para evaluar el comportamiento del operador de
nado con mutacién y el operador de tamafio de paso dindmico. Se concluye que BFOAM-DS obtiene soluciones mejores
que una version previa del algoritmo y similares a la mejor solucién conocida en la literatura especializada.
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medidas de desempefio.
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Introduction

Nature-inspired metaheuristics have gained popularity solving constrained numerical optimization
problems (CNOP) over mathematical programming, due to their easy implementation and quick execution.
Moreover, metaheuristics generally provide a set of feasible solutions that the user can use according to
their preferences. A CNOP can be defined as to:

Minimize f(¥)
subject to:
gX) <0,i,..,m
R(E)=0,j=1,.,p

where ¥ = [xq,x,,..,%,] € R" is the solution vector and each decision variable, x,k=1,..,n is
bounded by the lower and upper limits Ly < xi < U, which define the search space (S), m is the number of
inequality constraints and p is the number of equality constraints (in both cases, the constraints can be
linear or nonlinear). If F denotes the feasible region, then it must be clear that F € §. As it is commonly
found in the specialized literature of nature-inspired algorithms to solve CNOP (Coello-Coello, 2002;
Mezura-Montes, 2009; Mezura-Montes & Coello-Coello, 2011), equality constraints are transformed into
inequality constraints by using a small tolerance ¢ > 0 as follows: |h,- (3?)| - e<£0,j=1,..,p.

Nature-inspired metaheuristic algorithms are classified in two classes:

1. Evolutionary Algorithms (EA): emulate the evolution of species and the survival of the
fittest. Some well-known EA are genetic algorithms (GA) (Eiben & Smith, 2003), evolution
strategies (ES) (Schwefel, 1993), evolutionary programming (Fogel, 1999), genetic
programming (GP) (Koza et al, 2003), and differential evolution (DE) (Price, Storn &
Lampinene, 2005), which have been successfully applied in CNOP such as mechanical
design (Calva-Yariez, Nifio-Sudrez, Villarreal-Cervantes, Sepulveda-Cervantes & Portilla-
Flores, 2013).

2. Swarm Intelligence Algorithms (SIA): have the capability of emulating the collaborative
behavior of some simple species when searching for food or shelter (Engelbrecht, 2007).
Some SIA are particle swarm optimization (PSO) (Eberhart, Shi & Kennedy 2001) and ant
colony optimization (ACO) (Dorigo, Maniezzo & Colorni, 1996).

Both PSO and ACO have gained popularity because of their great performance in solving CNOP. In
2002, another SIA-type algorithm called bacterial foraging optimization (BFOA) was introduced by Passino
(2002), emulating the behavior of the E.Coli bacteria in the search of nutrients in its environment. This
behavior is summarized in four processes: (1) chemotaxis (swim-tumble movements), (2) swarming
(communication between bacteria), (3) reproduction (cloning of the best bacteria), and (4) elimination-
dispersal (replacement of the worst bacteria). In BFOA, each bacterium tries to maximize the energy
obtained per each unit of time spent on the foraging process while avoiding noxious substances. BFOA
was used initially to solve unconstrained optimization problems; however, recent approaches add some
constraints-handling technique to solve CNOP, where the penalty function is the most used technique
(Hernandez-Ocarfia, Mezura-Montes & Pozozs -Parra, 2013).
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Further investigations have addressed the fact that BFOA is particularly sensitive to the stepsize
parameter, which is used in the chemotaxis process with the swim-tumble movement to determine the
distance that a bacterium can move. In specialized literature, there are different ways to control the stepsize:
(1) by keeping it static during the search process (as in the original BFOA) (Herndndez-Ocafia, Pozos-Parra
& Mezura-Montes, 2014; Huang, Chen & Abraham, 2010; Mezura-Montes & Hernandez-Ocaria, 2009), (2)
by using random values (Hernandez-Ocafia et al,, 2014; Praveena, Vaisakh & Mohana Rao, 2010), (3) by
using a dynamic variation (Herndndez-Ocaria et al., 2014; Niu, Fan, Xiao & Xue, 2012; Pandit, Tripathi,
Tapaswi & Pandit, 2012), or (4) by adopting an adaptive mechanism (Hernandez-Ocafia et al., 2014; Mezura-
Montes & Lépez-Davila, 2012; Saber, 2012). However, such approaches were stated mainly for specific
optimization problems. In a recent study of the stepsize by Herndndez-Ocafia et al. (2014), different
mechanisms were compared, and the dynamic control mechanism was found to be slightly superior to
static, random, and adaptive versions.

Mezura-Montes & Herndndez-Ocaria (2009) adapted BFOA in a proposal called modified bacterial
foraging optimization algorithm (MBFOA) to solve CNOP. This approach inherits the four processes of
BFOA, featuring individual and independent processes with sequential interaction. Therefore, the
parameters that determine the number of swim movements, number of tumbles, and the swarming loop
were eliminated. Moreover, the feasible rules proposed by Deb (2000) are used as a constraint-handling
technique. Unlike BFOA, where the stepsize is static, in MBFOA the stepsize used in the swim movements
was adapted according to the boundary of the decision variables.

BFOA has been combined with other algorithms, particularly with EA, to improve its performance,
e.g., with a GA in Kim, Abraham & Cho (2007), Kushwaha, Bisht & Shah (2012), Luo & Chen (2010) and DE in
Biswas, Dasgupta, Das & Abraham (2007). Mutation operators have been added to BFOA in Nouri & Hong
(2012); nevertheless, no proposal using mutation within the chemotaxis process was found.

Currently, a new version based on MBFOA was proposed in Hernandez-Ocafia et al. (2016) where
two swims and a random stepsize are used in the chemotaxis process in order to improve the foraging
performance. This proposal was called TS-MBFOA and implemented successfully to solve real-word
problems: It minimizes the optimal synthesis of four-bar mechanisms and solves an instance of the menu
planning problem (Hernandez-Ocaria, Chavez-Bosquez, Herndndez-Torruco, Canul-Reich & Pozos-Parra,
2018). However, this authors mention that stepsize is a sensitivity parameter, and it requires more study. In
most cases, the stepsize is randomly updated.

This paper aims to test TS-MBFOA using mutation mechanisms and a simple dynamic stepsize.
Results obtained are compared against state-of-the-art algorithms and validated with commonly
performance measures found in the literature. It is worth mentioning that this approach uses fewer
parameters than the original MBFOA due to both the dynamic stepsize implemented and the reproduction
process applied to half the swarm bacteria, as initially introduced in BFOA. To the best of one’s knowledge,
this is the first time that mutation is used as a swim operator.

This paper is organized as follows: Materials and methods outlines the MBFOA, describes the three
test problems to be solved and the performance measures used to evaluate the results obtained by this
study's proposal; the results section details the experiments conducted in order to analyze the behavior of
this approach against those of one of the best state-of-the-art algorithm; finally, the general conclusions
and future works are presented.
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Materials and Methods

Bacterial foraging optimization algorithm with mutation
and dynamic stepsize (BFOAM-DS)

BFOAM-DS is an algorithm derived from MBFOA in order to improve the performance in constrained
spaces. Two modifications to the MBFOA have been made:

¢ Two different swim operators are applied in the chemotaxis process: (1) exploration using
a dynamic stepsize easy to implement, and (2) exploitation using a mutation operator, in
order to improve the exploration and exploitation of the bacteria.

e The reproduction process is applied to half of the swarm bacteria.

In BFOA, MBFOA, TS-MBFOA, and BFOAM-DS, a bacterium i represents a potential solution to the
CNORP (i.e.,, a n-dimensional real-value vector identified as %), and it is defined as 8%(j, G), where j is the
chemotaxis loop index and G is the current generation of the algorithm. The initial swarm bacteria are
generated randomly with a uniform distribution in the range of the decision variables. Within a generation
(G), three inner processes are carried out: (1) chemotaxis, (2) reproduction, and (3) elimination-dispersal.
Swarming process is added into the chemotaxis process. Figure 1 outlines the process performed by
BFOAM-DS.

Generations ()
Chemotaxis & Elimination-
(Tumble- Two swims) S o S dispersal 5| Calculate
. sacers WorstBoctrom [ | dymamicstepsize -
Bacteria’ - >
N

G until the maximum number of GMAX

Figure 1. BFOAM-DS overall process.
Source: Hernandez-Ocafia et al. (2018).

Chemotaxis

In this process, two swims are interleaved in each generation: Either the exploitation swim or exploration
swim is performed. The process starts with the exploitation swim (classical swim). Yet, a bacterium will not
necessarily interleave exploration and exploitation swims, because if the new position of a given swim
0i(j + 1,G) has a better fitness (based on the feasibility rules) than the original position 6(j, G), another
similar swim in the same direction will be carried out in the next generation. Otherwise, a new tumble for
the other swim will be computed. The process stops after N, attempts.

The exploration swim uses the mutation between bacteria and is computed as:

0i(G +1,6) = 8'(j,6) + BOI(,G) — 65(j,6)) (1)
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where 0](j,G) and 65(j,G) are two different randomly selected bacteria from the swarm. B is a
positive-value user-defined parameter defining the closeness of the new position of a bacterium
concerning the position of the best bacterium 65(G), which is a value between a range (0, 1), i.e., it scales
the area where a bacterium can move. This parameter is also used in the swarming process.

The exploitation swim is computed as:
' +1,6) = 6'(,6) + C(i, O)$() (2)

where ¢ (i) is calculated with the original BFOA Equation 3, determining the direction of the swim
or tumble:

N A(D)

where A(i) is a uniformly distributed random vector of size n with elements within
[-1,1].

Equation 4 determines the distance of movement of a bacterium:

. . G
C(l'G) = G(l) (Gmax) (4)
where C(i,G) is the dynamic stepsize of each bacterium updated in each generation, 0(i) is a

randomly generated vector of size n with elements within the range of each decision variable:

[Uppery, Lower ], k = 1, ...,n, and Gmax is the maximum number of generations of the algorithm.

It is important to remark that the exploration swim (Equation 1) performs larger movements due to
the mutation operator which uses bacteria randomly. On the other hand, the exploitation swim (Equation
2) generates small movements using the dynamic stepsize in the search process.

Swarming

At the half number of the chemotaxis process, the swarming operator is applied with the Equation 5, where
B is a user-defined positive parameter into (0, 1). In this proposal, unlike of MBFOA, if a solution violates
the boundary of decision variables, then a new solution x i is randomly generated, bounded by lower and
upper limits L; < x; < U;.

0i(G +1,G6) = 8'(j,6) + B(E(G) — 0i(j,6)) (5)

where 8(j + 1,G) is the new position of bacterium i, 8(j, G) is the current position of bacterium i,
65 (6) is the current position of the best bacterium in the swarm at generation G. If the population is feasible,
this best bacterium has a better value (fitness) in the objective function. If the population is outside the
feasible region, this best bacterium has a smaller amount of violation of constraints. The swarming operator
movement applies twice in a chemotaxis loop, while in the remaining steps the tumble-swim movement
is carried out.
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Reproduction

In this process, half of worst bacteria (S,.) are replaced, and the remaining ones are duplicated.

Elimination-dispersal

The worst bacteria are eliminated, and new bacteria are randomly generated with uniform distribution
between the ranges of the decision variables.

The corresponding BFOAM-DS pseudocode is presented in Algorithm 1. The user-defined

parameters are summarized in the caption.

Algorithm 1: BFEOAM-DS. Input parameters are number of bacteria
Sp, chemotaxis loop limit N, scaling factor 8, and number of iterations (generations) GMax.

1 Create an initial swarm of bacteria at random 6(j, G)Vi = 1, ..., S,

2 Evaluate each 0i(j, G)Vi = 1, ..., S,

3 for G = 1to GMax do

4 | fori=1to S,do

5 forj=1toN.do

6 Perform the chemotaxis process (tumble-swim) with exploration and
exploitation using Egs. 1 and 2, and the swarming operator in Eq. 5 for
bacterium 6i(j, G) by considering the three feasibility rules as the selection

criteria.

7 end

8 | end

9 | Perform the reproduction process by sorting all bacteria in the swarm, based on the
feasibility rules, eliminating the half of worst bacteria and duplicating the best

bacteria.

10| Perform the elimination-dispersal process by eliminating the worst bacterium
#i(j, G) in the current swarm.

11 Update the dynamic stepsize using Eq. 4.

12 end

Source: Authors’ own elaboration.

Problem description

Three design engineering problems are used to test the performance of this study’s proposal, called
BFOAM-DS. It was coded using MATLAB R2009b and executed on a PC with a 3.5 Core 2 Duo Processor,
4GB of RAM, and 64-bit Windows 7 operating system.
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P01. Tension/compression spring design optimization problem.

It minimizes the weight of a tension/compression spring, subject to constraints of minimum deflection,
shear stress, surge frequency, and limits on the outside diameter and on design variables (Arora, 2012).
There are three design variables: the wire diameter (x;), the mean coil diameter (x,), and the number of
active coils (x3). The mathematical model has the form:

Minimize: f(x) = (x3 + 2)x,x?

subject to:
3
X3X3
=1 - —
9:() 71785x%
4x2 — xx, 1
x) = + -1<0
9209 = 135660003 — xF | 510822
0 =1 14045 _
x)=1-—5——-<
g3 x22x3

X1+ X3
g =——=-1<0
+(%) 1.5

where 0.05<x;<2,025<x,<13 and 2<x3<15 Best solution:x* = (0.051690, 0.356750,
11.287126), where f(x*) = 0.012665.

PO2. Pressure vessel optimum design optimization problem

It involves the minimization of the entire cost, consisting of material cost, welding and forming costs
(Sandgren, 1990). The mathematical model has the form:

Minimize: f(x) = 0.6224x,x3%, + 1.7781x,x2 + 3.1661x%x, + 19.84x%x;
subject to:
g1(x) = —x; + 0.0193x3 < 0

g2(x) = =X, + 0.00954%5 < 0
4
g3(x) = —mx3x, — — + 1296000 < 0
3mx;

g.(x) =x,—240<0

where 1 <x4,X; <99 and 10 < x3,x%x4 < 200. Best solution: x* = (0.8125, 0.4375,
42.098446,176.636596), where f(x*) = 6059.714335.
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P03. Welded beam design optimization problem

It finds the minimum fabrication cost, considering four design variables: x;, x;,, x3, x, and constraints of
shear stress 7, bending stress in the beam o, buckling load on the bar P,, and end deflection on the beam §
(Michalewicz & Fogel, 2004). The mathematical model has the form:
Minimize: f(x) = 1.1047x2x, + 0.04811x3x,(14.0 + x,)
subject to:
g X =tX)—1max <0
g2X)=0(X)—omax <0
9:X) =X, -X, <0
g,(X) = 0.10471X? + 0.04811X5X,(14.0 + X,) —5.0< 0
gs(X) =0.125-X; <0
g6(X) =8(X) —8max <0
g/(X)=P-P(X) <0

with

P y _ MR
, T =
2X1Xz J

2
M=P(L+2),R= /’%+(¥)2

(X) = J (0% + 2'["[”% + (0?1 =

XX, [X2 /X, + X3\2 6PL 4p[3
J=2 12—2+(1 3) 0X) == ,0X) = ==
vz [12 2 X, X2 EX3X,
fE(;XZX6
4,013 % X |E
PAX):# I_Z 46

P = 60001b,L = 14in, E = 30 * 10°psi, G = 12 * 10%psi, tmax = 13,600psi,
o max = 30000psi, § max = 0.25 in
where0.1 < x; <2.0,01 < x, <10.0,0.1 < x3 <10.0,0.1 < x, <2.0.

Best solution: x* = (0.244369, 6.217520, 8.291471, 0.244369, —5741.176933, —0.000001, —0.0000000,
—3.022955, —0.119369, —0.234241, —0.000309), where f(x*) = 2.380957.
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Performance measures

To evaluate the behavior of the compared algorithms, the following performance measures for nature-

inspired constrained optimization problems, taken from Liang et al. (2006), were computed:

Feasible run: a run where at least one feasible solution is found within the Maximum number of
evaluations allowed per each problem (Max,pqs)-

Feasible rate = (number of feasible runs) / (total runs).

Successful run: a run where a feasible solution x* satisfying f(¥) — f(¥*) < 0.0001 is found within

Maxevals-

Success rate = (number of successful runs) / (total runs).

Success performance = the mean of (feasible solutions for successful runs) x (number of total runs)
/ (number of successful runs).

Successful swim = A swim movement where the new position is better (based on the feasibility
rules) than the original position.

Successful swim rate = (number of successful swims) / (total swims), where (total swims) =
Sp X N. X GMax.

Results

Parameter setting

The user-defined parameters of BEOAM-DS are shown in table 1. Those values were fine-tuned using the

iRace tool (Lopez-Ibafiez, Dubois-Lacoste, Pérez-Caceres, Birattari & Stuitzle, 2011), except for Gmax, whose

value was fixed to adjust the termination condition to the Max,, ;s value per each problem. The parameter

values for MBFOA were taken from Hernandez-Ocaria et al. (2014).

Table 1. Parameter values for the MBFOA and BFOAM-DS comparison.

Parameter MBFOA BFOAM-DS
Sy 50 40
N, 12 20
S, Sp/2 Sp/2
B 1.76 0.68
R 1.62E-2 -
GMax valuetoreach Max,yqs valuetoreach Max,,q;

Note: ~indicates that the corresponding parameter is not required by the algorithm.
Source: Authors’ own elaboration.
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Statistics

The proposed BFOAM-DS was tested solving the three problems with 15 000 Max,,qs in a set of 30
independent runs. Results are presented in table 2 and discussed based on three measures: (1) Quality, i.e.,
the best solution found so far; (2) Consistency, i.e., the mean value closer to the best known solution x* and
the lowest standard deviation value; and (3) Computational cost, i.e., the number of evaluations required by
each given problem.

For the Tension/compression spring design optimization problem (P01), the proposed BFOAM-DS
found the best result when compared to MBFOA, and this solution is similar to the best-known solution x*.
In addition to these results, BFEOAM-DS has better consistency than MBFOA.

For the pressure vessel optimum design optimization problem (P02), BFOAM-DS found the best
result, which was similar to x*. However, the result across 30 runs of MBFOA showed more consistency.

Finally, for the welded beam design optimization problem (P03), BFEOAM-DS showed better results
and higher consistency than those of MBFOA.

It is important to mention that MBFOA found these results at a computational cost of 48 000
evaluations, in contrast to BFEOAM-DS which only cost 15 000 evaluations. The number of evaluations is
calculated using S, X N, X GMax. For example, 40x20x18 = 14400 evaluations for BFEOAM-DS according to
the values shown in table 1, where Gmax is a value to reach Max,,4;,, in this case 15 000 /(40x20) = 18Gmax.

Table 2. Statistical results of MBFOA and BFOAM-DS.

Problem Criteria MBFOA BFOAM-DS
PO1 Best 0.012671 0.012665233
Average 0.012759 0.012681938
Std. 1.36E-04 5.08E-05
P02 Best 6060.46 6059.701609
Average 6074.625 6173.535938
Std. 1.56E+01 2.01E+02
P03 Best 2.386 2.380952906
Average 2.404 2.380957824
Std. 1.6E-02 1.19E-05
Maxeyqs 48000 14400

Source: Authors’ own elaboration.

Figures 2, 3, and 4 show the convergence graphs of MBFOA and BFOAM-DS in each of the
engineering problems. Graphs depict the convergence in the median of all runs per problem. BFOAM-DS
has a similar behavior in the three problems; it reaches the optimum before ten generations. On the other
hand, MBFOA converges prematurely in local optima in all problems, it also requires more generations,
with 48 000 evaluations as a stop condition.

10
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Figure 2. Convergence graphic of MBFOA and BFOAM-DS in the PO1 problem.
Source: Authors’ own elaboration.
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Figure 3. Convergence graphic of MBFOA and BFOAM-DS in the PO2 problem.
Source: Authors’ own elaboration.
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Figure 4. Convergence graphic of MBFOA and BFOAM-DS in the P03 problem.
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Effectiveness results of BFEOAM-DS in solving CNOP are shown in table 3. According to the results
of the feasible rate measure, for all three problems, the proposed algorithm found feasible solutions within
the maximum number of evaluations allowed across all independent runs. However, only in problem P03,
this study’s algorithm obtained 100% feasible solutions, which is similar to the best-known solution. For
problem P01, this algorithm obtained 96.66% and 63.33% in problem P02. The computational cost to obtain
a feasible solution similar to the best-known solution for each problem is 4860, 13 977, and 10 120,
respectively, according to the measure success performance where P02 is the most complex problem,
followed by P03 and PO1.

Table 3. Performance of BFOAM-DS according to the runs and successful swims.

Criteria PO1 P02 P03
Feasible rate 100% 100 % 100%
Success rate 96.66% 63.33% 100%
Success performance 4.86E+03 1.39E+04 1.01E+04

Source: Authors’ own elaboration.

The effectiveness of the stepsize was measured using the performance measures successful swim
and successful swim rate, taken from Hernadndez-Ocaria et al. (2014). The goal of these measures is to obtain
the number of successful swims in a run. The algorithm BFOAM-DS carried out 13 600 swims
(408}, X 20N, X 17GMax). According to the results in table 4, 14% of swims are successful in each run of
BFOAM-DS, which are similar results to those mentioned in Hernandez-Ocaria et al. (2014) for solving other
CNOP. Nevertheless, the version of BFEOAM-DS without mutation only obtained the 3.18% of successful
swims in average.

Table 4. Performance of BFOAM-DS according to the success of the runsand swims.

Problem Successful swim Successful swim rate
BFOAM-DS without mutation

P01 735 5.40%

P02 324 2.38%

P03 241 1.77%

BFOAM-DS with mutation

P01 2166 15.92%

P02 1998 14.69%

P03 1899 13.96%

Source: Authors’ own elaboration.

Figures 5, 6, and 7 show the behavior of the BFEOAM-DS algorithm with and without the mutation
swim in each of the engineering problems. Graphs depict the swim in the median of all runs per problem.
The version with mutation swim generates more successful swims during all the generations of the
algorithm, on average 110 successful swims in the three problems. Concerning the algorithm without a
mutation swim, in P01 and P03 problems, successful swims are few in the first generation (40 successful
swims on average), and these gradually decrease until the sixth generation, where the algorithm remains
on average with five successful swims per generation. In the P02 problem, the swims without mutation
remain stable and, on average, 38 successful swims per generation are generated until the execution of the
algorithm is completed. In general, swims with mutation improve the performance of the algorithm,
allowing better solutions with less computational cost.

12

Herndndez-Ocafia, B., Herndndez-Torruco, J., Chdvez-Bosquez, O., Canul-Reich, J., & Montané-Jiménez, L. G.
Bacterial foraging optimization algorithm with mutation to solve constrained problems

1-16



ACTA
NIVERSITARIA

Multidisciplinary Scientific Journal

Successful swim

Successful swim

ISSN online 2007-9621

Hernandez-Ocafia, B., Hernandez-Torruco, J., Chavez-Bosquez, O., Canul-Reich, J., & Montané-Jiménez, L. G.
Bacterial foraging optimization algorithm with mutation to solve constrained problems | 1-16

250 .
w— BF OAM-DS with mutation
P01: Tensionicompression spring sives BEOAM-DS without mutation
200
150
100
50+ 3
0 1 L ,’ "':,...lll]ll|||||||-|lvr"""'""ll|lll|l|vv||n|]lnnn:_ 1 J
0 2 4 6 8 10 12 14 16 18
Generations
Figure 5. Successful swims of BFOAM-DS in the PO1 problem.
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Figure 7. Successful swims of BFOAM-DS in the PO3 problem.
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Discussion

In this new version of the bacterial foraging optimization algorithm, the mutation power of evolutionary
algorithms was added to the chemotaxis process of the bacterial foraging in order to improve the
performance of the algorithm. Moreover, an easy dynamic stepsize was used, which led to a decrease in
the number of parameters to be defined by the user.

The statistical tests and performance measures applied to the results of 30 independent runs of each
one of the three optimization problems showed that BFOAM-DS outperforms the previous version of the
algorithm. Moreover, BFOAM-DS requires 33 000 evaluations fewer than the previous version of the
algorithm (48 000-14 400) to achieve these competitive results. The stepsize, a user-defined parameter, has
been replaced in the algorithm by a proposed dynamic stepsize. The exploration and exploitation capacity
of the algorithm was improved with the swim with a mutation operator that, on average, increased the
effectiveness of swims by 10%.

In general, the proposed BFOAM-DS performed better than the original MBFOA, obtaining results
with less computational cost. Moreover, the consistency was competitive, and the quality of results was
similar to the best-known solution in each problem. Another advantage is that BFOAM-DS requires less
tuning of parameters due to the use of a dynamic stepsize.

Conclusions

Bacterial foraging optimization is a metaheuristic included in the group of intelligence swarm algorithms
used to solve complex problems. This algorithm is considered younger and less known than evolutionary
algorithms. A proposal based on bacterial foraging has been made, and it has been tested solving three
constraint numerical optimization problems. This version has been called the bacterial foraging
optimization algorithm with mutation and dynamic stepsize (BFOAM-DS).

BFOAM-DS was tested in three engineering design optimization problems. Results were analyzed
with basic statistics (best, average and standard deviation). In addition, common measures for nature-
inspired constrained optimization problems are used to evaluate the behavior of the swim with a mutation
operator (feasible run, feasible rate, successful run, success rate, success performance, successful swim,
and successful swim rate) and the dynamic stepsize operator. Then, results were compared against a
previous version of the algorithm (MBFOA) to observe the effectiveness of the proposed improvements.

BFOAM-DS solved effectively all test problems with fewer evaluations than the previous version of
the algorithm. This new version of the algorithm requires fewer parameters to calibrate, so it would be
easier for the final user to tune up. The proposed operators improve the overall performance of the
algorithm, as demonstrated by the performance tests.

As future work, this study’s proposal will be tested against other complex problems and an analysis

of the frequency of reproduction process will be carried out.
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