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RESUMEN

Este articulo investiga las caracteristicas espaciotemporales a largo plazo de varios indices de vegetacion (VI,
por su sigla en inglés) derivados de satélites, como el indice normalizado de vegetacion diferenciada (NDVI)
y el indice de vegetacion mejorado (EVI), asi como la productividad primaria bruta (GPP) y la fluorescencia
de clorofila inducida por el sol (SIF) en la conurbacién de Calcuta y sus areas circundantes de 2003 a 2016.
Ademas, analiza la correlacion entre estos indices de vegetacion y pardmetros atmosféricos como la lluvia,
la humedad del suelo (SM), la evapotranspiracion (ET) y la temperatura de la superficie terrestre (LST). Se
observan las variaciones mensuales de estos parametros y se examina la variabilidad interanual mediante
técnicas de regresion lineal. El estudio también observa la correlacion espacial promedio temporal entre los
V1 y los parametros climaticos. Ademas, investiga el efecto del desfase temporal utilizando el analisis del
coeficiente de correlacion de Pearson entre el VI 'y otros parametros meteorologicos (0, 1, 2 y 3 meses). El
NDVI y el EVI exhiben una correlacion méxima con la lluvia, SM, ET y LST dentro de periodos de retraso
especificos; asimismo, muestran una lenta tasa de respuesta a la lluvia y su sensibilidad depende de la SM
y la ET. Se observa una correlacion positiva entre el NDVI y la ET, lo que indica que el primero aumenta
con el agua vaporizada en la atmosfera. Se observa una correlacion negativa entre NDVIy LST en la region
estudiada. Los conocimientos del estudio son valiosos para predecir las caracteristicas futuras del VI con base
en parametros meteoroldgicos en areas urbanas tropicales como Calcuta y sus alrededores. Esta capacidad
predictiva puede ayudar a mitigar los efectos climaticos adversos sobre la vegetacion.

ABSTRACT

The paper investigates the long-term spatiotemporal characteristics of various satellite-derived vegetation
indices (VI), such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI), as well as Gross Primary Productivity (GPP) and Sun-induced Chlorophyll Fluorescence (SIF) over
the Kolkata conurbation and its surrounding areas from 2003 to 2016. Additionally, it analyzes the correlation
between these vegetation indices and atmospheric parameters like rainfall, soil moisture (SM), evapotrans-
piration (ET), and land surface temperature (LST). Monthly variations of these parameters are observed,
and inter-annual variability is examined using linear regression techniques. The study also observes the time
average spatial correlation between vegetation indices and weather parameters. Moreover, it investigates
the time-lag effect (0, 1, 2, and 3 months) using Pearson correlation coefficient analysis between VI and
other meteorological parameters. NDVI and EVI exhibit maximum correlation with rainfall, SM, ET, and
LST within specific lag periods. NDVI and EVI show a slow response rate to rainfall, and their sensitivity
depends on SM and ET. A positive correlation is observed between NDVI and ET, indicating that NDVI
increases with vaporized water in the atmosphere. A negative correlation is noted between NDVI and LST
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in the region studied. The study’s insights are valuable for predicting future vegetation index characteristics
based on meteorological parameters in tropical urban areas like Kolkata and its surroundings. This predictive
capability can aid in mitigating adverse weather effects on vegetation.

Keywords: satellite data, spatiotemporal analysis, vegetation index, meteorological parameters, urban

location, linear regression, correlation.

1. Introduction

Vegetation indices (VI) are the foremost important
metrics to watch ecosystem and land surface process-
es (Nicholson et al., 1990; Ichii et al., 2002; Wang et
al.,, 2003; Gu et al., 2008). Vegetation changes play
an essential role in the environmental process. They
are a decent indicator of climate, hydrology, energy
balance, and hydrological cycles (Nicholson et al.,
1990; Farrar et al., 1994). Recent research suggests
that environmental changes, particularly climate
change, have led to decreased food security and
vegetation cover alterations (Akram et al., 2018; Ali
et al., 2019; Din et al., 2022). The ecosystem and
vegetation are changing due to climate change (Fahad
et al., 2017; Hateffard et al., 2021). The knowledge
regarding the long-term variation of VI plays a vital
role in determining the climate change pattern and
monsoon variability (Amin et al., 2017; Baqga et al.,
2022). The interconnectedness of vegetation cover
with various ecological processes such as the energy
cycle, hydrology, and climate has also been discussed
in several studies (Hussain et al., 2020a; Masood et
al., 2022; Chandra et al., 2023, De et al., 2023). The
role of vegetation in mitigating climate change effects
and its importance in studying plant phenology and
biomass are also emphasized in literature (Feizizadeh
et al., 2013; Sabr et al., 2016; Hassan et al., 2021;
Karuppasamy et al., 2022; Naz et al., 2022; Hussain
et al., 2023a; Yang et al., 2023a, b). These findings
underscore the importance of understanding and
monitoring vegetation dynamics in the context of
climate change and food security.

The Normalized Difference Vegetation Index
(NDVI) is one of the most recognized and com-
monly used parameters to review vegetation cover
and crop health (Sellers et al., 1986; Piao et al.,
2003). It indicates the greenness of the land surface
and, therefore, vegetation density (Choubin et al.,
2017; Sajedi-Hosseini et al., 2018). The Enhanced
Vegetation Index (EVI) is another parameter that
minimizes canopy-soil variations and improves

sensitivity over dense vegetation conditions. The
NDVI serves as a valuable tool in monitoring veg-
etation health and dynamics due to its correlation
with chlorophyll content and leaf area index and has
wide application in assessing land use/land cover
changes (LULC), detecting crop types, estimating
crop yield and production, among others (Sultana et
al.,2014; Rani et al., 2018, Tariq et al., 2020). NDVI
values are indicative of the biological activities of
plants and can effectively characterize changes in
active surface temperature, providing insights into
vegetative cover conditions (Zahoor et al., 2019;
Aslam et al., 2021). While the NDVI is particularly
sensitive to chlorophyll activity, EVI complements it
by capturing structural differences in plants, making
it especially useful for delineating tropical forests.
Together, NDVI and EVI contribute significantly
to our understanding of vegetation dynamics and
ecosystem health (Matsushita et al., 2007; Waleed
et al., 2022; Vélez et al., 2023).

The variation of different vegetation indices and
their relationship with various climatic parameters is
vital to understanding the effect of climate change
on vegetation expansion. It has been evident that
both NDVI (Rouse, 1974) and EVI have a reference
to rainfall (Liu and Huete, 1995; Potter and Brooks,
1998; Richard and Poccard, 1998; Wu et al., 2016).
The satellite-derived vegetation index is a well-ac-
cepted and primarily used method to explore the
response of vegetation over a location (Tucker, 1979;
Piao et al., 2011; Zhang et al., 2013).

In recent years, satellite-derived vegetation index
has been a crucial tool to assess vegetation dynamics
at regional to global scales (Myneni et al., 1997;
Zhao et al., 2012; Cleland et al., 2006; Schwartz et
al., 2006; Ssemmanda et al., 2014; Cao et al., 2018).
Satellite-derived NDVI data is a crucial indicator
for analyzing the growth of green vegetation and
the effect of climate change on vegetation dynam-
ics (Walther et al., 2002; Zhang et al., 2002; Yu et
al., 2003; Piao et al., 2006; Philippon et al., 2007;
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Zhao et al., 2015). It has been seen that the spatial
patterns of annually integrated NDVI closely reflect
the mean annual rainfall over East Africa and the
Sahel (Nicholson et al., 1990). An increase in NDVI
was evident in Tanzania from 1982 to 1994, as seen
in NDVI imagery (Pelkey et al., 2000).

The intricate relationship between global warm-
ing, vegetation cover, and various environmental
processes has been discussed by many authors.
Global warming, attributed largely to human activ-
ities since the Industrial Revolution, has increased
land surface temperature (LST). This temperature
rise has significant implications for vegetation cover,
as outlined by various studies (Nasim et al., 2018;
Hussain et al., 2020a, b; Mubeen et al., 2021; Akram
et al., 2022). The rise in temperature and decreased
precipitation results in more drought conditions and
reduced vegetation in Kenya (Ogutu et al., 2008). It
has been observed that various weather parameters
like precipitation, land surface temperature (LST),
soil moisture (SM), and solar radiation significantly
impact vegetation growth (Lakshmi and Barbosa,
2012). The regression analysis findings over the
Sahiwal region, Pakistan, indicate a significant
relationship between LST values and both the Nor-
malized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI). Specifically,
where LST values are lower, NDVI and EVI values
tend to be higher and more significant. Conversely,
in areas with higher LST values, NDVI and EVI
values are lower (Hussain, et al., 2023b). A negative
correlation between the NDVI and temperature has
been observed in north China (Yang et al., 2023b).
The yearly and seasonal variation of NDVI and its
relation to precipitation were observed over the Gojeb
River catchment from 1982 to 2015 (Dagnachew et
al., 2020).

Together with human activities, environmental
changes have a significant impact on vegetation (Sha
et al., 2020). Long-term variation of vegetation dy-
namics has been discussed with the help of Advanced
Very High Resolution Radiometer (AVHRR) sensors
(Eastman et al., 2013). NDVI shows an upward trend
with temperature and precipitation before the 1990s,
whereas a downward trend in the NDVI has been
observed since the mid or late 1990s. Landsat-7 ETM
data has been used to find the relationship between
NDVI and LST (Mallick et al., 2012 Senanayake et

al., 2013). The correlation values between NDVI
and TST, SM, and precipitation are —0.45, 0.43, and
0.34, respectively, over Gautam Budha Nagar, India
(Sharma et al., 2022). The long-term variation of
precipitation and temperature and its effect on the
annual crop production has been observed using
Landsat data over India (Basistha et al., 2009; Kundu
and Dutta 2011; Duhan and Pandey, 2013; Gautam
et al., 2020; Dutta et al., 2015; Sahoo et al., 2015;
Kundu et al., 2017). The precipitation value at each
station has been interpolated using ArcGIS 9.3 to
find the spatial variation of rainfall. Duhan et al.
(2013) showed that mean annual precipitation has
varied from 694 mm (at Westnimar) to 1416 mm (at
Mandla). Kundu and Dutta (2011) demonstrated a
varying pattern of vegetation dynamics in response
to rainfall over the Bundelkhand area. Sahoo et al.
(2015) found a good agreement between satellite-de-
rived and meteorological drought indices. The effect
of SM on vegetation growth has also been studied by
Gao etal. (2014), who used a wireless sensor network
to collect soil moisture data.

The significantly increasing trend in vegetation
sensitivity to SM in many semi-arid and arid regions
across the globe indicates a growing vulnerability
of vegetation to changes in SM levels. This trend
suggests that vegetation in these regions is becoming
more responsive to variations in SM availability,
which can have profound implications for ecosystem
health, biodiversity, and the livelihoods of communi-
ties dependent on these ecosystems (Li et al., 2022).
The observed strong positive correlation between SM
and vegetation indices with an eight-week lag time
over the USA corn belt suggests that changes in SM
levels influence vegetation dynamics with a certain
time delay (Adegoke and Andrew, 2002). Various
techniques, such as discrete wavelet transform, ar-
tificial neural network, and feature extraction have
been used to estimate the dynamical characteristics of
NDVI (Demirel et al., 2010; Yamaguchi et al., 2010;
Bhandaria et al., 2012). There are a few studies on
the relation between EVI and weather parameters.
It has been observed that EVI is the most effective
vegetation index compared to in situ data over Asia
during the monsoon season (Motohka et al., 2009).
It has been observed that EVI can be a better index
than NDVI for vegetation monitoring across vari-
ous ecosystems, as it is insensitive to background
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reflectance and a better predictor of gross primary
productivity (GPP; Rocha and Shaver, 2009). A good
correlation between EVI and rainfall and temperature
has been observed, with time lag effect, in Zacatecas,
Mexico (Olmos-Trujillo et al., 2020). The Mod-
erate Resolution Imaging Spectrometer (MODIS)
satellite-derived EVI has been used to estimate ET,
which correlates well with the actual data. The po-
lar-orbiting MODIS sensor aboard the Terra and Aqua
platforms is well accepted for environmental moni-
toring of the vegetation indices (Huete et al., 2002).
MODIS-derived Vs present improved estimations
of spatial, spectral, and radiometric representations
of surface vegetation conditions (Tucker et al., 2005;
Luetal., 2015).

This comprehensive study aims to understand
the dynamics of VIs and their relationship with
various weather parameters in Kolkata, India, and
its surrounding region. The study offers valuable
insights into the complex interactions between veg-
etation dynamics and environmental factors in the
study region. Vegetation cover plays a crucial role in
various aspects of the Earth’s systems and process-
es, like hydrology and regional and global climate
change, variations in the terrestrial ecosystem, soil
ecosystems, and others. Overall, vegetation cover
is a cornerstone of Earth’s ecosystems, influencing
human societies, biodiversity, ecosystem functions,
and climate processes. Protecting and sustainably
managing the vegetation cover is essential for main-
taining ecosystem health, supporting biodiversity,
and mitigating climate change impacts.

The study conducted in Kolkata, India, focuses
on investigating the impact of various environmental
variables on vegetation indices using satellite data
from 2003 to 2016. Kolkata, being a densely popu-
lated and polluted city in Southeast Asia, experiences
significant anthropogenic activities that have led to
drastic changes in landscape characteristics and sub-
sequently affect vegetation dynamics. Understanding
the long-term variations in weather parameters and
their influence on vegetation indices is crucial for
sustainable urban environment planning and urban
green space management. By analyzing satellite data
over a prolonged period, the study seeks to elucidate
the relationship between environmental variables
and vegetation health in the tropical urban context
of Kolkata.

The findings of this study can serve as a valuable
reference for researchers, environmental planners,
and policymakers involved in sustainable urban
development and environmental management. By
identifying the key environmental factors influenc-
ing vegetation dynamics, stakeholders can make
informed decisions regarding land use planning,
green space preservation, and mitigation strategies to
promote urban biodiversity and enhance the quality
of urban environments in a tropical region.

2. Importance of the study location

This study focuses on the spatiotemporal vegetation
changes in and around Kolkata, India. Given its geo-
graphical location near the Bay of Bengal and within
the lower Ganges Delta (Fig. 1), Kolkata experiences
atropical wet and dry climate characterized by a dis-
tinct summer monsoon season and significant rainfall,
especially during the pre-monsoon period known as
kalbaisakhi. The city’s elevation ranges from 1.5
to 9 m, and its landscape features mangrove forests
and tidal flats along the Hooghly River. Considering
Kolkata’s status as the largest metropolis and a key
economic hub in eastern India, understanding the
vegetation dynamics in this region is crucial for as-
sessing environmental changes, land use patterns, and
their impacts on local ecosystems and livelihoods.
By conducting a detailed analysis of satellite-derived
vegetation data and considering the unique climatic
and geographical characteristics of Kolkata and its
surroundings, researchers can uncover valuable in-
sights into the long-term trends and drivers of vege-
tation dynamics in this region. This information can
contribute to informed decision-making processes for
urban planning, ecosystem conservation, and climate
change adaptation strategies.

3. Dataset

In the present study, monthly data of VIs collected
from NASA GIOVANNI have been used in associa-
tion with meteorological parameters over Kolkata and
surrounding locations. The MOD13C2 v. 6 product
provides pixel-based VI values of two primary veg-
etation layers at 1-km spatial resolution. NDVI was
derived from the National Oceanic and Atmospheric
Administration-Advanced Very High-Resolution
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Fig. 1. Location map of the study area.

Radiometer (NOAA-AVHRR). The EVI has better
sensitivity over high biomass regions (Didan et al.,
2015). From the MOD13C2 v. 6 product, NDVI has
been calculated using Eq. (1):

(NIR — RED)
(NIR + RED)

where NIR and RED are the reflectance in the
near-infrared and red channels, respectively. The
two channels contain more than 90% vegetation in-
formation. Monthly precipitation data was obtained
from GPM_3IMERGM v. 06. The estimated pre-
cipitation from various satellite passive microwave
(PMW) sensors consists of GPM constellations and
is computed using the Goddard Profiling Algorithm
(GPROF2017). This data has been gridded and
inter-calibrated to the GPM Combined Ku Ra-
dar-Radiometer Algorithm (CORRA) product. This

NDVI = (1)

GPM_3IMERGM provides monthly rainfall with
0.1° x 0.1° spatial resolution (Huffman et al., 2015;
McNally etal., 2017, 2019; Skofronick-Jackson et al.,
2017; Khan and Gilani, 2021). The average monthly
LST values have been taken from the MODI11C3 v. 6
product with 0.05° Climate Modeling Grid (CMQG).
The CMG granule is a geographic grid that consists
of 3600 rows and 7200 columns representing the
entire globe. LST values are obtained from the daily
average of the corresponding month of MOD11Cl1
(Wan, 2006; Wan et al., 2015). For SM and ET, Noah
3.6.1 model in the Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation Sys-
tem (FLDAS) has been used. Total ET is related to
evaporation and plant transpiration. GPP indicates the
amount of carbon compound generated by the photo-
synthesis process of plants for a given period of time.
SIF approximates the GPP. The GPP dataset used
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in the present study provides monthly average GPP
(carbon m~2 d") with a spatial resolution of 8 km for
the period 1982-2016. This GPP data is based on the
Monteith light use efficiency (LUE) improved with
spatially and temporally optimized FLUXNET tower
site data (Madani et al., 2020). This dataset provides
global SIF with a 0.05° x 0.05° spatial resolution
from August 2002 to December 2018. The Scanning
Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) and Global Ozone
Monitoring Experiment 2 (GOME-2) instruments
onboard the MetOp-A satellite are used to retrieve
SIF data at a 740 nm wavelength. The dataset can be
used for the research on drought, yield estimation,
and land degradation evaluation. The details of the
datasets are shown in Table I.

4. Methodology

By examining long-term variations of vegetation in-
dices for the period 2003-2016, authors were able to
capture changes in vegetation over time. The spatial
variation of VIs has been observed to understand
the changes. Studying the spatial variation of VlIs
over three different years, namely, 2003, 2010, and
2016, can provide valuable insights into changes in
vegetation cover, health, and distribution over time.
Using linear regression curve fitting to analyze in-
ter-annual variability allows a deeper understanding
of how vegetation responds to changes in weather
conditions such as precipitation, SM, ET, and LST.
Investigating monthly variations of these parameters

Table I. Details of datasets.

adds granularity to the analysis, considering the
temporal aspect of vegetation dynamics and weather
fluctuations. Time average spatial correlation analysis
helps to identify patterns across the study area, pro-
viding insights into the overall relationship between
VIs and weather parameters over the studied period
(2003-2016). Furthermore, conducting lag period
correlation analysis through the Pearson correlation
coefficient allows for exploring the potential delayed
effects of weather conditions on vegetation, which
can be crucial for understanding ecological processes
and predicting future changes. This approach enables
the identification of not only the immediate effects
but also the delayed impacts of weather conditions
on vegetation dynamics. The Pearson correlation
coefficient was calculated using Eq. (2):
2 =00 =)
"= )
V-2 (-3

where 7 is the correlation coefficient; x; and y; are the
values of x and y in the samples, respectively, and
and are the mean values of x and y, respectively.
The flow chart in Figure 2 shows the methodology.

5. Results and discussion

5.1. Spatial variation

The spatial variation of NDVI, EVI, GPP, and SIF is
shown in Figure 3. Different spatial characteristics are
observed in different parts of Kolkata and the surround-
ing region. The characteristics of highly urbanized
land use dominate the northern and north-western

Elements Period

Data source

NDVI January 2001-December 2022
EVI January 2001-December 2022
GPP January 2001-December 2016
SIF January 2003-December 2018
Rainfall January 2001-September 2021
LST July 2002-November 2022

SM January 2001-November 2022
ET January 2001-November 2022

MODI3V@ v. 6, NASA GIOVANNI
MODI13V@ v. 6, NASA GIOVANNI
METOP A satellite

METOP A satellite

GPM

MODI11C3v. 6

Noah 3.6.1 FLDAS

Noah 3.6.1 FLDAS

NDVI: Normalized Difference Vegetation

Index; EVI: Enhanced Vegetation Index;

GPP: gross primary productivity; SIF: sun-induced chlorophyll fluorescence; LST: land

surface temperature; SM: soil moisture; ET:

evapotranspiration.
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Fig. 2. Flow chart of the research meth-
odology. (NDVI: Normalized Difference
Vegetation Index; EVI: Enhanced Vegetation
Index; GPP: gross primary productivity;
SIF: sun-induced chlorophyll fluorescence;
LST: land surface temperature.)

parts of the study area, whereas the eastern part has
an abundance of agricultural land use, wetlands, and
also a few pockets of urban land use. A dense forest is
located in the southeastern part. NDVI, EVI, GPP, and
SIF reflect the nature of vegetation and its chlorophyll
concentration in a region. Here, the annual average
NDVI, EVI, GPP, and SIF of 2003, 2010, and 2016
have been estimated based on available satellite data. In
the study area, it is observed that there are spatial differ-
ences in the features of NDVI, which are controlled by
the nature of land use and land cover characteristics. A
lower NDVI value is observed in the highly urbanized
lands and wetlands of the Kolkata urban agglomeration,
whereas the region with vegetation cover has a higher
NDVI. Fig. 3a-c represents the annual average NDVI
value for the periods 2003, 2010, and 2016. It has been
observed that over that period of time, the nature and
concentration of NDVI have increased in the northeast-
ern corner of the study area. A similar trend has been
observed in the northwestern part of the study area,
where agricultural fields and settlements dominate the
land use characteristics. In the south-eastern corner of
the study area, no abrupt change is observed from 2003
to 2016. A decreasing trend in ND VI is observed in the
eastern part of the study area, where urbanization is
growing faster. A similar kind of spatial and temporal
change is observed in the case of EVI (Fig 3d-f). GPP
indicates the generation and concentration of carbon
during the photosynthesis process by plants. There
is a spatiotemporal variation in GPP (Fig 3g-i) in the

study area. The higher values of GPP are found in the
northeastern, southeastern, and western parts of the
study area, whereas the lower values are found in the
northwest corner and central to eastern parts. From
2003 to 2016, there is a decreasing trend in GPP in all
sectors of the study area. SIF is a functional proxy of
terrestrial GPP. The annual average SIF is calculated
using METOP A satellite data. In 2003, the higher
value of SIF basically concentrated in the north. In
the southern, southeastern, and southwestern corners
of'the study area, a low value of SIF is observed. From
2003 to 2010, a dynamic spatiotemporal change in SIF
is observed, whereas there is a sharp increase in SIF
in the north, northeast, northwest, and western parts
of the study area. However, a sharp decrease in SIF
is observed in the east and southeast. From 2010 to
2016, there was a negative change in SIF in all sectors
of the study area.

The findings from the analysis of NDVI, EVI,
GPP, and SIF data reveal intriguing spatial and tem-
poral patterns in vegetation characteristics and pro-
ductivity across Kolkata and its surrounding region
(Fig 3). Lower NDVI values are observed in highly
urbanized and wetland areas, while regions with veg-
etation cover exhibit higher NDVI values (Fig. 3a-c).
Over time, an increase in NDVI concentration is
noted in the northeastern and northwestern parts,
where agricultural fields and settlements dominate.
Conversely, a decreasing trend in NDVI is observed
in the eastern part, indicative of rapid urbanization.
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Fig. 3. Spatial variations of (a-c) NDVI for the years 2003, 2010, and 2016, respectively; (d-f) EVI for the years 2003,
2010, and 2016, respectively; (g-i) GPP for the years 2003, 2010, 2016 respectively; and (j-1) SIF for the years 2003,
2010, and 2016, respectively. (NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index;
GPP: gross primary productivity; SIF: sun-induced chlorophyll fluorescence.

Similar to NDVI, EVI shows spatial and temporal seen in NDVI, with increasing values in vegetated
changes reflecting variations in vegetation greenness.  areas and decreasing values in urbanized regions
The trends observed in EVI closely mirror those (Fig. 3d-f). GPP values indicate the generation and
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concentration of carbon during photosynthesis by
plants. Higher GPP values are concentrated in the
northeastern, southeastern, and western parts, while
lower values are found in the northwestern and central
to eastern parts (Fig. 3g-1). A decreasing trend in GPP
is observed across the study area from 2003 to 2016,
possibly influenced by various factors including
land use changes and climate variability. SIF serves
as a functional proxy of terrestrial GPP. Higher SIF
values are observed in the north and lower values in
the southern, southeastern, and southwestern corners.
Dynamic spatiotemporal changes in SIF are noted,
with sharp increases in the north, northeast, north-
west, and western parts from 2003 to 2010, followed
by a negative change in SIF in all areas from 2010
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to 2016 (Fig. 3j-1). These observations underscore
the complex interplay between land use dynamics,
climate variability, and vegetation productivity in the
study area. The findings provide valuable insights for
ecosystem management, urban planning, and climate
change adaptation strategies tailored to the specific
characteristics of Kolkata and its surrounding region.

5.2. Interannual variability

The interannual variability of the VI associated with
various meteorological parameters, namely precipita-
tion, LST, SM content (0-10 and 10-40 cm), and ET,
was investigated for the period 2003-2016 (Fig. 4).
The maximum and minimum values are 0.69 and 0.36
for VI, 20.76 and 0.00046 mm for precipitation, 36.64

EVI
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Fig. 4. Yearly variations of (a) NDVI, (b) EVI, (c) GPP, (d) SIF, (e) rainfall (mm), (f) LST (°C), (g) SM (0-10 cm),
(h) SM (10-40 cm), (i) ET (kg m % s !). (NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Veg-
etation Index; GPP: gross primary productivity; SIF: sun-induced chlorophyll fluorescence; LST: land surface
temperature; SM: soil moisture; ET: evapotranspiration). (Continue)
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and 24.92 °C for LST, 40.23 and 16.88 for SM, and  throughout the study period. An increasing trend has
0.000057 and 0.000011 for ET, respectively. Both  been observed with the help of linear regression for
precipitation and VI show a good periodic variation VI, ET, LST with a slope of 0.002, 0.00000004 and
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0.0007, respectively. A decreasing trend has been
observed for precipitation and SM with a slope of
0.001 and 0.009 respectively.

5.3. Monthly variation

The monthly variability of the above parameters is
discussed in this section. The monthly average has
been calculated for the period 2003-2016 for all
parameters and is shown in Fig. 5. It is observed
that the average precipitation shows maximum and
minimum values in July (36 mm) and December
(0.5 mm), respectively. The average values of the
maximum and minimum NDVI are observed in
September (0.64) and January (0.4), respectively.
NDVI values increase from June and decrease after

921

October (end of the extended monsoon). June to
September is considered the grassland growing sea-
son and agricultural activities over this location. The
maximum and minimum EVI average values were
observed in September (0.38) and January (0.21),
respectively. The maximum and minimum SM’s
average values were observed in August (39.12) and
February (20.61), respectively. The average value of
the maximum and minimum EVI was evident in July
(4.45E-05) and January (1.32739E-05). The average
values of the maximum and minimum LST were
observed in April (34.21 °C) and January (25.82 °C),
respectively. Both NDVI and precipitation show a
good periodic variation. In the winter season, both
NDVI and precipitation show minimum values. It can

14 0.4 0.7 40
12 (a) (b) (c) (d)
=S 0.65 z
E40 _0.35 535
— = o
= @ 2 06 °
£ 8 o} z <
s g 03 20.55 = 30
g 6 g @ n
8 < £os >
o 4 < o
z 0.25 25
2 0.45 <
=25 6 70 12 %2 2 4 6 & q0 12 “Y 3 4 6 & 0 12 X3 4 6 8 10 12
10-5
120 45210 35
_ (e) (f) (9) 26} (h)
£ 4 —
s 110 = o4
2 35 g 2
2 100 o 3 5 P 22
s g —13p !
o ° 20
o 225 o Q
o 90 z I 2
[®)] s —
S 2 g o 18
S g0 < <
< 15 16
70 1 25 14
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
9 0.7
< U = 7065} 0)
2 8 £3 06
25 2E s
owm 7 S~ 065
&0 52 o5
=3 - & ©
SE 6 85 045
E= =
5655 2g 04
o2 T %035
3 T 0
& 4 838 03
& 0.25
%54 6 & 10 12 02=%——%—% & 10 12
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be observed that ND VT is related to water availability,
as higher NDVI is found during months with higher
precipitation. It has also been observed that there is a
time lag between high values of precipitation and VI.
The time lag between NDVI and other meteorological
parameters is discussed in the following section.

5.4. Time average spatial correlation analysis

Spatial analysis consists of locational analysis and
the neighboring relationship of phenomena to be
studied, whereas time series analysis reflects how
observation data changes over a period of time. In
this article, spatial time series correlation analysis
was carried out to understand the potential interact-
ing pairs of time series across two sequential spatial
time series datasets, where a strongly correlated pair
of time series indicates that changes of one variable
lead to changes in another variable over time. In the
present study, spatiotemporal correlation analysis of
LST, rainfall, SM, and ET with NDVI and EVI was
conducted over the Kolkata conurbation and its sur-
rounding region for 2003-2016. Land use character-
istics and their changes have played a dominant role

Spatial correlation between LST and NDVI
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in determining the nature of land cover in this region,
whose northern and northwestern parts are domi-
nated by highly urbanized land use characteristics,
whereas the eastern part has an abundance of agricul-
tural land use and wetlands and also a few pockets
of urban land use. A dense forest is located in the
southeastern part of this area. The spatiotemporal
correlation of LST, rainfall, SM, and ET with NDVI
is shown in Figure 6a-d. A high to very high positive
correlation has been observed near the Kolkata conur-
bation, which indicates that positive changes of LST
lead to changes in NDVI over 2003-2016 (Fig. 6a).
In the northeastern and southeastern parts of the study
area, a negative correlation was found over this peri-
od. This relationship is controlled by the land use and
land cover characteristics of the region, which, along
with climate and soil, predominately determine the
nature of vegetation. Here, the positive correlation
exists along the conservation or urban agglomeration
of Kolkata and its surrounding areas. These charac-
teristics were observed throughout the mentioned
period (2003-2016). In the eastern, northeastern,
and southeastern parts of the study area, a negative
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Fig. 6. Time average spatial correlation of NDVI with LST, rainfall, SM, and
ET for the period 2003-2016. (NDVI: Normalized Difference Vegetation Index;
LST: land surface temperature; SM: soil moisture; ET: evapotranspiration.)
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correlation exists between LST and NDVI, where
land use characteristics are dominated by agriculture
and scattered human settlements.

In general, rainfall and NDVI are positively
correlated, but the nature of this relation varies, es-
pecially due to its land use characteristics and other
climatic and physiographic vegetation processes
from 2003 to 2016. The positive correlation between
rainfall and NDVI exists along the study area’s north-
eastern, eastern, and southeastern parts; also in the
westernmost part of the study area where agricultural
land use with high-fertility soil is common. But in
the urban agglomeration and its surrounding areas,
there is a negative correlation due to the existence
ofurban land use. Overland water flow is a common
phenomenon, and less vegetation concentration has
been observed.

The time average spatial correlation of SM and
NDVI (shown in Fig. 7 for different parameters)
varies spatially. In the study area’s eastern, north-
eastern, southern, and southwestern parts, SM and
the nature of NDVI are positively correlated. The
existence of agricultural land with fertile alluvial soil

Spatial correlation between LST and EVI
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and surface and subsurface water is responsible for
such relations. A negative correlation exists between
SM and NDVI from 2003 to 2016 in the Kolkata
urban agglomeration and its surroundings, where
land use is characterized by an overland flow of
surface water and lack of tree cover. A negative
correlation between SM and NDVI was observed
in the southeastern part of the study area, mainly
determined by the existence of a mangrove forest
and high-salinity soil (Saha et al., 2019).

Cihlar et al. (1991) found a high correlation be-
tween NDVI and ET in the growing period. In the
study area, a high positive correlation between ET
and NDVI was observed in the eastern and northeast-
ern parts, where agricultural practice is performed
throughout the year due to the availability of fertile
alluvium soil, SM, and irrigation facilities. However,
in the urban agglomeration, a negative correlation
was observed due to the urban land use and lack of
vegetation availability. A negative correlation was
also observed in the southern part of the study area.
A low-degree positive correlation was found in the
southeastern and western parts of the study area due

Spatial correlation between rainfall and EVI

229
228
227
226
225

©
k-]
2
T
3

N
INg
~

N
NS
w

N
N
N

A
88.1 88.2 88.3 88.4 88.5 88.6 88.7 88.8 88.9
Longitude

Spatial correlation between ET and NDVI
= -

229
228

227

N
N
o

Latitude
N
N
o

NN
Noob o
S

NN
NN
SN

A l_. )
88.1 88.2 88.3 88.4 88.5 88.6 88.7 88.8 88.9
Longitude

Fig. 7. Time average spatial correlation of EVI with LST, rainfall, SM, and ET
for the period 2003-2016. (EVI: Enhanced Vegetation Index; LST: land surface
temperature; SM: soil moisture; ET: evapotranspiration.)



to the existence of a vegetation surface. A similar
kind of spatial correlation exists between EVI, rain-
fall, SM, and ET; as a result, it is controlled by land
use characteristics and associated pedological and
climatic elements. Both positive and negative spa-
tiotemporal correlations have been observed between
the meteorological parameters and vegetation index,
which are mostly controlled by this location’s land
use and land cover characteristics.

5.5. Lag period correlation analysis

The lag period correlation analysis between veg-
etation indices (NDVI, EVI) and meteorological
parameters sheds light on the temporal dynamics
and interactions between vegetation and environ-
mental factors. In the literature, it has been indicated
that the vegetation can respond with a lag in time
to meteorological parameters (Sharma et al., 2021;
Zhe and Zhang, 2021). The correlation values be-
tween NDVI and LST, SM, and precipitation are
—0.45, 0.43, and 0.34, respectively, over Gautam
Budha Nagar, India (Sharma et. al., 2022). The best
correlation coefficient (0.66) between NDVI and
precipitation has been observed with a one-month
lag over South Tibet (Zhe and Zhang, 2021). Due to
this fact, the time-lag effects have been investigated
in the present study using the correlation analysis
between NDVI and other meteorological parameters
(0, 1, 2, and 3 months). The maximum correlation
with rainfall (0.72), SM (0.83), ET (0.61), and LST
(0.83) was observed with a two-month, one-month,
two-month, and one-month lag, respectively, for
NDVI for the total study period. Regarding EVI,
the same time lag was observed with the meteoro-
logical parameters but with a reduced correlation
coefficient value. It may be because EVI mainly
represents high biomass regions. The correlation
coefficients of EVI with rainfall, SM, ET, and LST
are 0.52 (two-months lag), 0.68 (one-month lag),
0.49 (two-months lag), and —0.72 (one-month lag),
respectively. The variation of meteorological param-
eters with NDVI and EVI for the best correlation
time month is shown in Figures 8 and 9, respective-
ly. The variation of meteorological parameters with
GPP and SIF for the best correlation time month is
shown in Figures 10 and 11, respectively. The vari-
ation of meteorological parameters with GPP and
SIF for the best correlation time month is shown in

Figures 10 and 11, respectively. A significant pos-
itive correlation was observed between NDVI and
precipitation for a two-month lag period. Vegetation
primarily depends on the natural water supply,
which in turn depends on precipitation. Vegetation
shows a slow rate of response to rainfall. The ND-
Vl-precipitation correlation further relies on other
factors, such as land cover, temperature, SM, and
others (Xiong et al., 2003; Wang et al., 2013; Huang
et al., 2017). The sensitivity of vegetation is also
dependent on SM and ET. SM plays a crucial role
in controlling the life span of plants, which affects
the evaporation rate and ET of leaves (Xiong et al.,
2003; Huang et al., 2017). A positive correlation has
been observed between NDVI and ET, as NDVI is
directly proportional to vaporized water entering
the atmosphere. A negative correlation has been
observed between NDVI and LST over this region,
which can be triggered by the topography of a par-
ticular region (Peng et al., 2020). LST in the urban
location has an inverse relation with vegetation due
to the effect of land surface materials (Yue et al.,
2007). The correlation analysis of VI with different
meteorological parameters for different time lag
periods is shown in Table II.

6. Conclusion

This study investigates the long-term characteristics
of VIs over Kolkata and its surroundings from 2003
to 2016, using satellite-based observations. NDVI,
EVI, GPP, and SIF are analyzed, along with their
relation to meteorological parameters such as pre-
cipitation, SM, ET, and LST. The following are our
main observations:

1. Interannual variability is observed for VI and
meteorological parameters, with the highest and
lowest VI values occurring in September and
January, respectively. There is a notable increasing
trend in VI, ET, and LST, while precipitation and
SM show decreasing trends over the study period.

2. NDVI reflects water availability, showing higher
values during months with more rainfall. There
is a time lag between peak precipitation and
maximum vegetation, typically observed in Au-
gust-September, coinciding with the monsoon
period.
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Table II. Correlation analysis of VI with different meteorological parameters for different

time lag periods.

Elements 0 month 1 month 2 months
(March—September)  (April-October)  (May—November)
NDVI
Rainfall 0.45 0.62 0.72
Soil moisture (0-10 cm) 0.70 0.83 0.77
Soil moisture (10-40 cm) 0.72 0.85 0.76
Evapotranspiration 0.42 0.54 0.61
Land surface temperature —0.78 —0.83 —0.64
EVI
Rainfall 0.38 0.40 0.52
Soil moisture (0-10 cm) 0.67 0.68 0.52
Soil moisture (10-40 cm) 0.44 0.46 0.26
Evapotranspiration 0.40 0.43 0.49
Land surface temperature —0.60 -0.72 —0.47
GPP
Rainfall 0.19 0.21 0.46
Soil moisture (0-10 cm) 0.12 0.19 0.51
Soil moisture (10-40 cm) 0.12 0.21 0.55
Evapotranspiration —-0.09 0.03 0.32
Land surface temperature 0.09 -0.32 —0.64
SIF
Rainfall 0.22 0.41 0.43
Soil moisture (0-10 cm) 0.46 0.59 0.4
Soil moisture (10-40 cm) 0.47 0.62 0.38
Evapotranspiration 0.15 0.25 0.29
Land surface temperature —-0.49 —0.63 -0.33

3. Spatial variations in NDVI are linked to land use
characteristics. Areas dominated by agriculture
show increased NDVI, while regions undergoing
urbanization exhibit decreasing trends. Land use,
climate, and soil properties influence vegetation
dynamics.

4. Time lag effects are explored through correlation
analysis between NDVI and meteorological pa-
rameters, revealing significant correlations within
one to two-month periods. NDVI shows positive
correlations with precipitation, SM, and ET, while
an inverse correlation is observed with LST, influ-
enced by land surface materials and topography.

Overall, the study provides insights into the long-term
spatiotemporal dynamics of VIs and their relationship

with meteorological parameters in a tropical urban
area, aiding in understanding ecosystem responses
to environmental changes. Expanding the study be-
yond Kolkata to other metropolitan cities in India to
observe vegetation cover dynamics in relation to me-
teorological parameters is a commendable initiative.
By broadening the scope of the study, researchers
can gain insights into the spatiotemporal character-
istics of vegetation indices across different urban
agglomerations in India and assess the influence
of meteorological factors on vegetation health and
dynamics. This extended research effort has the po-
tential to contribute significantly to our understanding
of urban vegetation dynamics and their relationship
with meteorological parameters on a broader scale.
By comparing vegetation responses across multiple
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metropolitan areas, researchers can identify common
patterns, drivers, and trends, facilitating the devel-
opment of a comprehensive model describing how
vegetation changes with meteorological effects over
the long term in Indian urban contexts. Such a model
could have practical implications for urban planning,
environmental management, and climate resilience
strategies in Indian metropolitan cities. By integrat-
ing satellite observations, meteorological data, and
vegetation indices, policymakers and urban planners
can make informed decisions to promote sustainable
urban development, enhance green infrastructure,
and mitigate the impacts of climate change on ur-
ban ecosystems and human well-being. Overall, the
planned extension of the study to other metropolitan
cities in India holds great promise for advancing
our knowledge of urban vegetation dynamics and
informing evidence-based policies and practices for
sustainable urban development.
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