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RESUMEN

Este artículo investiga las características espaciotemporales a largo plazo de varios índices de vegetación (VI, 
por su sigla en inglés) derivados de satélites, como el índice normalizado de vegetación diferenciada (NDVI) 
y el índice de vegetación mejorado (EVI), así como la productividad primaria bruta (GPP) y la fluorescencia 
de clorofila inducida por el sol (SIF) en la conurbación de Calcuta y sus áreas circundantes de 2003 a 2016. 
Además, analiza la correlación entre estos índices de vegetación y parámetros atmosféricos como la lluvia, 
la humedad del suelo (SM), la evapotranspiración (ET) y la temperatura de la superficie terrestre (LST). Se 
observan las variaciones mensuales de estos parámetros y se examina la variabilidad interanual mediante 
técnicas de regresión lineal. El estudio también observa la correlación espacial promedio temporal entre los 
VI y los parámetros climáticos. Además, investiga el efecto del desfase temporal utilizando el análisis del 
coeficiente de correlación de Pearson entre el VI y otros parámetros meteorológicos (0, 1, 2 y 3 meses). El 
NDVI y el EVI exhiben una correlación máxima con la lluvia, SM, ET y LST dentro de periodos de retraso 
específicos; asimismo, muestran una lenta tasa de respuesta a la lluvia y su sensibilidad depende de la SM 
y la ET. Se observa una correlación positiva entre el NDVI y la ET, lo que indica que el primero aumenta 
con el agua vaporizada en la atmósfera. Se observa una correlación negativa entre NDVI y LST en la región 
estudiada. Los conocimientos del estudio son valiosos para predecir las características futuras del VI con base 
en parámetros meteorológicos en áreas urbanas tropicales como Calcuta y sus alrededores. Esta capacidad 
predictiva puede ayudar a mitigar los efectos climáticos adversos sobre la vegetación.

ABSTRACT

The paper investigates the long-term spatiotemporal characteristics of various satellite-derived vegetation 
indices (VI), such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 
(EVI), as well as Gross Primary Productivity (GPP) and Sun-induced Chlorophyll Fluorescence (SIF) over 
the Kolkata conurbation and its surrounding areas from 2003 to 2016. Additionally, it analyzes the correlation 
between these vegetation indices and atmospheric parameters like rainfall, soil moisture (SM), evapotrans-
piration (ET), and land surface temperature (LST). Monthly variations of these parameters are observed, 
and inter-annual variability is examined using linear regression techniques. The study also observes the time 
average spatial correlation between vegetation indices and weather parameters. Moreover, it investigates 
the time-lag effect (0, 1, 2, and 3 months) using Pearson correlation coefficient analysis between VI and 
other meteorological parameters. NDVI and EVI exhibit maximum correlation with rainfall, SM, ET, and 
LST within specific lag periods. NDVI and EVI show a slow response rate to rainfall, and their sensitivity 
depends on SM and ET. A positive correlation is observed between NDVI and ET, indicating that NDVI 
increases with vaporized water in the atmosphere. A negative correlation is noted between NDVI and LST 
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in the region studied. The study’s insights are valuable for predicting future vegetation index characteristics 
based on meteorological parameters in tropical urban areas like Kolkata and its surroundings. This predictive 
capability can aid in mitigating adverse weather effects on vegetation.

Keywords: satellite data, spatiotemporal analysis, vegetation index, meteorological parameters, urban 
location, linear regression, correlation.

1.	 Introduction
Vegetation indices (VI) are the foremost important 
metrics to watch ecosystem and land surface process-
es (Nicholson et al., 1990; Ichii et al., 2002; Wang et 
al., 2003; Gu et al., 2008). Vegetation changes play 
an essential role in the environmental process. They 
are a decent indicator of climate, hydrology, energy 
balance, and hydrological cycles (Nicholson et al., 
1990; Farrar et al., 1994). Recent research suggests 
that environmental changes, particularly climate 
change, have led to decreased food security and 
vegetation cover alterations (Akram et al., 2018; Ali 
et al., 2019; Din et al., 2022). The ecosystem and 
vegetation are changing due to climate change (Fahad 
et al., 2017; Hateffard et al., 2021). The knowledge 
regarding the long-term variation of VI plays a vital 
role in determining the climate change pattern and 
monsoon variability (Amin et al., 2017; Baqa et al., 
2022). The interconnectedness of vegetation cover 
with various ecological processes such as the energy 
cycle, hydrology, and climate has also been discussed 
in several studies (Hussain et al., 2020a; Masood et 
al., 2022; Chandra et al., 2023, De et al., 2023). The 
role of vegetation in mitigating climate change effects 
and its importance in studying plant phenology and 
biomass are also emphasized in literature (Feizizadeh 
et al., 2013; Sabr et al., 2016; Hassan et al., 2021; 
Karuppasamy et al., 2022; Naz et al., 2022; Hussain 
et al., 2023a; Yang et al., 2023a, b). These findings 
underscore the importance of understanding and 
monitoring vegetation dynamics in the context of 
climate change and food security.

The Normalized Difference Vegetation Index 
(NDVI) is one of the most recognized and com-
monly used parameters to review vegetation cover 
and crop health (Sellers et al., 1986; Piao et al., 
2003). It indicates the greenness of the land surface 
and, therefore, vegetation density (Choubin et al., 
2017; Sajedi-Hosseini et al., 2018). The Enhanced 
Vegetation Index (EVI) is another parameter that 
minimizes canopy-soil variations and improves 

sensitivity over dense vegetation conditions. The 
NDVI serves as a valuable tool in monitoring veg-
etation health and dynamics due to its correlation 
with chlorophyll content and leaf area index and has 
wide application in assessing land use/land cover 
changes (LULC), detecting crop types, estimating 
crop yield and production, among others (Sultana et 
al., 2014; Rani et al., 2018, Tariq et al., 2020). NDVI 
values are indicative of the biological activities of 
plants and can effectively characterize changes in 
active surface temperature, providing insights into 
vegetative cover conditions (Zahoor et al., 2019; 
Aslam et al., 2021). While the NDVI is particularly 
sensitive to chlorophyll activity, EVI complements it 
by capturing structural differences in plants, making 
it especially useful for delineating tropical forests. 
Together, NDVI and EVI contribute significantly 
to our understanding of vegetation dynamics and 
ecosystem health (Matsushita et al., 2007; Waleed 
et al., 2022; Vélez et al., 2023).

The variation of different vegetation indices and 
their relationship with various climatic parameters is 
vital to understanding the effect of climate change 
on vegetation expansion. It has been evident that 
both NDVI (Rouse, 1974) and EVI have a reference 
to rainfall (Liu and Huete, 1995; Potter and Brooks, 
1998; Richard and Poccard, 1998; Wu et al., 2016). 
The satellite-derived vegetation index is a well-ac-
cepted and primarily used method to explore the 
response of vegetation over a location (Tucker, 1979; 
Piao et al., 2011; Zhang et al., 2013).

In recent years, satellite-derived vegetation index 
has been a crucial tool to assess vegetation dynamics 
at regional to global scales (Myneni et al., 1997; 
Zhao et al., 2012; Cleland et al., 2006; Schwartz et 
al., 2006; Ssemmanda et al., 2014; Cao et al., 2018). 
Satellite-derived NDVI data is a crucial indicator 
for analyzing the growth of green vegetation and 
the effect of climate change on vegetation dynam-
ics (Walther et al., 2002; Zhang et al., 2002; Yu et 
al., 2003; Piao et al., 2006; Philippon et al., 2007; 
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Zhao et al., 2015). It has been seen that the spatial 
patterns of annually integrated NDVI closely reflect 
the mean annual rainfall over East Africa and the 
Sahel (Nicholson et al., 1990). An increase in NDVI 
was evident in Tanzania from 1982 to 1994, as seen 
in NDVI imagery (Pelkey et al., 2000).

The intricate relationship between global warm-
ing, vegetation cover, and various environmental 
processes has been discussed by many authors. 
Global warming, attributed largely to human activ-
ities since the Industrial Revolution, has increased 
land surface temperature (LST). This temperature 
rise has significant implications for vegetation cover, 
as outlined by various studies (Nasim et al., 2018; 
Hussain et al., 2020a, b; Mubeen et al., 2021; Akram 
et al., 2022). The rise in temperature and decreased 
precipitation results in more drought conditions and 
reduced vegetation in Kenya (Ogutu et al., 2008). It 
has been observed that various weather parameters 
like precipitation, land surface temperature (LST), 
soil moisture (SM), and solar radiation significantly 
impact vegetation growth (Lakshmi and Barbosa, 
2012). The regression analysis findings over the 
Sahiwal region, Pakistan, indicate a significant 
relationship between LST values and both the Nor-
malized Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI). Specifically, 
where LST values are lower, NDVI and EVI values 
tend to be higher and more significant. Conversely, 
in areas with higher LST values, NDVI and EVI 
values are lower (Hussain, et al., 2023b). A negative 
correlation between the NDVI and temperature has 
been observed in north China (Yang et al., 2023b). 
The yearly and seasonal variation of NDVI and its 
relation to precipitation were observed over the Gojeb 
River catchment from 1982 to 2015 (Dagnachew et 
al., 2020).

Together with human activities, environmental 
changes have a significant impact on vegetation (Sha 
et al., 2020). Long-term variation of vegetation dy-
namics has been discussed with the help of Advanced 
Very High Resolution Radiometer (AVHRR) sensors 
(Eastman et al., 2013). NDVI shows an upward trend 
with temperature and precipitation before the 1990s, 
whereas a downward trend in the NDVI has been 
observed since the mid or late 1990s. Landsat-7 ETM 
data has been used to find the relationship between 
NDVI and LST (Mallick et al., 2012 Senanayake et 

al., 2013). The correlation values between NDVI 
and TST, SM, and precipitation are –0.45, 0.43, and 
0.34, respectively, over Gautam Budha Nagar, India 
(Sharma et al., 2022). The long-term variation of 
precipitation and temperature and its effect on the 
annual crop production has been observed using 
Landsat data over India (Basistha et al., 2009; Kundu 
and Dutta 2011; Duhan and Pandey, 2013; Gautam 
et al., 2020; Dutta et al., 2015; Sahoo et al., 2015; 
Kundu et al., 2017). The precipitation value at each 
station has been interpolated using ArcGIS 9.3 to 
find the spatial variation of rainfall. Duhan et al. 
(2013) showed that mean annual precipitation has 
varied from 694 mm (at Westnimar) to 1416 mm (at 
Mandla). Kundu and Dutta (2011) demonstrated a 
varying pattern of vegetation dynamics in response 
to rainfall over the Bundelkhand area. Sahoo et al. 
(2015) found a good agreement between satellite-de-
rived and meteorological drought indices. The effect 
of SM on vegetation growth has also been studied by 
Gao et al. (2014), who used a wireless sensor network 
to collect soil moisture data.

The significantly increasing trend in vegetation 
sensitivity to SM in many semi-arid and arid regions 
across the globe indicates a growing vulnerability 
of vegetation to changes in SM levels. This trend 
suggests that vegetation in these regions is becoming 
more responsive to variations in SM availability, 
which can have profound implications for ecosystem 
health, biodiversity, and the livelihoods of communi-
ties dependent on these ecosystems (Li et al., 2022). 
The observed strong positive correlation between SM 
and vegetation indices with an eight-week lag time 
over the USA corn belt suggests that changes in SM 
levels influence vegetation dynamics with a certain 
time delay (Adegoke and Andrew, 2002). Various 
techniques, such as discrete wavelet transform, ar-
tificial neural network, and feature extraction have 
been used to estimate the dynamical characteristics of 
NDVI (Demirel et al., 2010; Yamaguchi et al., 2010; 
Bhandaria et al., 2012). There are a few studies on 
the relation between EVI and weather parameters. 
It has been observed that EVI is the most effective 
vegetation index compared to in situ data over Asia 
during the monsoon season (Motohka et al., 2009). 
It has been observed that EVI can be a better index 
than NDVI for vegetation monitoring across vari-
ous ecosystems, as it is insensitive to background 
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reflectance and a better predictor of gross primary 
productivity (GPP; Rocha and Shaver, 2009). A good 
correlation between EVI and rainfall and temperature 
has been observed, with time lag effect, in Zacatecas, 
Mexico (Olmos-Trujillo et al., 2020). The Mod-
erate Resolution Imaging Spectrometer (MODIS) 
satellite-derived EVI has been used to estimate ET, 
which correlates well with the actual data. The po-
lar-orbiting MODIS sensor aboard the Terra and Aqua 
platforms is well accepted for environmental moni-
toring of the vegetation indices (Huete et al., 2002). 
MODIS-derived VIs present improved estimations 
of spatial, spectral, and radiometric representations 
of surface vegetation conditions (Tucker et al., 2005; 
Lu et al., 2015). 

This comprehensive study aims to understand 
the dynamics of VIs and their relationship with 
various weather parameters in Kolkata, India, and 
its surrounding region. The study offers valuable 
insights into the complex interactions between veg-
etation dynamics and environmental factors in the 
study region. Vegetation cover plays a crucial role in 
various aspects of the Earth’s systems and process-
es, like hydrology and regional and global climate 
change, variations in the terrestrial ecosystem, soil 
ecosystems, and others. Overall, vegetation cover 
is a cornerstone of Earth’s ecosystems, influencing 
human societies, biodiversity, ecosystem functions, 
and climate processes. Protecting and sustainably 
managing the vegetation cover is essential for main-
taining ecosystem health, supporting biodiversity, 
and mitigating climate change impacts.

The study conducted in Kolkata, India, focuses 
on investigating the impact of various environmental 
variables on vegetation indices using satellite data 
from 2003 to 2016. Kolkata, being a densely popu-
lated and polluted city in Southeast Asia, experiences 
significant anthropogenic activities that have led to 
drastic changes in landscape characteristics and sub-
sequently affect vegetation dynamics. Understanding 
the long-term variations in weather parameters and 
their influence on vegetation indices is crucial for 
sustainable urban environment planning and urban 
green space management. By analyzing satellite data 
over a prolonged period, the study seeks to elucidate 
the relationship between environmental variables 
and vegetation health in the tropical urban context 
of Kolkata.

The findings of this study can serve as a valuable 
reference for researchers, environmental planners, 
and policymakers involved in sustainable urban 
development and environmental management. By 
identifying the key environmental factors influenc-
ing vegetation dynamics, stakeholders can make 
informed decisions regarding land use planning, 
green space preservation, and mitigation strategies to 
promote urban biodiversity and enhance the quality 
of urban environments in a tropical region.

2.	 Importance of the study location
This study focuses on the spatiotemporal vegetation 
changes in and around Kolkata, India. Given its geo-
graphical location near the Bay of Bengal and within 
the lower Ganges Delta (Fig. 1), Kolkata experiences 
a tropical wet and dry climate characterized by a dis-
tinct summer monsoon season and significant rainfall, 
especially during the pre-monsoon period known as 
kalbaisakhi. The city’s elevation ranges from 1.5 
to 9 m, and its landscape features mangrove forests 
and tidal flats along the Hooghly River. Considering 
Kolkata’s status as the largest metropolis and a key 
economic hub in eastern India, understanding the 
vegetation dynamics in this region is crucial for as-
sessing environmental changes, land use patterns, and 
their impacts on local ecosystems and livelihoods. 
By conducting a detailed analysis of satellite-derived 
vegetation data and considering the unique climatic 
and geographical characteristics of Kolkata and its 
surroundings, researchers can uncover valuable in-
sights into the long-term trends and drivers of vege-
tation dynamics in this region. This information can 
contribute to informed decision-making processes for 
urban planning, ecosystem conservation, and climate 
change adaptation strategies.

3.	 Dataset
In the present study, monthly data of VIs collected 
from NASA GIOVANNI have been used in associa-
tion with meteorological parameters over Kolkata and 
surrounding locations. The MOD13C2 v. 6 product 
provides pixel-based VI values of two primary veg-
etation layers at 1-km spatial resolution. NDVI was 
derived from the National Oceanic and Atmospheric 
Administration-Advanced Very High-Resolution 
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Radiometer (NOAA-AVHRR). The EVI has better 
sensitivity over high biomass regions (Didan et al., 
2015). From the MOD13C2 v. 6 product, NDVI has 
been calculated using Eq. (1):

NDVI =
(NIR − R ED)
(NIR + R ED) 	 (1)

where NIR and RED are the reflectance in the 
near-infrared and red channels, respectively. The 
two channels contain more than 90% vegetation in-
formation. Monthly precipitation data was obtained 
from GPM_3IMERGM v. 06. The estimated pre-
cipitation from various satellite passive microwave 
(PMW) sensors consists of GPM constellations and 
is computed using the Goddard Profiling Algorithm 
(GPROF2017). This data has been gridded and 
inter-calibrated to the GPM Combined Ku Ra-
dar-Radiometer Algorithm (CORRA) product. This 

GPM_3IMERGM provides monthly rainfall with 
0.1º × 0.1º spatial resolution (Huffman et al., 2015; 
McNally et al., 2017, 2019; Skofronick-Jackson et al., 
2017; Khan and Gilani, 2021). The average monthly 
LST values have been taken from the MOD11C3 v. 6 
product with 0.05º Climate Modeling Grid (CMG). 
The CMG granule is a geographic grid that consists 
of 3600 rows and 7200 columns representing the 
entire globe. LST values are obtained from the daily 
average of the corresponding month of MOD11C1 
(Wan, 2006; Wan et al., 2015). For SM and ET, Noah 
3.6.1 model in the Famine Early Warning Systems 
Network (FEWS NET) Land Data Assimilation Sys-
tem (FLDAS) has been used. Total ET is related to 
evaporation and plant transpiration. GPP indicates the 
amount of carbon compound generated by the photo-
synthesis process of plants for a given period of time. 
SIF approximates the GPP. The GPP dataset used 
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Agricultural plantation Swamp/ Mangroves

Scrub forest
Forest plantation

Deciduous

Evergreen/ Semi evergreen Water bodies

Rivers/Streams/Canals

Inland wetland
Grass/Grazing

Sandy area

Fallow land

Fig. 1. Location map of the study area.
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in the present study provides monthly average GPP 
(carbon m–2 d–1) with a spatial resolution of 8 km for 
the period 1982-2016. This GPP data is based on the 
Monteith light use efficiency (LUE) improved with 
spatially and temporally optimized FLUXNET tower 
site data (Madani et al., 2020). This dataset provides 
global SIF with a 0.05º × 0.05º spatial resolution 
from August 2002 to December 2018. The Scanning 
Imaging Absorption Spectrometer for Atmospheric 
Chartography (SCIAMACHY) and Global Ozone 
Monitoring Experiment 2 (GOME-2) instruments 
onboard the MetOp-A satellite are used to retrieve 
SIF data at a 740 nm wavelength. The dataset can be 
used for the research on drought, yield estimation, 
and land degradation evaluation. The details of the 
datasets are shown in Table I. 

4.	 Methodology
By examining long-term variations of vegetation in-
dices for the period 2003-2016, authors were able to 
capture changes in vegetation over time. The spatial 
variation of VIs has been observed to understand 
the changes. Studying the spatial variation of VIs 
over three different years, namely, 2003, 2010, and 
2016, can provide valuable insights into changes in 
vegetation cover, health, and distribution over time. 
Using linear regression curve fitting to analyze in-
ter-annual variability allows a deeper understanding 
of how vegetation responds to changes in weather 
conditions such as precipitation, SM, ET, and LST. 
Investigating monthly variations of these parameters 

adds granularity to the analysis, considering the 
temporal aspect of vegetation dynamics and weather 
fluctuations. Time average spatial correlation analysis 
helps to identify patterns across the study area, pro-
viding insights into the overall relationship between 
VIs and weather parameters over the studied period 
(2003-2016). Furthermore, conducting lag period 
correlation analysis through the Pearson correlation 
coefficient allows for exploring the potential delayed 
effects of weather conditions on vegetation, which 
can be crucial for understanding ecological processes 
and predicting future changes. This approach enables 
the identification of not only the immediate effects 
but also the delayed impacts of weather conditions 
on vegetation dynamics. The Pearson correlation 
coefficient was calculated using Eq. (2):

r =
∑ (xi − x̄)(yi − ȳ)

∑ (xi − x̄)2 ∑ (yi − ȳ)2
	 (2)

where r is the correlation coefficient; xi and yi are the 
values of x and y in the samples, respectively, and  
and  are the mean values of x and y, respectively. 
The flow chart in Figure 2 shows the methodology.

5.	 Results and discussion
5.1. Spatial variation
The spatial variation of NDVI, EVI, GPP, and SIF is 
shown in Figure 3. Different spatial characteristics are 
observed in different parts of Kolkata and the surround-
ing region. The characteristics of highly urbanized 
land use dominate the northern and north-western 

Table I. Details of datasets.

Elements Period Data source

NDVI January 2001-December 2022 MOD13V@ v. 6, NASA GIOVANNI
EVI January 2001-December 2022 MOD13V@ v. 6, NASA GIOVANNI
GPP January 2001-December 2016 METOP A satellite
SIF January 2003-December 2018 METOP A satellite
Rainfall January 2001-September 2021 GPM
LST July 2002-November 2022 MOD11C3 v. 6 
SM January 2001-November 2022 Noah 3.6.1 FLDAS
ET January 2001-November 2022 Noah 3.6.1 FLDAS

NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index; 
GPP: gross primary productivity; SIF: sun-induced chlorophyll fluorescence; LST: land 
surface temperature; SM: soil moisture; ET: evapotranspiration.
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parts of the study area, whereas the eastern part has 
an abundance of agricultural land use, wetlands, and 
also a few pockets of urban land use. A dense forest is 
located in the southeastern part. NDVI, EVI, GPP, and 
SIF reflect the nature of vegetation and its chlorophyll 
concentration in a region. Here, the annual average 
NDVI, EVI, GPP, and SIF of 2003, 2010, and 2016 
have been estimated based on available satellite data. In 
the study area, it is observed that there are spatial differ-
ences in the features of NDVI, which are controlled by 
the nature of land use and land cover characteristics. A 
lower NDVI value is observed in the highly urbanized 
lands and wetlands of the Kolkata urban agglomeration, 
whereas the region with vegetation cover has a higher 
NDVI. Fig. 3a-c represents the annual average NDVI 
value for the periods 2003, 2010, and 2016. It has been 
observed that over that period of time, the nature and 
concentration of NDVI have increased in the northeast-
ern corner of the study area. A similar trend has been 
observed in the northwestern part of the study area, 
where agricultural fields and settlements dominate the 
land use characteristics. In the south-eastern corner of 
the study area, no abrupt change is observed from 2003 
to 2016. A decreasing trend in NDVI is observed in the 
eastern part of the study area, where urbanization is 
growing faster. A similar kind of spatial and temporal 
change is observed in the case of EVI (Fig 3d-f). GPP 
indicates the generation and concentration of carbon 
during the photosynthesis process by plants. There 
is a spatiotemporal variation in GPP (Fig 3g-i) in the 

study area. The higher values of GPP are found in the 
northeastern, southeastern, and western parts of the 
study area, whereas the lower values are found in the 
northwest corner and central to eastern parts. From 
2003 to 2016, there is a decreasing trend in GPP in all 
sectors of the study area. SIF is a functional proxy of 
terrestrial GPP. The annual average SIF is calculated 
using METOP A satellite data. In 2003, the higher 
value of SIF basically concentrated in the north. In 
the southern, southeastern, and southwestern corners 
of the study area, a low value of SIF is observed. From 
2003 to 2010, a dynamic spatiotemporal change in SIF 
is observed, whereas there is a sharp increase in SIF 
in the north, northeast, northwest, and western parts 
of the study area. However, a sharp decrease in SIF 
is observed in the east and southeast. From 2010 to 
2016, there was a negative change in SIF in all sectors 
of the study area.

The findings from the analysis of NDVI, EVI, 
GPP, and SIF data reveal intriguing spatial and tem-
poral patterns in vegetation characteristics and pro-
ductivity across Kolkata and its surrounding region 
(Fig 3). Lower NDVI values are observed in highly 
urbanized and wetland areas, while regions with veg-
etation cover exhibit higher NDVI values (Fig. 3a-c). 
Over time, an increase in NDVI concentration is 
noted in the northeastern and northwestern parts, 
where agricultural fields and settlements dominate. 
Conversely, a decreasing trend in NDVI is observed 
in the eastern part, indicative of rapid urbanization. 

Satellite
Observation Vegetation

indices

NDVI Rainfall

LST

Soil moisture

Evapotranspiration

-Change detection
-Time series

-Time series spatial
correlation analysis

correlation analysis

EVI

GPP

SIF

Spatio-
Temporal
analysis

Temporal
analysis

Seasonal
analysis

Associated metrological and
environmental parameters

Satelite
data

Fig. 2. Flow chart of the research meth-
odology. (NDVI: Normalized Difference 
Vegetation Index; EVI: Enhanced Vegetation 
Index; GPP: gross primary productivity; 
SIF: sun-induced chlorophyll fluorescence; 
LST: land surface temperature.)
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Similar to NDVI, EVI shows spatial and temporal 
changes reflecting variations in vegetation greenness. 
The trends observed in EVI closely mirror those 

seen in NDVI, with increasing values in vegetated 
areas and decreasing values in urbanized regions 
(Fig. 3d-f). GPP values indicate the generation and 
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concentration of carbon during photosynthesis by 
plants. Higher GPP values are concentrated in the 
northeastern, southeastern, and western parts, while 
lower values are found in the northwestern and central 
to eastern parts (Fig. 3g-i). A decreasing trend in GPP 
is observed across the study area from 2003 to 2016, 
possibly influenced by various factors including 
land use changes and climate variability. SIF serves 
as a functional proxy of terrestrial GPP. Higher SIF 
values are observed in the north and lower values in 
the southern, southeastern, and southwestern corners. 
Dynamic spatiotemporal changes in SIF are noted, 
with sharp increases in the north, northeast, north-
west, and western parts from 2003 to 2010, followed 
by a negative change in SIF in all areas from 2010 

to 2016 (Fig. 3j-l). These observations underscore 
the complex interplay between land use dynamics, 
climate variability, and vegetation productivity in the 
study area. The findings provide valuable insights for 
ecosystem management, urban planning, and climate 
change adaptation strategies tailored to the specific 
characteristics of Kolkata and its surrounding region.

5.2. Interannual variability
The interannual variability of the VI associated with 
various meteorological parameters, namely precipita-
tion, LST, SM content (0-10 and 10-40 cm), and ET, 
was investigated for the period 2003-2016 (Fig. 4). 
The maximum and minimum values are 0.69 and 0.36 
for VI, 20.76 and 0.00046 mm for precipitation, 36.64 

Fig. 4. Yearly variations of (a) NDVI, (b) EVI, (c) GPP, (d) SIF, (e) rainfall (mm), (f) LST (ºC), (g) SM (0-10 cm), 
(h) SM (10-40 cm), (i) ET (kg m–2 s–1). (NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Veg-
etation Index; GPP: gross primary productivity; SIF: sun-induced chlorophyll fluorescence; LST: land surface 
temperature; SM: soil moisture; ET: evapotranspiration). (Continue)
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and 24.92 ºC for LST, 40.23 and 16.88 for SM, and 
0.000057 and 0.000011 for ET, respectively. Both 
precipitation and VI show a good periodic variation 

throughout the study period. An increasing trend has 
been observed with the help of linear regression for 
VI, ET, LST with a slope of 0.002, 0.00000004 and 
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0.0007, respectively. A decreasing trend has been 
observed for precipitation and SM with a slope of 
0.001 and 0.009 respectively. 

5.3. Monthly variation
The monthly variability of the above parameters is 
discussed in this section. The monthly average has 
been calculated for the period 2003-2016 for all 
parameters and is shown in Fig. 5. It is observed 
that the average precipitation shows maximum and 
minimum values in July (36 mm) and December 
(0.5 mm), respectively. The average values of the 
maximum and minimum NDVI are observed in 
September (0.64) and January (0.4), respectively. 
NDVI values increase from June and decrease after 

October (end of the extended monsoon). June to 
September is considered the grassland growing sea-
son and agricultural activities over this location. The 
maximum and minimum EVI average values were 
observed in September (0.38) and January (0.21), 
respectively. The maximum and minimum SM’s 
average values were observed in August (39.12) and 
February (20.61), respectively. The average value of 
the maximum and minimum EVI was evident in July 
(4.45E-05) and January (1.32739E-05). The average 
values of the maximum and minimum LST were 
observed in April (34.21 ºC) and January (25.82 ºC), 
respectively. Both NDVI and precipitation show a 
good periodic variation. In the winter season, both 
NDVI and precipitation show minimum values. It can 
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be observed that NDVI is related to water availability, 
as higher NDVI is found during months with higher 
precipitation. It has also been observed that there is a 
time lag between high values of precipitation and VI. 
The time lag between NDVI and other meteorological 
parameters is discussed in the following section.

5.4. Time average spatial correlation analysis
Spatial analysis consists of locational analysis and 
the neighboring relationship of phenomena to be 
studied, whereas time series analysis reflects how 
observation data changes over a period of time. In 
this article, spatial time series correlation analysis 
was carried out to understand the potential interact-
ing pairs of time series across two sequential spatial 
time series datasets, where a strongly correlated pair 
of time series indicates that changes of one variable 
lead to changes in another variable over time. In the 
present study, spatiotemporal correlation analysis of 
LST, rainfall, SM, and ET with NDVI and EVI was 
conducted over the Kolkata conurbation and its sur-
rounding region for 2003-2016. Land use character-
istics and their changes have played a dominant role 

in determining the nature of land cover in this region, 
whose northern and northwestern parts are domi-
nated by highly urbanized land use characteristics, 
whereas the eastern part has an abundance of agricul-
tural land use and wetlands and also a few pockets 
of urban land use. A dense forest is located in the 
southeastern part of this area. The spatiotemporal 
correlation of LST, rainfall, SM, and ET with NDVI 
is shown in Figure 6a-d. A high to very high positive 
correlation has been observed near the Kolkata conur-
bation, which indicates that positive changes of LST 
lead to changes in NDVI over 2003-2016 (Fig. 6a). 
In the northeastern and southeastern parts of the study 
area, a negative correlation was found over this peri-
od. This relationship is controlled by the land use and 
land cover characteristics of the region, which, along 
with climate and soil, predominately determine the 
nature of vegetation. Here, the positive correlation 
exists along the conservation or urban agglomeration 
of Kolkata and its surrounding areas. These charac-
teristics were observed throughout the mentioned 
period (2003-2016). In the eastern, northeastern, 
and southeastern parts of the study area, a negative 
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correlation exists between LST and NDVI, where 
land use characteristics are dominated by agriculture 
and scattered human settlements. 

In general, rainfall and NDVI are positively 
correlated, but the nature of this relation varies, es-
pecially due to its land use characteristics and other 
climatic and physiographic vegetation processes 
from 2003 to 2016. The positive correlation between 
rainfall and NDVI exists along the study area’s north-
eastern, eastern, and southeastern parts; also in the 
westernmost part of the study area where agricultural 
land use with high-fertility soil is common. But in 
the urban agglomeration and its surrounding areas, 
there is a negative correlation due to the existence 
of urban land use. Overland water flow is a common 
phenomenon, and less vegetation concentration has 
been observed. 

The time average spatial correlation of SM and 
NDVI (shown in Fig. 7 for different parameters) 
varies spatially. In the study area’s eastern, north-
eastern, southern, and southwestern parts, SM and 
the nature of NDVI are positively correlated. The 
existence of agricultural land with fertile alluvial soil 

and surface and subsurface water is responsible for 
such relations. A negative correlation exists between 
SM and NDVI from 2003 to 2016 in the Kolkata 
urban agglomeration and its surroundings, where 
land use is characterized by an overland flow of 
surface water and lack of tree cover. A negative 
correlation between SM and NDVI was observed 
in the southeastern part of the study area, mainly 
determined by the existence of a mangrove forest 
and high-salinity soil (Saha et al., 2019). 

Cihlar et al. (1991) found a high correlation be-
tween NDVI and ET in the growing period. In the 
study area, a high positive correlation between ET 
and NDVI was observed in the eastern and northeast-
ern parts, where agricultural practice is performed 
throughout the year due to the availability of fertile 
alluvium soil, SM, and irrigation facilities. However, 
in the urban agglomeration, a negative correlation 
was observed due to the urban land use and lack of 
vegetation availability. A negative correlation was 
also observed in the southern part of the study area. 
A low-degree positive correlation was found in the 
southeastern and western parts of the study area due 
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to the existence of a vegetation surface. A similar 
kind of spatial correlation exists between EVI, rain-
fall, SM, and ET; as a result, it is controlled by land 
use characteristics and associated pedological and 
climatic elements. Both positive and negative spa-
tiotemporal correlations have been observed between 
the meteorological parameters and vegetation index, 
which are mostly controlled by this location’s land 
use and land cover characteristics.

5.5. Lag period correlation analysis
The lag period correlation analysis between veg-
etation indices (NDVI, EVI) and meteorological 
parameters sheds light on the temporal dynamics 
and interactions between vegetation and environ-
mental factors. In the literature, it has been indicated 
that the vegetation can respond with a lag in time 
to meteorological parameters (Sharma et al., 2021; 
Zhe and Zhang, 2021). The correlation values be-
tween NDVI and LST, SM, and precipitation are 
–0.45, 0.43, and 0.34, respectively, over Gautam 
Budha Nagar, India (Sharma et. al., 2022). The best 
correlation coefficient (0.66) between NDVI and 
precipitation has been observed with a one-month 
lag over South Tibet (Zhe and Zhang, 2021). Due to 
this fact, the time-lag effects have been investigated 
in the present study using the correlation analysis 
between NDVI and other meteorological parameters 
(0, 1, 2, and 3 months). The maximum correlation 
with rainfall (0.72), SM (0.83), ET (0.61), and LST 
(0.83) was observed with a two-month, one-month, 
two-month, and one-month lag, respectively, for 
NDVI for the total study period. Regarding EVI, 
the same time lag was observed with the meteoro-
logical parameters but with a reduced correlation 
coefficient value. It may be because EVI mainly 
represents high biomass regions. The correlation 
coefficients of EVI with rainfall, SM, ET, and LST 
are 0.52 (two-months lag), 0.68 (one-month lag), 
0.49 (two-months lag), and –0.72 (one-month lag), 
respectively. The variation of meteorological param-
eters with NDVI and EVI for the best correlation 
time month is shown in Figures 8 and 9, respective-
ly. The variation of meteorological parameters with 
GPP and SIF for the best correlation time month is 
shown in Figures 10 and 11, respectively. The vari-
ation of meteorological parameters with GPP and 
SIF for the best correlation time month is shown in 

Figures 10 and 11, respectively. A significant pos-
itive correlation was observed between NDVI and 
precipitation for a two-month lag period. Vegetation 
primarily depends on the natural water supply, 
which in turn depends on precipitation. Vegetation 
shows a slow rate of response to rainfall. The ND-
VI-precipitation correlation further relies on other 
factors, such as land cover, temperature, SM, and 
others (Xiong et al., 2003; Wang et al., 2013; Huang 
et al., 2017). The sensitivity of vegetation is also 
dependent on SM and ET. SM plays a crucial role 
in controlling the life span of plants, which affects 
the evaporation rate and ET of leaves (Xiong et al., 
2003; Huang et al., 2017). A positive correlation has 
been observed between NDVI and ET, as NDVI is 
directly proportional to vaporized water entering 
the atmosphere. A negative correlation has been 
observed between NDVI and LST over this region, 
which can be triggered by the topography of a par-
ticular region (Peng et al., 2020). LST in the urban 
location has an inverse relation with vegetation due 
to the effect of land surface materials (Yue et al., 
2007). The correlation analysis of VI with different 
meteorological parameters for different time lag 
periods is shown in Table II.

6.	 Conclusion
This study investigates the long-term characteristics 
of VIs over Kolkata and its surroundings from 2003 
to 2016, using satellite-based observations. NDVI, 
EVI, GPP, and SIF are analyzed, along with their 
relation to meteorological parameters such as pre-
cipitation, SM, ET, and LST. The following are our 
main observations:

1.	 Interannual variability is observed for VI and 
meteorological parameters, with the highest and 
lowest VI values occurring in September and 
January, respectively. There is a notable increasing 
trend in VI, ET, and LST, while precipitation and 
SM show decreasing trends over the study period.

2.	 NDVI reflects water availability, showing higher 
values during months with more rainfall. There 
is a time lag between peak precipitation and 
maximum vegetation, typically observed in Au-
gust-September, coinciding with the monsoon 
period.
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3.	 Spatial variations in NDVI are linked to land use 
characteristics. Areas dominated by agriculture 
show increased NDVI, while regions undergoing 
urbanization exhibit decreasing trends. Land use, 
climate, and soil properties influence vegetation 
dynamics.

4.	 Time lag effects are explored through correlation 
analysis between NDVI and meteorological pa-
rameters, revealing significant correlations within 
one to two-month periods. NDVI shows positive 
correlations with precipitation, SM, and ET, while 
an inverse correlation is observed with LST, influ-
enced by land surface materials and topography.

Overall, the study provides insights into the long-term 
spatiotemporal dynamics of VIs and their relationship 

with meteorological parameters in a tropical urban 
area, aiding in understanding ecosystem responses 
to environmental changes. Expanding the study be-
yond Kolkata to other metropolitan cities in India to 
observe vegetation cover dynamics in relation to me-
teorological parameters is a commendable initiative. 
By broadening the scope of the study, researchers 
can gain insights into the spatiotemporal character-
istics of vegetation indices across different urban 
agglomerations in India and assess the influence 
of meteorological factors on vegetation health and 
dynamics. This extended research effort has the po-
tential to contribute significantly to our understanding 
of urban vegetation dynamics and their relationship 
with meteorological parameters on a broader scale. 
By comparing vegetation responses across multiple 

Table II. Correlation analysis of VI with different meteorological parameters for different 
time lag periods.

Elements 0 month
(March–September)

1 month
(April–October)

2 months
(May–November)

NDVI

Rainfall 0.45 0.62 0.72
Soil moisture (0-10 cm) 0.70 0.83 0.77
Soil moisture (10-40 cm) 0.72 0.85 0.76
Evapotranspiration 0.42 0.54 0.61
Land surface temperature –0.78 –0.83 –0.64

EVI

Rainfall 0.38 0.40 0.52
Soil moisture (0-10 cm) 0.67 0.68 0.52
Soil moisture (10-40 cm) 0.44 0.46 0.26
Evapotranspiration 0.40 0.43 0.49
Land surface temperature –0.60 –0.72 –0.47

GPP

Rainfall 0.19 0.21 0.46
Soil moisture (0-10 cm) 0.12 0.19 0.51
Soil moisture (10-40 cm) 0.12 0.21 0.55
Evapotranspiration –0.09 0.03 0.32
Land surface temperature 0.09 –0.32 –0.64

SIF

Rainfall 0.22 0.41 0.43
Soil moisture (0-10 cm) 0.46 0.59 0.4
Soil moisture (10-40 cm) 0.47 0.62 0.38
Evapotranspiration 0.15 0.25 0.29
Land surface temperature –0.49 –0.63 –0.33
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metropolitan areas, researchers can identify common 
patterns, drivers, and trends, facilitating the devel-
opment of a comprehensive model describing how 
vegetation changes with meteorological effects over 
the long term in Indian urban contexts. Such a model 
could have practical implications for urban planning, 
environmental management, and climate resilience 
strategies in Indian metropolitan cities. By integrat-
ing satellite observations, meteorological data, and 
vegetation indices, policymakers and urban planners 
can make informed decisions to promote sustainable 
urban development, enhance green infrastructure, 
and mitigate the impacts of climate change on ur-
ban ecosystems and human well-being. Overall, the 
planned extension of the study to other metropolitan 
cities in India holds great promise for advancing 
our knowledge of urban vegetation dynamics and 
informing evidence-based policies and practices for 
sustainable urban development.
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