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RESUMEN

Las plantas de energia eélica son vulnerables a tormentas eléctricas asociadas con la actividad de los rayos y
las rafagas de viento severas y cambios en la direccion del viento que las acompafian. Debido a una variedad
de dafos que tales fenomenos pueden causar, el conocimiento de la relacion entre los sistemas de tormentas
y el campo eodlico producido es esencial para establecer una planta de energia edlica también durante la fase
de construccién y operacion. En la primera parte de este estudio se investiga la relacion entre las fuertes
rafagas de viento y la actividad de los rayos en un parque eolico de Grecia. Los datos de viento provienen
de aerogeneradores que cubren un periodo de tres aios (2012-2014), mientras que los datos de rayos corres-
ponden a la red de deteccion de iluminacion ZEUS. Las rafagas de viento estan bien correlacionadas con los
rayos. La correlacion se maximiza durante el invierno cuando sistemas convectivos bien organizados afectan
el area y es minima en verano como resultado de las tormentas locales debidas a la inestabilidad térmica.
En la segunda parte, el estudio se centra en el desarrollo de un modelo de red neuronal artificial con el fin
de pronosticar estos dos parametros a una hora utilizando cuatro variables, a saber, CAPE, TTI, velocidad
del viento a 500 hPa y la cizalladura vertical del viento de 0-6 km. El modelo propuesto podria considerarse
como una herramienta prometedora para simular la ocurrencia tanto de rafagas de viento como de relampagos,
proporcionando una evidencia relativamente buena de la posibilidad de que ocurran tales eventos.

ABSTRACT

Wind power plants are vulnerable to abrupt weather changes caused by thunderstorms associated with light-
ning activity and accompanying severe wind gusts and rapid wind direction changes. Due to the damages
that such phenomena may cause, the knowledge of the relationship between storm systems and the produced
wind field is essential during the construction and operation phase of a plant. In the first part of this study,
the relationship between severe wind gusts and lightning activity in a power plant in Greece is investigated.
Wind data are measured at the wind turbines for a 3-year period (2012-2014); the corresponding lightning
data come from the ZEUS lighting detection network. Wind gusts are well correlated to lightning strikes. This
correlation is maximized during winter when well organized weather systems affect the area and minimized
in summer as a result of local storms due to thermal instability. The second part of the study focuses on the
development of an artificial neural network (ANN) model in order to forecast these two parameters in a
1-h ahead horizon based on wind speed, wind direction, and maximum observed wind gust measured at the
nacelle of a wind turbine and four other variables, namely CAPE, TTI, wind speed at the 500 hPa isobaric
level, and the 0-6 km vertical wind shear. The proposed model could be considered as a promising tool in
simulating the occurrence both of wind gusts and lightning flashes, providing a relatively good evidence of
the possibility of occurrence of such events.
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1. Introduction

We characterize as severe weather the meteorological
conditions which potentially may provoke extremely
hazardous situations in any aspect of human life.
Consequently, for the energy production industry, se-
vere weather is considered as the conditions that may
cause extended disruptions to the energy distribution
system and, in the worst case, significant interruptions
to the energy production and transportation (Zepka et
al., 2008). Such impacts may be caused by lightning
discharge as well as by severe wind, phenomena
closely related to thunderstorms.

Thunderstorms are weather phenomena related
to cumulonimbus clouds and develop due to the
atmospheric instability on a local or regional scale.
They are one of the most spectacular and, simulta-
neously, dangerous meteorological phenomena, that
may be encountered at any time and in any place of
the world. Although thunderstorms have a relatively
short duration—as an isolated event—they encom-
pass a tremendous power, producing extreme events
of lightning strikes, severe winds, heavy precipita-
tion, and hail. All these are potentially dangerous to
human life and property (Litta et al., 2013), which
is the main reason why meteorologists pay special
attention to thunderstorms, trying to understand the
mechanisms of their development and to provide
forecasts as accurate as possible.

The main factors which especially favor the devel-
opment and evolution of deep convection are large at-
mospheric instability and humidity, and the presence
of an appropriate lifting mechanism (e.g., Johns and
Doswell, 1992; Doswell et al., 1996). In particular,
the primary parameters associated with intense,
severe, and well-organized local thunderstorms are
large convective potential available energy (CAPE)
combined with vertical wind shear. Case studies
regarding the occurrence of such meteorological con-
ditions in Europe and the USA for the period 1958-
1999 are provided by Brooks (2009) and Brooks et al.
(2007). As it emerges, the possibility of occurrence
of severe phenomena for certain types of weather is
higher in the European continent than in the USA, but
the specific meteorological conditions that favor this
occurrence are rarely encountered. Furthermore, syn-
optic meteorological conditions combined with local
factors, such as complex topography, play an essential
role in the initial stage of thunderstorms in Europe.
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Cases in which meteorological conditions are com-
bined with local factors are examined in many studies
(e.g., Schmid et al., 2000; Kaltenbock, 2000a, b,
2004, 2005; Kaltenbock et al., 2004; Dotzek et al.,
2001, 2007; Hannesen et al., 1998, 2000; Mazarakis
et al., 2008; Galanaki et al., 2015), where the impor-
tance of local factors (like orography, inshore areas or
areas of convergence, among others) are particularly
examined regarding the development and evolution
of medium-scale weather phenomena.

Other studies focus on the climatological fre-
quency of severe local wind events and coexisting
meteorological conditions (i.e., Wakimoto, 1985;
Johns and Hirt, 1987). Although they do not exclu-
sively examine the observed wind gusts produced by
thunderstorms, they provide significant information
concerning their frequency and the complex thunder-
storm environment which result in the development
of severe weather conditions (Smith et al., 2013).
Furthermore, the literature reveals also studies an-
alyzing the occurrence of severe wind gusts as a
result of passing fronts or convective weather with
the use of synoptic weather observations as well as
data from weather radars (Bartha, 1994). Neverthe-
less, the knowledge about the special characteristics,
climatology and frequency of appearance of such
convective gusty winds and their separation from
the turbulent gusts, especially in cases of a mixed
weather type, is limited.

In this perspective, the forecast of thunderstorms
that may produce intense lightning activity accom-
panied by strong-to-severe wind gusts, for a time
horizon of a few hours would be of great impor-
tance since it would contribute to the reduction of
the negative impacts on, among others, the energy
production and distribution sector. Although many
efforts have already been devoted in this direction,
thunderstorm forecasting remains a particularly chal-
lenging topic due to the temporal and spatial extent
of such phenomena, combined with the non-linearity
of the factors (dynamical and physical) affecting
their evolution.

During the last decades many studies were devot-
ed to comprehending the mechanisms that prevail
during a thunderstorm event and the way they drive
it. Some of these works deal with thunderstorm
phenomena and nowecasting (e.g., Schultz et al.,
2011; Chaudhuri and Middey, 2013; Wu et al., 2018;
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Mostajabi etal., 2019), while others tackle the subject
of thunderstorm and/or lightning nowcasting (e.g.,
Rasmussen and Blanchard, 1998; Yair et al., 2010;
Kohn et al, 2011; Fierro et al., 2014; Giannaros et
al., 2015; Das, 2017; Dafis et al., 2018; Wang et al.,
2018). Most of these models are empirical, dynamic
or combined. More recent studies using artificial
neural networks (ANNs), which are applied to a wide
range of applications, have contributed to the im-
provement of such efforts. These statistical models,
which can handle non-linear problems, “learn” the
relationship between inputs (independent variables)
and outputs (dependent variables) by analyzing past
data; they ignore data that do not explain a large
part of the variance of the underlying process and
concentrate instead on those that do so (Kalogirou,
2001).An important number of ANN application
studies can be found in literature (e.g., Kalogirou,
1997; Zhang et al., 1998). These models differ in
the network architecture, learning, activation, output
functions, etc.

Feng and Kitzmiller (2004) discuss the set-up
and application of an experimental severe weather
nowcasting algorithm, based on a back-propaga-
tion neural network (BPNN) and compare it with a
multiple linear regression model. The BPNN model
uses as input weather radar and upper-air data from
numerical models. The methods provided essential
improvements to the operational Advanced Weather
Interactive Processing System (AWIPS) algorithm
developed from a much smaller sample of observa-
tional data for operational use, while the BPNN ap-
proach exhibited higher forecast scores and, overall,
a better performance. Zepka et al. (2008) proposed a
cloud-to-ground (CG) lightning forecast system using
a back-propagation, multilayer, feed-forward neural
network having as inputs lightning data and a num-
ber of meteorological (thermodynamic) parameters
obtained by the ETA model, which is the operational
numerical forecast models run at NCEP, known as
the North American Mesoscale (NAM) model. The
applied model showed very good results, whose accu-
racy depends on that of the mesoscale model data and
the lightning detection network data used as input.
Moreover, Zepka et al. (2014) introduced a lightning
forecasting system using neural networks (NN) based
on correlations between CG lightning flash data and
meteorological variables obtained from MMS5 with

promising results. In the literature there is a great
number of works based on artificial intelligence and
data mining techniques (e.g., Sa et al. 2011; Bates et
al. 2018; Schon et al., 2019; Mostajabi et al., 2019;
Shrestha et al., 2019). An extensive survey of several
research papers can be found in Bala et al. (2017).

In this work we examine the occurrence of
extreme wind gusts around a wind power plant, lo-
cated in a hilly region of western Greece, based on
the presence of cumulonimbus clouds and lightning
activity. Furthermore, the 1-h forecast of lightning
flashes and wind gusts for a horizon of 24 h and
with the use of ANN statistical models is analyzed.
The examined period spans from January 1, 2012 to
December 31, 2014.

The paper is organized as follows: section 2 de-
scribes the study area, the wind speed and direction
data and the ZEUS network from which we got the
lightning activity data; section 2 also explains how
a wind gust is determined; section 3 presents the
statistical analysis of the observed wind gusts as well
as the detected lightning flashes in relation to the me-
teorological conditions; in section 4 the forecasting
procedure is described in detail; section 5 presents
the overall forecasting results, and the conclusions
are discussed in section 6.

2. Data and methodology

The study focuses on a wind power plant at a hilly
area close to the town of Nafpaktos, western Greece,
at an altitude between 1000 and 1500 m. The study
covers an area between 38° 15°-38° 37° N, and
21°33°-22° 01’ E, a grid box with dimensions 20 X
20 km? (Fig. 1).

Fig. 1. Study area (light yellow box: 10 x10 km?; yellow
box: 20 x20 km?).
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2.1 Wind data

The wind speed and direction are measured at the
nacelle of a wind turbine, at a height of 67 magl.
Three years of data are used, from January 1, 2012
to December 31, 2014, which consist of the mean
wind speed and direction over the last 10 min and the
maximum observed wind gust over the same period.
These wind data have been aggregated to mean hour-
ly values; the absolute maximum wind gust during
the averaging period is also calculated.

The most commonly used approach to determine
wind gusts is that of the World Meteorological Or-
ganization (WMO), according to which, e.g., the
METeorological Aerodrome Report (METAR) and
the Aviation SPECIal Weather Report (SPECI), code
a wind gust as the maximum horizontal wind speed
lasting for at least 3 s if only it exceeds the mean wind
speed over the sampling interval by at least 10kts
(=5ms) (WMO, 2011a, 2014).

There are also other approaches used on a regional
or national level. NOAA (1998) defines the wind
gust as the maximum wind speed that lasts 2 s and is
10 kts (=~ 5 ms™") or higher than the mean wind speed
sampled over a 2-min period. In another definition,
a gust is the wind speed value lasting for at least 5 s
within a 1-h sampling interval (Lombardo et al.,
2009; Harris and Kahl, 2017; Letson et al., 2018).
According to the WMO (2011b), in Argentina a gust
is the maximum hourly average wind speed value that
exceeds 30 kts (~ 15 ms!). Apart from the difference
in the way a wind gust is defined and calculated, it
is worth mentioning that there are also numerous
approaches concerning the distinction between con-
vective wind gusts and gusts resulting from gradients
or local factors (such as topography). De Gaetano et
al. (2014) provide a long list of such methods.

In this study we considered as a recorded wind
gust the maximum observed wind speed exceeding
the average wind speed over the sampling interval
by 10 m s~! (20 kts). The reason for not adhering to
the WMO definition is that our data are collected at
an altitude of about 1350 m, where the differences
between mean wind speed and wind gusts, for any
sampling interval, frequently exceed 5.1 ms™! by far.
In fact, the average difference between the hourly
mean and the mean maximum wind speed is 5.0
+ 2.0 m s”! with a maximum of 19.3 m s, while
the respective average difference by the absolute

maximum wind speed is 6.4 = 2.6 m s~ with a maxi-
mum of 33 ms™'. On the contrary, the proposed limit
of 10 m s™! is observed in fewer cases and mainly
when a weather change occurs or is going to occur.

The study focuses on the relationship between
wind gusts observed at the wind power plant site and
the lightning flashes detected simultaneously inside a
specified area (grid box). If one or more wind gusts
are recorded at the site of interest, in order to calcu-
late the hourly wind gust values, the data are filtered
out to the absolute hourly maximum wind speed and
hourly mean wind speed, respectively. Simultaneous-
ly an extensive quality control is applied in order to
clarify if those wind gusts are due to thunderstorms
or to other reasons, e.g., wind speed fluctuations
due to local factors such as morphology or even due
to possible malfunction of the sensor or the data
logger. The data analysis revealed nevertheless that
thunderstorms with lightning activity are not always
accompanied by gusty winds.

2.2 Lightning data

The required lighting data were provided from the
European Network of Lightning Strike Detection
ZEUS. This is a large distance network of five receiv-
ers placed around Europe with a very good coverage
in the central and eastern Mediterranean (Kotroni
and Lagouvardos, 2008; Lagouvardos et al., 2009)
with a spatial accuracy of the order of 4-5 km. These
receivers record the radio signal (sferic) emitted by
mainly cloud-to-ground (CG) electric discharges in
the VHF range between 7 and 15 kHz. Each receiver
captures up to 70 sferics per second; every time such
a signal is captured a detection algorithm processes
the signal of all the receivers in order to detect the
possible sferic candidate, excluding weak signals
and noises. Consequently, the location of detected
discharge is determined by applying a triangulation
technique over the arrival time difference.

It is worth mentioning that the points indicating
the occurrence of lightning discharges represent a
big portion of the total electric activity, including the
IC and CG flashes as well. According also to Maier
and Krider (1986) and Williams et al. (1989), the IC
activity prevails in the first stages of the developed
thunderstorms, while the CGs occur later.

Driie et al. (2007) state that the detected dis-
charges are merged and if specific criteria are
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satisfied then lightning flashes datasets might be
created. According to these criteria observed flash-
es having a spatial difference up to 20 km and a
temporal difference of 1 s are considered as one
flash. Other studies suggest different approaches. In
Cummins et al. (1998) and Diendorfer (2008) the
location and time of the first recorded flash consist
of an individual lightning datum, while in Piper and
Kunz (2017) a day with lightning is considered as
when at least five electric discharges are detected
in a grid box of 10 x10 km?.

Because of the apparent difficulty in separating the
IC and CG electric discharges, in this study we devel-
oped the hourly lightning dataset by processing and
clustering the data according to Driie et al. (2007).
So, if a lightning flash fulfils the criteria, the hour of
detection is flagged as a flash data independently of
the total number of flashes detected during the same
period.

3. Statistical analysis of wind gusts and light-
ning flashes

The frequency of detected lightning discharges over
the eastern Mediterranean basin reaches a maximum
in autumn (Yair et al., 2010; Kotroni and Lagouvar-
dos, 2016), while most of them occur over maritime
and coastal areas rather than overland when warm
waters provide the appropriate conditions for storm
development. The lightning activity is produced by
cumulonimbus clouds due mainly to synoptic scale
meteorological conditions (well-organized cyclones)
or, in a lesser extent, to passing troughs.

Graeme and Klugmann (2014) demonstrated a
clear preference of thunderstorms with lightning
activity to occur over land during the warm season
of the year. The opposite happens during the cold
season, when the majority of these events befall
over the sea. The average annual number of electric
discharges per km? in Europe ranges between 0.1
and 4. Galanaki et al. (2015) also studied the cloud-
to-ground activity over 10 years (2005-2014) in the
eastern Mediterranean basin with similar results.
Their results revealed an average annual number of
electric discharges between 0.1 and 6, with highest
densities over land, while the majority of lightning
events over sea befell over the lonian Sea and the
west coastal areas of the Balkans.

The analysis of synoptic charts and thermodynam-
ic diagrams revealed that the general meteorological
conditions over our area of interest during 2012-2014
were characterized by a sequence of hot and cold
periods accompanied by the corresponding weather
phenomena, as normally expected. During winter the
development and passage of low-pressure systems
results in an important number of lightning flashes,
especially over the sea. That type of weather led to
a high number of events of severe wind gusts which
sometimes lasted for more than two days, as a result
of long-lasting frontal activity accompanying those
systems. These severe gusts were either related di-
rectly to the occurrence of a lightning flash or to the
wind profile induced by those pressure systems as the
result of the air convection and pressure gradient. As
shown in Figure 2, most of the observed wind gusts
due or to thunderstorms not, as well as the detected
lightning flashes are connected to southern wind di-
rections. The main reason was the frequent passage of
well-organized low-pressure systems with extended
frontal activity, moving from west to the east and
overpassing the area of interest.
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Fig. 2. Frequency distribution of wind direction at the wind
turbine height related to the total wind gusts (right), wind
gusts in the presence of lightnings (middle) and wind gusts
in the absence of lighting (left).

The number of lightning flashes and wind gusts
within a 1-h period in the site of interest are presented
in Table I. The analysis of the dataset of the area of in-
terest for the period from January 1 2012 to December
31,2014 revealed that a total of 268 lightning strikes
occurred, leading to an annual average of 89.3 strikes.
The corresponding number of wind gusts, determined
according to the definition given in section 2.1, was
937 with an annual average of 312.3 events. The



284

Table I. Total number of lightning flashes and wind gusts
higher than 10 m s™! in a period of 1 h. The total number
of wind gusts related or not to lightning flashes are also
shown.

Wind Lightning  Wind gusts ~ Wind gusts not
gusts flashes related to related to
lightning lightning
flashes flashes
937 268 636 301

number of wind gusts is divided into those related to
lightning strikes and those that are not. From the total
0f937 observed wind gusts, 636 (68%) were found to
be related to lighting strikes. Nevertheless, only 235
were directly related to the strikes (cases in which a
wind gust is observed within the same hour than a
lightning strike) while the remaining 401 recorded
wind gusts were the result of the general activity of
severe weather affecting the surrounding area and
producing strong wind gusts sometime before or after
the strike. The analysis also revealed that the major
portion of the detected lightning strikes (235, 88%)
coincided with the observation of strong wind gusts,
while the remaining 33 strikes (12%) were not ac-
companied by gusts or even a slight wind disturbance.

From Table [ it is apparent that 301 of the observed
wind gusts (32%) were not related to the occurrence
of lightning strikes (direct or indirect) or to any
synoptic system. This is attributed to the complex
topography of the surrounding area, which combined
with specific isobaric situations, might produce se-
vere wind gusts (e.g., high pressure systems from the
north combined with low pressure systems from the
south, which induce strong north-northeast airstreams
or strong southern air flows in the low and middle
atmosphere, ahead of a slow moving weather system).
Furthermore, a small percentage of such wind gusts
is due to recording errors (e.g. instrument’s fault).
In that case, the separation of these wind gusts from
those due to lightning strikes is practically inevitable.

Figure 3 presents the daily, monthly and seasonal
distribution of the total wind gusts and the detect-
ed lightning strikes for the examined period. The
number of wind gusts related directly or indirectly
to lightning strikes and those that are not related are
also shown. As shown in the figure, wind gusts and
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Fig. 3. Daily (top), monthly (middle) and seasonal (bottom)
distribution of total wind gusts (black bars), total lightning
strikes (grey bars), wind gusts related to lightning strikes
(white bars) and wind gusts not related to lightning strikes
(dark grey bars).

lightning strikes present a maximum in the afternoon
and a second peak of smaller magnitude around mid-
night. It can also be observed that the activity during
winter is intense but decreases significantly during
the warm period of the year. This is clearly shown in
the seasonal distribution, where the recorded wind
gusts reach 49% of the cases and lightning strikes
41% of them. These results partially agree with the
findings of related studies analyzing the frequency
and distribution of detected lightning flashes in the
area of interest (Graeme and Klugmann, 2014; Yair et
al., 2010). The main reason for this distribution is an
intensive frontal activity during the cold period of the
year in the area of interest, which has its maximum
between December and February. This activity some-
times leads to the development of severe weather fre-
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quently accompanied by thunderstorms with intense
lighting activity and a strong wind profile (Houze,
2014), especially at the altitude of the wind power
plant. These conditions may last for a long period of
time (more than two days) (Galanaki et al., 2018).
Figure 4 emphasizes that the distribution of wind
gusts accompanied by lightning strikes is a func-
tion of weather types. The different meteorological
conditions affecting the surrounding area consist of
weather phenomena due to synoptic (e.g., organized
cyclones, passing troughs) and atmospheric insta-
bility (mainly thermal) conditions. As shown in the
figure the wind gusts due to synoptic conditions
prevail. These synoptic conditions are more com-
mon in Greece during the cold period, i.e., between
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Fig. 4. Causes of wind gusts (y-axis) related to lightning
flashes: synoptic scale (grey bars) and instability (black
bars) conditions.

November and April. As seen in Table II, all wind
gusts directly related to lightning strikes were ex-
clusively caused by synoptic weather conditions for
most of the months. Of the 199 lightning strikes of
this category, 159 (80%) were encountered in this
period (between November and April), together with
68% of the total wind gusts directly related to strikes

Table II also reveals that 32% of the wind gusts
due to synoptic weather types were directly related to
lightning strikes. As mentioned earlier, this is because
the synoptic weather produces a strong wind profile
that expands vertically to the upper atmosphere and
also horizontally at large distances ahead of the
forthcoming frontal zone (e.g., Houze, 2014). In such
cases, wind speed starts increasing as frontal zones
approach; eventually, strong wind gusts are recorded
even if the lightning flashes in the surrounding area
occur later on. Additional evidence that confirms
this aspect is shown in Table II (4th column), where
the rate of wind gusts per lightning strikes in each
month is given, resulting in an annual average equal
to 2.7. It is obvious that in most months affected by
synoptic weather conditions this rate is high and far
from 1, with a maximum in December (4.7), followed
by February (3.4) and March (3.1).

On the other hand, when atmospheric instability
develops within the study area, weather conditions
are characterized by isolated and/or clusters of cu-
mulonimbus clouds, which develop over or close to

Table II. Wind gusts related to flashes vs. weather types.

Month Wind gusts ~ Total Gusts/flashes  Flashes due Flashes due to

related to  flashes to instability synoptic scale
flashes conditions conditions

January 127 47 2.7 0 47

February 64 19 34 3 16

March 72 23 3.1 2 21

April 59 28 2.1 1 27

May 25 10 2.5 4 6

June 2 2 1.0 2 0

July 7 7 1.0 7 0

August 4 4 1.0 4 0

September 27 22 1.2 6 16

October 54 21 2.6 3 18

November 53 22 2.4 2 20

December 142 30 4.7 2 28

Total/average 636 235 2.7 36 199
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the mountains and hills, resulting in local showers
and thunderstorms sometimes followed by lightning
activity, causing intense fluctuations of wind speed and
direction. Wind speed increases when these phenome-
na appear, while the corresponding gusts are produced
more or less simultaneously with the lightning flashes.
These gusts may be as severe as those of the previous
case but of shorter duration, occuring mainly during
the presence of isolated thunderstorms and constrained
temporally and spatially by the thunderstorm. When
thunderstorms dissipate, such wind gusts disappear.

The corresponding percentage of gusts due to
isolated thunderstorms directly related to lightning
strikes was only 5%. Nevertheless (in contrast to
the cases of synoptic weather conditions) in months
when instability (mainly thermal) conditions
prevail (May to September), the corresponding
monthly rate of wind gusts per lightning strikes is
too low and (especially during summer) equal to 1
(Table II). This clearly leads to the conclusion that
almost all the wind gusts observed during that period
of the year and in the area of interest are produced
only by isolated thunderstorms mainly over the
surrounding hills, and are directly related to the oc-
currence of lightning strikes.

4. Wind gusts and lightning flashes forecasting
4.1 Thermodynamic parameters

The development of cumulonimbus clouds and thun-
derstorms is a result of the simultaneous occurrence
of a number of factors such as atmospheric instability,
large amount of moisture, vertical wind shear and
potential available energy (e.g., Johns and Doswell,
1992; Doswell et al., 1996, Rudolf et al., 2010).

In our study, we analyzed the correlation between
wind gusts and flashes using four well-known param-
eters, namely convective available potential energy
(CAPE), total totals index (TTI), wind speed at 500
hPa, and the 0 to 6 km vertical wind shear. These pa-
rameters are measured using radiosondes or satellites.
They can also be obtained from numerical weather
prediction models (Davis, 2001). In this study we
used data provided by the Copernicus Climate Data
Store, generated using Copernicus Climate Change
Service (C3S) information (C3S, 2019). The data
consist of hourly values with a 0.25° x 0.25° spatial
resolution. In what follows we discuss each of the

above parameters in detail. We also examine their
correlation with flashes and gusts.

4.1.1 Convective potential available energy

The convective potential available energy (CAPE) is
one of the main indexes of the possibility of thunder-
storms occurrence. CAPE is obtained with Eq. (1):

EL Ge - ges
LFC 9&9

where LFC is the level of free convection, EL
the equilibrium level, 6. the equivalent potential
temperature of the air parcel, and 6,5 the saturated
equivalent potential temperature of the atmospheric
environment. CAPE stands for positive differences
between 6, and 6,5, meaning that the pseudo-adiabatic
of the displaced air parcel is warmer than that of the
environment resulting in instability situations (S4 et
al.,2011; Das, 2017). In other words, it is the amount
of energy an air-parcel would have in the case it was
vertically lifted to a certain height in the atmosphere.

Its value of 250 J kg! is a critical limit for the
discrimination between thunderstorm and non-thun-
derstorm classes (Kaltenbock et al., 2009). It is also
used to distinguish ordinary thunderstorms from
severe events that might cause heavy rain, hail and
gusty winds. Figure 5 illustrates the relation between
the CAPE and the distribution of the total observed
wind speed gusts related and not related to lightning
and of the total number of lightning flashes. In this
work, it is mainly used to investigate the occurrence
of thunderstorms with lightning flashes producing
severe wind gusts. In should be noted that the CAPE
is mostly connected to instability events not resulting
from well-organized cyclones, which are due to local
causes such as unstable weather in summer months or
the presence of an extended upper low accompanied
by cold temperatures. So, in this work the CAPE is
not considered as the main representative index for
the assessment of lightning activity because (as men-
tioned in section 3), the lightning flashes are mainly
due to frontal weather phenomena and, to a lesser
extent, to isolated thunderstorms due to atmospheric
instability conditions.

4.1.2 Total totals index
The total totals index (TTI) is an instability in-
dex extensively used for a first estimation of
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Fig. 5. Box and whisker plots of the total amount of light-
ning, wind speed gusts related and not related to lightnings,
for (a) CAPE, (b) TTI, (c) wind speed at 500 hPa and (d)
vertical wind speed between 1000 hPa and 500 hPa. The
lower box boundary indicates the 25th percentile, the line
within the box the mean, the upper boundary of the box
indicates the 75th percentile, while bars above and below
the box indicate the 90" and 10% percentiles. The 5% and
95% percentiles are marked as points.

thunderstorm events followed by severe weather
phenomena, especially in North America (Peppier,
1988). This parameter gives an indication of the
probability of occurrence of a thunderstorm and its
severity by using the vertical gradient of temperature
and humidity. The TTI consists of the arithmetic
combination of vertical totals (VT; 850-500 hPa
temperature difference) and cross totals (CT; the
difference between the 850 hPa dew point and 500
hPa temperature) according to Eq. (2):

TT = Tso + Tdsso — 2T 500 )

The probability of deep convection tends to in-
crease with increasing lapse rate and atmospheric
moisture content, while TTI values also vary slightly
by geographic location and season. Moreover, 44 K
is considered as the value-threshold for the proba-
bility of thunderstorms occurrence. Values between
44 and 50 K indicate likely thunderstorms, while
values higher than 50 K are a strong indication of the
development of severe mesoscale convective systems
(e.g., Maddox, 1983; Velasco and Fritsch, 1987).
Figure 5 presents the relation between the TTI and
our parameters of interest. It can be seen that light-
ning flashes and wind gusts related to them occur
preferentially for TTI values around 50 K. It is also
shown that when the observed wind gusts are not the
result of lightnings the TTI ranges between 40 and
50 K, probably revealing that these gusts are due to
other reasons than lightning.

4.1.3 500 hPa wind speed

The 500 hPa isobaric level is particularly important
for the evaluation of the atmosphere’s status . There-
fore, the wind at that level is a useful parameter
for the study of the mid-tropospheric circulation.
High wind speeds at 500 hPa are related to severe
weather, mainly to gusty winds, because they pro-
vide an indication of the downward motion of the
developed thunderstorms (Dotzek et al., 2009).
In particular the rear-flank downdraft or dry rear
inflow of well-organized local thunderstorms is
mostly observed when the 500 hPa wind speed is
high enough (Kaltenbock, 2004). As shown by the
available data, wind speeds of 20 m s or higher
constitute a good index of the occurrence of light-
ning discharges, directly or indirectly accompanied
by severe wind gusts (Fig. 5). In cases when wind
gusts are not related to thunderstorm presence, the
wind speeds at 500 hPa are lower.

4.1.4 0-6 km vertical wind shear

The difference of wind speed between the low
(1000 hPa) and upper (500 hPa) atmosphere (ver-
tical wind shear, 0-6 km VWS) is another useful
index of imminent atmospheric instability. Higher
differences are observed in cases of thunderstorms
accompanied with lightning activity and strong wind
gusts. When the wind gusts are not due to lightning
flashes the VWS values interval is bigger with an



288 K. V. Kolokythas et al.

average approximately equal to 10 m s!. On the
other hand, more than 50% (between the 25th and
75th percentiles) of the events of lightning discharges
and severe wind gusts are related to VWS of about
15 m s ! (Fig. 5). Therefore, this value is considered
as a limit for the discrimination of wind gusts due to
lightning those due to other reasons. These findings
are in accordance with related works investigating
events of severe weather phenomena closely related
to thunderstorms and their general activity (e.g., Ras-
mussen and Blanchard, 1998; Schmid et al., 2000;
Kaltenbock et al., 2009).

4.2 Model selection

In this work we propose a multilayer percep-
tron feed-forward neural network (MLP) model
back-propagation learning algorithm in order to
predict probable lightning flashes and wind gusts 1
h ahead for a forecasting horizon of 24 h. This type
of neural networks are widely applied in various
disciplines mainly because they are capable of arbi-
trary mapping the input-output relationship (Zhang
et al., 1995; Wei et al., 2000). Typically, such a net-
work consists of multiple layers of nodes; the first
and last layers are the input and the output layers,
respectively. Between them there are one or more
so-called “hidden” layers of neurons fully intercon-
nected to each other with the use of proper weights.
An example of a feed-forward neural network model
is presented in Figure 6.

One of the most crucial aspects during an ANN
model setup is the selection of the appropriate input
values (Alexiadis et al., 1998; Zhang et al., 1998).
The model topology, i.e., the number of hidden layers,
weights and biases values, the training method, the
least acceptable error and the number of iterations
during training are the key factors that should be
defined in advance, while their optimal combination
is heuristic, using a trial-and-error approach. For our
purpose we selected feed-forward neural network
with a single hidden layer which allows skip-layer
connections. As activation function f% of the hidden
layer we selected the sigmoid function:

1
Shx) = I-FTp(—x) 3)

and the linear function as the output layer function,
fo. The model output yy is given by Eq. (4):

%
X;
ulx)
X3
X5 \Y
X
Wik

Input layers Hidden layers Output layers

Fig. 6. Example of a typical feed forward neural network.

1

fhx) 1+ exp(—x) )
where x; is the inputs, oy and oy are the biases, and
whk and wy, are the set of weights of every link in the
network. The sets of weights are adjusted by a general
quasi-Newton optimization procedure, the BFGS
algorithm (BFGS method), published simultaneously
by Broyden (1970), Fletcher (1970), Goldfarb (1970),
and Shanno (1970). This is an iterative algorithm
for solving unconstrained non-linear optimization
problems. Its advantage is that it gets close to a local
minimum reaching it to the machine accuracy after
a few iterations (Ripley, 1996). The algorithm uses
function values and gradients to build up a picture of
the surface to be optimized (Fletcher, 2000) and has
been already applied in a variety of works resulting
to better model fitting during training that led to more
precise forecasts (Liu et al., 2013, 2018).

The inputs of our model are first lags of hourly
data of CAPE, TTI, wind speed at 500 hPa and
the 0-6 km VWS. Additional inputs tested are the
corresponding lags of the difference between mean
maximum and mean hourly wind speed as well as
the first lag of the absolute maximum wind speed
in the same hourly interval. The output layer of our
model consists of one neuron providing the 1-h ahead
forecast results for the next 24 h, whether or not a
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wind gust or a flash have been recorded. The output
of both neurons is binary, i.e., equal to 0 if no event
is forecasted or 1 if an event is forecasted. In order
to produce the forecasts, the outputs of the model
are parameterized as follows: (i) the “no existence”
of the phenomena corresponds to 0; (if) the “exis-
tence” of the phenomena corresponds to 1. Data of
a whole year, from January 1, 2012 until December
31,2012, were used for determining the appropriate
model parameters as well as its training. As already
mentioned, the activation function is the sigmoid
function (Eq. 1) and the linear function as the output
function. The error, in order to achieve the optimum
model performance is set equal to 10-4, while the
maximum number of 1000 to iterations. Table III
shows the tested model configurations.

Finally, the overall model performance is evaluated
using the root mean square error,

1 N
RMSE = /NZ& )

and the mean absolute percentage error,

mg% gabs(e,) (©6)

Table II1. Tested model configurations.

where N is the number of observations, e=o- F; the
predicted error, o, the actual observation at time ¢,
and F\ the corresponding forecast value. The Pearson
correlation coefficient (R?) is also used in order to
provide an insight of the model ability to simulate
the occurrence of wind gusts and flashes rather than
its overall forecasting performance.

5. Results

5.1 Model training

The statistical metrics of the training phase are shown
in Table I'V. As it can be seen (a) the best forecasts are
given by model 6 for the wind gusts and model 5 for
flashes, and (b) the training errors decrease each time
an additional parameter is used as input. This effect
is more pronounced for the wind gust models, the
RMSE and MAE, which are finally improved by 52
and 74%, respectively. The corresponding improve-
ment for the flash models is 22 and 29%, respectively.
It should also be noted that model configuration 7
using as input the two thermodynamic parameters
(CAPE, TTI) as well as wind speed at 500 hPa and
the 0-6 km VWS, presents the highest training errors.
This could be due either to the uncertainty of these
parameters (being the result of reanalysis) or that they
provide a more general prediction of future weather

Model configurations

Model  Inputs Network topology
Wind gusts Flashes

1 Lag-1: absolute maximum wind speed 1-2-1 1-2-1
2 Lag-1: absolute maximum wind speed, TTI 2-4-1 2-2-1
3 Lag-1: absolute maximum wind speed, TTI, CAPE 3-5-1 3-4-1
4 Lag-1: absolute maximum wind speed, TTI, CAPE,

500 hPa wind speed 4-7-1 4-6-1
5 Lag-1: absolute maximum wind speed, TTI, CAPE,

500 hPa wind speed, 0-6 km VWS 5-10-1 5-7-1
6 Lag-1: absolute maximum wind speed, TTI, CAPE,

500 hPa wind speed, 0-6 km VWS, mean maximum

wind speed-mean wind speed difference 7-14-1 7-12-1
7 Lag-1: TTI, CAPE, 500 hPa wind speed, 0-6 km VWS 4-8-1 4-6-1

VWS: vertical wind shear.
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Table IV. Statistic results of the training phase of the various models.

Parameter Applied model
1 2 3 4 5 6 7
Wind gusts RMSE 0.13 0.11 0.12 0.11 0.1 0.063  0.14
MAE 0.034  0.027 0.029 0.026 0.026  0.009 0.044
R? 0.35 0.46 0.45 0.53 0.55 0.84 0.24
Flashes RMSE 0.092  0.09 0.088  0.087 0.072  0.081  0.087
MAE 0.017  0.017 0.016 0.017 0.012 0.014 0.016
R? 0.06 0.11 0.13 0.15 0.43 0.28 0.16

conditions, such as the possibility of thunderstorms
and their intensity.

5.2 Forecast evaluation

In order to test the model effectiveness in forecast-
ing wind gusts and lightning activity in the area of
interest, eight time periods, not belonging to the
training sample, are used. These periods are expand-
ed from 24 to 72 h and presented in Table V. These
periods correspond to three typical meteorological
conditions accompanied by a range of weather phe-
nomena and affect the surrounding area during the
examined three-year interval (2012-2014). Cases
1 to 3 correspond to well-organized low-pressure
systems accompanied by frontal activity. Cases 4 to
6 correspond to thermal instability conditions. Cases
7 and 8 correspond to consecutive passing troughs in
the upper (500 hPa) atmosphere.

The forecasting results for both wind gusts and
lightning flashes for the eight selected cases are given
in Table VI. It can be seen that wind gust forecasts
are more accurate than those of lightning flashes

Table VI. Forecasting results of wind gusts and flashes.

Table V. Forecast cases.

Case study Date Weather conditions
1 18/1/2013 Frontal activity
2 24/1/2013 Frontal activity
3 28-29/12/2014 Frontal activity
4 13/5/2013 Thermal instability
5 5/6/2013 Thermal instability
6 8-10/7/2013 Thermal instability
7 27-28/3/2014 Trough
8 23-24/10/2014 Trough

in every case. According to the presented results
the model performs better under thermal instability
conditions (cases 4 to 6) as well as when gusts of
wind are considered as the forecasting parameter.
The worst performance was observed for the frontal
activity cases (1 to 3).

Figures 7 to 12 show the forecasting results. As
already mentioned, the model forecasts wind gusts
with remarkable accuracy. Nevertheless, there is an
apparent difference concerning the amplitude of the

Case study
1 2 3 4 5 6 7 8 Average
Wind gusts  RMSE 0.23 0.26 0.31 0.11 0.13 0.16 0.10 0.38 0.21
MAE 0.14 0.20 0.19 0.023  0.028 0.034  0.028  0.18 0.10
R? 0.78 0.75 0.68 0.99 0.99 0.94 0.91 0.39 0.80
Lightning RMSE 0.50 0.53 0.34 0.20 0.21 0.20 0.24 0.36 0.32
flashes MAE 0.35 0.36 0.14 0.048  0.049 0.048  0.090 0.15 0.15
R? 0.0 0.0 0.29 0.0 0.0 0.0 0.0 0.18 0.06
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Fig. 7. Forecasted (dashed lines) vs. observed (solid lines)
wind gusts (y-axis), for three cases of frontal weather
conditions.

forecasting curve revealing that the model underes-
timates future wind gusts. This is probably due to
the first phase of forecasts, and especially to input
pre-processing and the model training process. On
the other hand, lightning flashes forecasts deviate
significantly from the real events and are also un-
derestimated, which leads to a worse performance
concerning the output flash events for the a few next
hours, bigger forecasting errors and, eventually, re-
sults of lower credibility and usefulness.

The relation between forecasts and the prevailing
meteorological conditions at the area of interest
needs to be highlighted. When weather phenomena
ensued from atmospheric instability, the forecasts
of both wind gust and lighting strike events were
closer, at least temporally, to the observed data and
produce smaller errors. When weather phenomena
ensued resulted from well-organized low-pres-

Fig. 8. As in Figure 7 but for three cases of thermal insta-
bility weather conditions.
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Fig. 9. As in Figure 7 but for two cases of trough weather
conditions.
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Fig. 10. Forecasted (dashed lines) vs. observed (solid
lines) lightning indices (y-axis), for three cases of frontal
weather conditions.

sure systems or were due to a sequence of upper
troughs, the forecasted events followed in general
the observed ones, but with larger deviations. Again,
wind gust forecasts were more accurate compared
to those of lightning flashes. A probable cause could
be that the number of gusts and flashes occurring
during well-organized low-pressure systems differs
from that occurring during atmospheric instabilities.
When thunderstorms with their lightning activity
result from atmospheric instability, the number of
observed wind gusts is small and isolated, but when
they are due to synoptic weather conditions their
number increases significantly. Additionally, in the
case of synoptic weather conditions, the phenom-
ena last longer and present important fluctuations
during their occurrence, while most of times these
phenomena are followed by highly fluctuated gusty
wind speeds for a longer period. It should also be

Fig. 11. As in Figure 10 but for three cases of thermal
instability weather conditions.

1.0
0.8 4
0.6 1
0.4+
0.2 4
0.0 4

15

30

40

1.0
0.8 4
0.6
0.4
0.2

0.0

10

20

Time (h)

40

Fig. 12. As in Figure 10 but for two cases of trough weather

conditions.
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noted that the simulated indices and particularly the
lightning flashes present significantly lower ampli-
tude compared to those of observations.

6. Discussion and conclusions

In the first part of this study we investigated the re-
lationship between the wind speed gusts recorded at
a wind power plant in a hilly area of western Greece
and the corresponding lightning strikes detected in
the surrounding area for a 3-year (2012-2014) peri-
od. The observed wind gusts are strongly correlated
with the detected lightning flashes (r = 0.74), both
on a seasonal and on a daily basis. Both parameters
show a maximum during winter months. On a daily
basis, a maximum is observed in the afternoon and
a secondary peak during midnight. More than 65%
of the overall recorded wind gusts were found to
be related directly or indirectly to the presence of
cumulonimbus clouds accompanied by lightning
activity. On the other hand, the highest percentage
of the lightning strikes (almost 90%) detected in the
study area was followed by wind gusts and only a
small percentage was not accompanied by any change
in wind speed or direction.

A major part of the gusty wind patterns affecting
the area of interest was found to be due, directly or
indirectly, to the development and passage of thunder
clouds accompanied by lightning activity. Neverthe-
less, a percentage of the total amount of the recorded
gusts (30-35%) was due to other factors such as
strong air streams resulting from the morphology of
the area, turbulence in cases of strong upper winds
when an atmospheric disturbance approaches without
the development of significant weather phenomena,
or even the passage over the area of a trough’s edge
without causing any weather changes. However, it
may be concluded that the presence of certain mete-
orological conditions that are able to produce severe
weather like thunderstorms with lightning activity,
causes strong to severe gusty winds. Consequently,
those conditions might disrupt the operation of the
wind power plant since they may delay or cancel
maintenance works, damage the wind turbines or
other equipment, or even lead to a complete shutdown
in order to protect the wind turbines.

In the second part, we focused on the relation
between wind speed gusts and lightning flashes

with CAPE, TTI, wind speed at the 500 hPa isobaric
level and the 0-6 km vertical wind shear. We also
proposed a back-propagation feed forward ANN
in order to produce a 1-h ahead forecast of these
two variables. The proposed model manages to
simulate the variability of the occurrence both of
wind gusts and lightning flashes, especially when
the four selected parameters were combined with
wind data coming directly from wind turbines,
such as absolute maximum and mean wind speeds.
The forecasted wind speed gust values were more
accurate and presented smaller errors, compared to
those of flashes, which were underestimated. Nev-
ertheless, despite the apparent underestimations the
model manages to capture the fluctuation of wind
gusts and, in a smaller extent, of flashes occurrence.
Based on these conclusions, we state that our model
might provide good 1-h ahead forecasts of the wind
speed gusts for a forecasting horizon of 1 to 72 h
beforehand. Also, in the case of lightning flashes
the proposed method may lead to a good evidence
of the possibility of occurrence of such events,
although such predictions still need great advances
in scientific knowledge.

Lightning flashes are characterized by import-
ant spatial and temporal variability. Therefore, the
performance of the proposed model is expected to
be further improved if data of higher spatial and
temporal resolution are available. In addition, we
suggest combining the output of our model with
those of high-resolution numerical models covering
a longer time period and a larger area, in order to
improve accuracy. Also, understanding the signifi-
cance of local and medium scale factors during the
development and evolution of severe phenomena
is a key parameter. In this context, data from other
sites might also give additional insight of the way in
which weather phenomena produce severe events.
Such an analysis needs to be precisely designed in
advance and include both coastal and mountainous
areas as well as their combination, according to their
special wind and temperature profile (Rudolf et al.,
2010). This type of analysis would be very useful,
especially for areas like Greece, characterized by a
complex morphology and abrupt terrain variations
and changes between land and sea, where many sites
could be potentially used for the construction of wind
power plants.
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