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RESUMEN

Las plantas de energía eólica son vulnerables a tormentas eléctricas asociadas con la actividad de los rayos y 
las ráfagas de viento severas y cambios en la dirección del viento que las acompañan. Debido a una variedad 
de daños que tales fenómenos pueden causar, el conocimiento de la relación entre los sistemas de tormentas 
y el campo eólico producido es esencial para establecer una planta de energía eólica también durante la fase 
de construcción y operación. En la primera parte de este estudio se investiga la relación entre las fuertes 
ráfagas de viento y la actividad de los rayos en un parque eólico de Grecia. Los datos de viento provienen 
de aerogeneradores que cubren un periodo de tres años (2012-2014), mientras que los datos de rayos corres-
ponden a la red de detección de iluminación ZEUS. Las ráfagas de viento están bien correlacionadas con los 
rayos. La correlación se maximiza durante el invierno cuando sistemas convectivos bien organizados afectan 
el área y es mínima en verano como resultado de las tormentas locales debidas a la inestabilidad térmica. 
En la segunda parte, el estudio se centra en el desarrollo de un modelo de red neuronal artificial con el fin 
de pronosticar estos dos parámetros a una hora utilizando cuatro variables, a saber, CAPE, TTI, velocidad 
del viento a 500 hPa y la cizalladura vertical del viento de 0-6 km. El modelo propuesto podría considerarse 
como una herramienta prometedora para simular la ocurrencia tanto de ráfagas de viento como de relámpagos, 
proporcionando una evidencia relativamente buena de la posibilidad de que ocurran tales eventos.

ABSTRACT

Wind power plants are vulnerable to abrupt weather changes caused by thunderstorms associated with light-
ning activity and accompanying severe wind gusts and rapid wind direction changes. Due to the damages 
that such phenomena may cause, the knowledge of the relationship between storm systems and the produced 
wind field is essential during the construction and operation phase of a plant. In the first part of this study, 
the relationship between severe wind gusts and lightning activity in a power plant in Greece is investigated. 
Wind data are measured at the wind turbines for a 3-year period (2012-2014); the corresponding lightning 
data come from the ZEUS lighting detection network. Wind gusts are well correlated to lightning strikes. This 
correlation is maximized during winter when well organized weather systems affect the area and minimized 
in summer as a result of local storms due to thermal instability. The second part of the study focuses on the 
development of an artificial neural network (ANN) model in order to forecast these two parameters in a 
1-h ahead horizon based on wind speed, wind direction, and maximum observed wind gust measured at the 
nacelle of a wind turbine and four other variables, namely CAPE, TTI, wind speed at the 500 hPa isobaric 
level, and the 0-6 km vertical wind shear. The proposed model could be considered as a promising tool in 
simulating the occurrence both of wind gusts and lightning flashes, providing a relatively good evidence of 
the possibility of occurrence of such events.
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1.	 Introduction
We characterize as severe weather the meteorological 
conditions which potentially may provoke extremely 
hazardous situations in any aspect of human life. 
Consequently, for the energy production industry, se-
vere weather is considered as the conditions that may 
cause extended disruptions to the energy distribution 
system and, in the worst case, significant interruptions 
to the energy production and transportation (Zepka et 
al., 2008). Such impacts may be caused by lightning 
discharge as well as by severe wind, phenomena 
closely related to thunderstorms.

Thunderstorms are weather phenomena related 
to cumulonimbus clouds and develop due to the 
atmospheric instability on a local or regional scale. 
They are one of the most spectacular and, simulta-
neously, dangerous meteorological phenomena, that 
may be encountered at any time and in any place of 
the world. Although thunderstorms have a relatively 
short duration—as an isolated event—they encom-
pass a tremendous power, producing extreme events 
of lightning strikes, severe winds, heavy precipita-
tion, and hail. All these are potentially dangerous to 
human life and property (Litta et al., 2013), which 
is the main reason why meteorologists pay special 
attention to thunderstorms, trying to understand the 
mechanisms of their development and to provide 
forecasts as accurate as possible.

The main factors which especially favor the devel-
opment and evolution of deep convection are large at-
mospheric instability and humidity, and the presence 
of an appropriate lifting mechanism (e.g., Johns and 
Doswell, 1992; Doswell et al., 1996). In particular, 
the primary parameters associated with intense, 
severe, and well-organized local thunderstorms are 
large convective potential available energy (CAPE) 
combined with vertical wind shear. Case studies 
regarding the occurrence of such meteorological con-
ditions in Europe and the USA for the period 1958-
1999 are provided by Brooks (2009) and Brooks et al. 
(2007). As it emerges, the possibility of occurrence 
of severe phenomena for certain types of weather is 
higher in the European continent than in the USA, but 
the specific meteorological conditions that favor this 
occurrence are rarely encountered. Furthermore, syn-
optic meteorological conditions combined with local 
factors, such as complex topography, play an essential 
role in the initial stage of thunderstorms in Europe. 

Cases in which meteorological conditions are com-
bined with local factors are examined in many studies 
(e.g., Schmid et al., 2000; Kaltenböck, 2000a, b, 
2004, 2005; Kaltenböck et al., 2004; Dotzek et al., 
2001, 2007; Hannesen et al., 1998, 2000; Mazarakis 
et al., 2008; Galanaki et al., 2015), where the impor-
tance of local factors (like orography, inshore areas or 
areas of convergence, among others) are particularly 
examined regarding the development and evolution 
of medium-scale weather phenomena.

Other studies focus on the climatological fre-
quency of severe local wind events and coexisting 
meteorological conditions (i.e., Wakimoto, 1985; 
Johns and Hirt, 1987). Although they do not exclu-
sively examine the observed wind gusts produced by 
thunderstorms, they provide significant information 
concerning their frequency and the complex thunder-
storm environment which result in the development 
of severe weather conditions (Smith et al., 2013). 
Furthermore, the literature reveals also studies an-
alyzing the occurrence of severe wind gusts as a 
result of passing fronts or convective weather with 
the use of synoptic weather observations as well as 
data from weather radars (Bartha, 1994). Neverthe-
less, the knowledge about the special characteristics, 
climatology and frequency of appearance of such 
convective gusty winds and their separation from 
the turbulent gusts, especially in cases of a mixed 
weather type, is limited.

In this perspective, the forecast of thunderstorms 
that may produce intense lightning activity accom-
panied by strong-to-severe wind gusts, for a time 
horizon of a few hours would be of great impor-
tance since it would contribute to the reduction of 
the negative impacts on, among others, the energy 
production and distribution sector. Although many 
efforts have already been devoted in this direction, 
thunderstorm forecasting remains a particularly chal-
lenging topic due to the temporal and spatial extent 
of such phenomena, combined with the non-linearity 
of the factors (dynamical and physical) affecting 
their evolution.

During the last decades many studies were devot-
ed to comprehending the mechanisms that prevail 
during a thunderstorm event and the way they drive 
it. Some of these works deal with thunderstorm 
phenomena and nowcasting (e.g., Schultz et al., 
2011; Chaudhuri and Middey, 2013; Wu et al., 2018; 
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Mostajabi et al., 2019), while others tackle the subject 
of thunderstorm and/or lightning nowcasting (e.g., 
Rasmussen and Blanchard, 1998; Yair et al., 2010; 
Kohn et al, 2011; Fierro et al., 2014; Giannaros et 
al., 2015; Das, 2017; Dafis et al., 2018; Wang et al., 
2018). Most of these models are empirical, dynamic 
or combined. More recent studies using artificial 
neural networks (ANNs), which are applied to a wide 
range of applications, have contributed to the im-
provement of such efforts. These statistical models, 
which can handle non-linear problems, “learn” the 
relationship between inputs (independent variables) 
and outputs (dependent variables) by analyzing past 
data; they ignore data that do not explain a large 
part of the variance of the underlying process and 
concentrate instead on those that do so (Kalogirou, 
2001).An important number of ANN application 
studies can be found in literature (e.g., Kalogirou, 
1997; Zhang et al., 1998). These models differ in 
the network architecture, learning, activation, output 
functions, etc.

Feng and Kitzmiller (2004) discuss the set-up 
and application of an experimental severe weather 
nowcasting algorithm, based on a back-propaga-
tion neural network (BPNN) and compare it with a 
multiple linear regression model. The BPNN model 
uses as input weather radar and upper-air data from 
numerical models. The methods provided essential 
improvements to the operational Advanced Weather 
Interactive Processing System (AWIPS) algorithm 
developed from a much smaller sample of observa-
tional data for operational use, while the BPNN ap-
proach exhibited higher forecast scores and, overall, 
a better performance. Zepka et al. (2008) proposed a 
cloud-to-ground (CG) lightning forecast system using 
a back-propagation, multilayer, feed-forward neural 
network having as inputs lightning data and a num-
ber of meteorological (thermodynamic) parameters 
obtained by the ETA model, which is the operational 
numerical forecast models run at NCEP, known as 
the North American Mesoscale (NAM) model. The 
applied model showed very good results, whose accu-
racy depends on that of the mesoscale model data and 
the lightning detection network data used as input. 
Moreover, Zepka et al. (2014) introduced a lightning 
forecasting system using neural networks (NN) based 
on correlations between CG lightning flash data and 
meteorological variables obtained from MM5 with 

promising results. In the literature there is a great 
number of works based on artificial intelligence and 
data mining techniques (e.g., Sá et al. 2011; Bates et 
al. 2018; Schön et al., 2019; Mostajabi et al., 2019; 
Shrestha et al., 2019). An extensive survey of several 
research papers can be found in Bala et al. (2017).

In this work we examine the occurrence of 
extreme wind gusts around a wind power plant, lo-
cated in a hilly region of western Greece, based on 
the presence of cumulonimbus clouds and lightning 
activity. Furthermore, the 1-h forecast of lightning 
flashes and wind gusts for a horizon of 24 h and 
with the use of ANN statistical models is analyzed. 
The examined period spans from January 1, 2012 to 
December 31, 2014.

The paper is organized as follows: section 2 de-
scribes the study area, the wind speed and direction 
data and the ZEUS network from which we got the 
lightning activity data; section 2 also explains how 
a wind gust is determined; section 3 presents the 
statistical analysis of the observed wind gusts as well 
as the detected lightning flashes in relation to the me-
teorological conditions; in section 4 the forecasting 
procedure is described in detail; section 5 presents 
the overall forecasting results, and the conclusions 
are discussed in section 6.

2.	 Data and methodology
The study focuses on a wind power plant at a hilly 
area close to the town of Nafpaktos, western Greece, 
at an altitude between 1000 and 1500 m. The study 
covers an area between 38º 15’-38º 37’ Ν, and 
21º 33’-22º 01’ Ε, a grid box with dimensions 20 × 
20 km2 (Fig. 1).

Fig. 1. Study area (light yellow box: 10 ×10 km2; yellow 
box: 20 ×20 km2).
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2.1 Wind data
The wind speed and direction are measured at the 
nacelle of a wind turbine, at a height of 67 magl. 
Three years of data are used, from January 1, 2012 
to December 31, 2014, which consist of the mean 
wind speed and direction over the last 10 min and the 
maximum observed wind gust over the same period. 
These wind data have been aggregated to mean hour-
ly values; the absolute maximum wind gust during 
the averaging period is also calculated.

The most commonly used approach to determine 
wind gusts is that of the World Meteorological Or-
ganization (WMO), according to which, e.g., the 
METeorological Aerodrome Report (METAR) and 
the Aviation SPECIal Weather Report (SPECI), code 
a wind gust as the maximum horizontal wind speed 
lasting for at least 3 s if only it exceeds the mean wind 
speed over the sampling interval by at least 10kts 
(≈ 5 m s–1) (WMO, 2011a, 2014).

Τhere are also other approaches used on a regional 
or national level. ΝΟΑΑ (1998) defines the wind 
gust as the maximum wind speed that lasts 2 s and is 
10 kts (≈ 5 m s–1) or higher than the mean wind speed 
sampled over a 2-min period. In another definition, 
a gust is the wind speed value lasting for at least 5 s 
within a 1-h sampling interval (Lombardo et al., 
2009; Harris and Kahl, 2017; Letson et al., 2018). 
According to the WMO (2011b), in Argentina a gust 
is the maximum hourly average wind speed value that 
exceeds 30 kts (≈ 15 m s–1). Apart from the difference 
in the way a wind gust is defined and calculated, it 
is worth mentioning that there are also numerous 
approaches concerning the distinction between con-
vective wind gusts and gusts resulting from gradients 
or local factors (such as topography). De Gaetano et 
al. (2014) provide a long list of such methods.

In this study we considered as a recorded wind 
gust the maximum observed wind speed exceeding 
the average wind speed over the sampling interval 
by 10 m s–1 (20 kts). The reason for not adhering to 
the WMO definition is that our data are collected at 
an altitude of about 1350 m, where the differences 
between mean wind speed and wind gusts, for any 
sampling interval, frequently exceed 5.1 m s–1 by far. 
In fact, the average difference between the hourly 
mean and the mean maximum wind speed is 5.0 
± 2.0 m s–1 with a maximum of 19.3 m s–1, while 
the respective average difference by the absolute 

maximum wind speed is 6.4 ± 2.6 m s–1 with a maxi-
mum of 33 m s–1. On the contrary, the proposed limit 
of 10 m s–1 is observed in fewer cases and mainly 
when a weather change occurs or is going to occur.

The study focuses on the relationship between 
wind gusts observed at the wind power plant site and 
the lightning flashes detected simultaneously inside a 
specified area (grid box). If one or more wind gusts 
are recorded at the site of interest, in order to calcu-
late the hourly wind gust values, the data are filtered 
out to the absolute hourly maximum wind speed and 
hourly mean wind speed, respectively. Simultaneous-
ly an extensive quality control is applied in order to 
clarify if those wind gusts are due to thunderstorms 
or to other reasons, e.g., wind speed fluctuations 
due to local factors such as morphology or even due 
to possible malfunction of the sensor or the data 
logger. The data analysis revealed nevertheless that 
thunderstorms with lightning activity are not always 
accompanied by gusty winds.

2.2 Lightning data
The required lighting data were provided from the 
European Network of Lightning Strike Detection 
ZEUS. This is a large distance network of five receiv-
ers placed around Europe with a very good coverage 
in the central and eastern Mediterranean (Kotroni 
and Lagouvardos, 2008; Lagouvardos et al., 2009) 
with a spatial accuracy of the order of 4-5 km. These 
receivers record the radio signal (sferic) emitted by 
mainly cloud-to-ground (CG) electric discharges in 
the VHF range between 7 and 15 kHz. Each receiver 
captures up to 70 sferics per second; every time such 
a signal is captured a detection algorithm processes 
the signal of all the receivers in order to detect the 
possible sferic candidate, excluding weak signals 
and noises. Consequently, the location of detected 
discharge is determined by applying a triangulation 
technique over the arrival time difference.

It is worth mentioning that the points indicating 
the occurrence of lightning discharges represent a 
big portion of the total electric activity, including the 
IC and CG flashes as well. According also to Maier 
and Krider (1986) and Williams et al. (1989), the IC 
activity prevails in the first stages of the developed 
thunderstorms, while the CGs occur later.

Drüe et al. (2007) state that the detected dis-
charges are merged and if specific criteria are 
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satisfied then lightning flashes datasets might be 
created. According to these criteria observed flash-
es having a spatial difference up to 20 km and a 
temporal difference of 1 s are considered as one 
flash. Other studies suggest different approaches. In 
Cummins et al. (1998) and Diendorfer (2008) the 
location and time of the first recorded flash consist 
of an individual lightning datum, while in Piper and 
Kunz (2017) a day with lightning is considered as 
when at least five electric discharges are detected 
in a grid box of 10 ×10 km2.

Because of the apparent difficulty in separating the 
IC and CG electric discharges, in this study we devel-
oped the hourly lightning dataset by processing and 
clustering the data according to Drüe et al. (2007). 
So, if a lightning flash fulfils the criteria, the hour of 
detection is flagged as a flash data independently of 
the total number of flashes detected during the same 
period.

3.	 Statistical analysis of wind gusts and light-
ning flashes
The frequency of detected lightning discharges over 
the eastern Mediterranean basin reaches a maximum 
in autumn (Yair et al., 2010; Kotroni and Lagouvar-
dos, 2016), while most of them occur over maritime 
and coastal areas rather than overland when warm 
waters provide the appropriate conditions for storm 
development. The lightning activity is produced by 
cumulonimbus clouds due mainly to synoptic scale 
meteorological conditions (well-organized cyclones) 
or, in a lesser extent, to passing troughs.

Graeme and Klugmann (2014) demonstrated a 
clear preference of thunderstorms with lightning 
activity to occur over land during the warm season 
of the year. The opposite happens during the cold 
season, when the majority of these events befall 
over the sea. The average annual number of electric 
discharges per km2 in Europe ranges between 0.1 
and 4. Galanaki et al. (2015) also studied the cloud-
to-ground activity over 10 years (2005-2014) in the 
eastern Mediterranean basin with similar results. 
Their results revealed an average annual number of 
electric discharges between 0.1 and 6, with highest 
densities over land, while the majority of lightning 
events over sea befell over the Ionian Sea and the 
west coastal areas of the Balkans.

The analysis of synoptic charts and thermodynam-
ic diagrams revealed that the general meteorological 
conditions over our area of interest during 2012-2014 
were characterized by a sequence of hot and cold 
periods accompanied by the corresponding weather 
phenomena, as normally expected. During winter the 
development and passage of low-pressure systems 
results in an important number of lightning flashes, 
especially over the sea. That type of weather led to 
a high number of events of severe wind gusts which 
sometimes lasted for more than two days, as a result 
of long-lasting frontal activity accompanying those 
systems. These severe gusts were either related di-
rectly to the occurrence of a lightning flash or to the 
wind profile induced by those pressure systems as the 
result of the air convection and pressure gradient. As 
shown in Figure 2, most of the observed wind gusts 
due or to thunderstorms not, as well as the detected 
lightning flashes are connected to southern wind di-
rections. The main reason was the frequent passage of 
well-organized low-pressure systems with extended 
frontal activity, moving from west to the east and 
overpassing the area of interest.

The number of lightning flashes and wind gusts 
within a 1-h period in the site of interest are presented 
in Table I. The analysis of the dataset of the area of in-
terest for the period from January 1 2012 to December 
31, 2014 revealed that a total of 268 lightning strikes 
occurred, leading to an annual average of 89.3 strikes. 
The corresponding number of wind gusts, determined 
according to the definition given in section 2.1, was 
937 with an annual average of 312.3 events. The 
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turbine height related to the total wind gusts (right), wind 
gusts in the presence of lightnings (middle) and wind gusts 
in the absence of lighting (left).
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number of wind gusts is divided into those related to 
lightning strikes and those that are not. From the total 
of 937 observed wind gusts, 636 (68%) were found to 
be related to lighting strikes. Nevertheless, only 235 
were directly related to the strikes (cases in which a 
wind gust is observed within the same hour than a 
lightning strike) while the remaining 401 recorded 
wind gusts were the result of the general activity of 
severe weather affecting the surrounding area and 
producing strong wind gusts sometime before or after 
the strike. The analysis also revealed that the major 
portion of the detected lightning strikes (235, 88%) 
coincided with the observation of strong wind gusts, 
while the remaining 33 strikes (12%) were not ac-
companied by gusts or even a slight wind disturbance.

From Table I it is apparent that 301 of the observed 
wind gusts (32%) were not related to the occurrence 
of lightning strikes (direct or indirect) or to any 
synoptic system. This is attributed to the complex 
topography of the surrounding area, which combined 
with specific isobaric situations, might produce se-
vere wind gusts (e.g., high pressure systems from the 
north combined with low pressure systems from the 
south, which induce strong north-northeast airstreams 
or strong southern air flows in the low and middle 
atmosphere, ahead of a slow moving weather system). 
Furthermore, a small percentage of such wind gusts 
is due to recording errors (e.g. instrument’s fault). 
In that case, the separation of these wind gusts from 
those due to lightning strikes is practically inevitable.

Figure 3 presents the daily, monthly and seasonal 
distribution of the total wind gusts and the detect-
ed lightning strikes for the examined period. The 
number of wind gusts related directly or indirectly 
to lightning strikes and those that are not related are 
also shown. As shown in the figure, wind gusts and 

lightning strikes present a maximum in the afternoon 
and a second peak of smaller magnitude around mid-
night. It can also be observed that the activity during 
winter is intense but decreases significantly during 
the warm period of the year. This is clearly shown in 
the seasonal distribution, where the recorded wind 
gusts reach 49% of the cases and lightning strikes 
41% of them. These results partially agree with the 
findings of related studies analyzing the frequency 
and distribution of detected lightning flashes in the 
area of interest (Graeme and Klugmann, 2014; Yair et 
al., 2010). The main reason for this distribution is an 
intensive frontal activity during the cold period of the 
year in the area of interest, which has its maximum 
between December and February. This activity some-
times leads to the development of severe weather fre-

Table I. Total number of lightning flashes and wind gusts 
higher than 10 m s–1 in a period of 1 h. The total number 
of wind gusts related or not to lightning flashes are also 
shown.

Wind
gusts

Lightning
flashes

Wind gusts
related to
lightning
flashes

Wind gusts not
related to
lightning
flashes
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Fig. 3. Daily (top), monthly (middle) and seasonal (bottom) 
distribution of total wind gusts (black bars), total lightning 
strikes (grey bars), wind gusts related to lightning strikes 
(white bars) and wind gusts not related to lightning strikes 
(dark grey bars).
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quently accompanied by thunderstorms with intense 
lighting activity and a strong wind profile (Houze, 
2014), especially at the altitude of the wind power 
plant. These conditions may last for a long period of 
time (more than two days) (Galanaki et al., 2018).

Figure 4 emphasizes that the distribution of wind 
gusts accompanied by lightning strikes is a func-
tion of weather types. The different meteorological 
conditions affecting the surrounding area consist of 
weather phenomena due to synoptic (e.g., organized 
cyclones, passing troughs) and atmospheric insta-
bility (mainly thermal) conditions. As shown in the 
figure the wind gusts due to synoptic conditions 
prevail. These synoptic conditions are more com-
mon in Greece during the cold period, i.e., between 

November and April. As seen in Table II, all wind 
gusts directly related to lightning strikes were ex-
clusively caused by synoptic weather conditions for 
most of the months. Of the 199 lightning strikes of 
this category, 159 (80%) were encountered in this 
period (between November and April), together with 
68% of the total wind gusts directly related to strikes 

Table II also reveals that 32% of the wind gusts 
due to synoptic weather types were directly related to 
lightning strikes. As mentioned earlier, this is because 
the synoptic weather produces a strong wind profile 
that expands vertically to the upper atmosphere and 
also horizontally at large distances ahead of the 
forthcoming frontal zone (e.g., Houze, 2014). In such 
cases, wind speed starts increasing as frontal zones 
approach; eventually, strong wind gusts are recorded 
even if the lightning flashes in the surrounding area 
occur later on. Additional evidence that confirms 
this aspect is shown in Table II (4th column), where 
the rate of wind gusts per lightning strikes in each 
month is given, resulting in an annual average equal 
to 2.7. It is obvious that in most months affected by 
synoptic weather conditions this rate is high and far 
from 1, with a maximum in December (4.7), followed 
by February (3.4) and March (3.1).

On the other hand, when atmospheric instability 
develops within the study area, weather conditions 
are characterized by isolated and/or clusters of cu-
mulonimbus clouds, which develop over or close to 
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Fig. 4. Causes of wind gusts (y-axis) related to lightning 
flashes: synoptic scale (grey bars) and instability (black 
bars) conditions.

Table II. Wind gusts related to flashes vs. weather types.

Month Wind gusts
related to

flashes

Total
flashes

Gusts/flashes Flashes due
to instability
conditions

Flashes due to
synoptic scale

conditions

January 127 47 2.7 0 47
February 64 19 3.4 3 16
March 72 23 3.1 2 21
April 59 28 2.1 1 27
May 25 10 2.5 4 6
June 2 2 1.0 2 0
July 7 7 1.0 7 0
August 4 4 1.0 4 0
September 27 22 1.2 6 16
October 54 21 2.6 3 18
November 53 22 2.4 2 20
December 142 30 4.7 2 28
Total/average 636 235 2.7 36 199
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the mountains and hills, resulting in local showers 
and thunderstorms sometimes followed by lightning 
activity, causing intense fluctuations of wind speed and 
direction. Wind speed increases when these phenome-
na appear, while the corresponding gusts are produced 
more or less simultaneously with the lightning flashes. 
These gusts may be as severe as those of the previous 
case but of shorter duration, occuring mainly during 
the presence of isolated thunderstorms and constrained 
temporally and spatially by the thunderstorm. When 
thunderstorms dissipate, such wind gusts disappear.

The corresponding percentage of gusts due to 
isolated thunderstorms directly related to lightning 
strikes was only 5%. Nevertheless (in contrast to 
the cases of synoptic weather conditions) in months 
when instability (mainly thermal) conditions 
prevail (May to September), the corresponding 
monthly rate of wind gusts per lightning strikes is 
too low and (especially during summer) equal to 1 
(Table II). This clearly leads to the conclusion that 
almost all the wind gusts observed during that period 
of the year and in the area of interest are produced 
only by isolated thunderstorms mainly over the 
surrounding hills, and are directly related to the oc-
currence of lightning strikes.

4.	 Wind gusts and lightning flashes forecasting
4.1 Thermodynamic parameters
The development of cumulonimbus clouds and thun-
derstorms is a result of the simultaneous occurrence 
of a number of factors such as atmospheric instability, 
large amount of moisture, vertical wind shear and 
potential available energy (e.g., Johns and Doswell, 
1992; Doswell et al., 1996; Rudolf et al., 2010).

In our study, we analyzed the correlation between 
wind gusts and flashes using four well-known param-
eters, namely convective available potential energy 
(CAPE), total totals index (TTI), wind speed at 500 
hPa, and the 0 to 6 km vertical wind shear. These pa-
rameters are measured using radiosondes or satellites. 
They can also be obtained from numerical weather 
prediction models (Davis, 2001). In this study we 
used data provided by the Copernicus Climate Data 
Store, generated using Copernicus Climate Change 
Service (C3S) information (C3S, 2019). The data 
consist of hourly values with a 0.25º × 0.25º spatial 
resolution. In what follows we discuss each of the 

above parameters in detail. We also examine their 
correlation with flashes and gusts.

4.1.1 Convective potential available energy
The convective potential available energy (CAPE) is 
one of the main indexes of the possibility of thunder-
storms occurrence. CAPE is obtained with Eq. (1):

CAPE = g∫

EL

LFC (
θe(LFC ) −  θes

θes )
dz	 (1)

where LFC is the level of free convection, EL 
the equilibrium level, θe the equivalent potential 
temperature of the air parcel, and θes the saturated 
equivalent potential temperature of the atmospheric 
environment. CAPE stands for positive differences 
between θe and θes, meaning that the pseudo-adiabatic 
of the displaced air parcel is warmer than that of the 
environment resulting in instability situations (Sá et 
al., 2011; Das, 2017). In other words, it is the amount 
of energy an air-parcel would have in the case it was 
vertically lifted to a certain height in the atmosphere. 

Its value of 250 J kg–1 is a critical limit for the 
discrimination between thunderstorm and non-thun-
derstorm classes (Kaltenböck et al., 2009). It is also 
used to distinguish ordinary thunderstorms from 
severe events that might cause heavy rain, hail and 
gusty winds. Figure 5 illustrates the relation between 
the CAPE and the distribution of the total observed 
wind speed gusts related and not related to lightning 
and of the total number of lightning flashes. In this 
work, it is mainly used to investigate the occurrence 
of thunderstorms with lightning flashes producing 
severe wind gusts. In should be noted that the CAPE 
is mostly connected to instability events not resulting 
from well-organized cyclones, which are due to local 
causes such as unstable weather in summer months or 
the presence of an extended upper low accompanied 
by cold temperatures. So, in this work the CAPE is 
not considered as the main representative index for 
the assessment of lightning activity because (as men-
tioned in section 3), the lightning flashes are mainly 
due to frontal weather phenomena and, to a lesser 
extent, to isolated thunderstorms due to atmospheric 
instability conditions.

4.1.2 Total totals index
The total totals index (TTI) is an instability in-
dex extensively used for a first estimation of 
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thunderstorm events followed by severe weather 
phenomena, especially in North America (Peppier, 
1988). This parameter gives an indication of the 
probability of occurrence of a thunderstorm and its 
severity by using the vertical gradient of temperature 
and humidity. The TTI consists of the arithmetic 
combination of vertical totals (VT; 850-500 hPa 
temperature difference) and cross totals (CT; the 
difference between the 850 hPa dew point and 500 
hPa temperature) according to Eq. (2):

TT = T850 + Td850 – 2T500	 (2)

The probability of deep convection tends to in-
crease with increasing lapse rate and atmospheric 
moisture content, while TTI values also vary slightly 
by geographic location and season. Moreover, 44 K 
is considered as the value-threshold for the proba-
bility of thunderstorms occurrence. Values between 
44 and 50 K indicate likely thunderstorms, while 
values higher than 50 Κ are a strong indication of the 
development of severe mesoscale convective systems 
(e.g., Maddox, 1983; Velasco and Fritsch, 1987). 
Figure 5 presents the relation between the TTI and 
our parameters of interest. It can be seen that light-
ning flashes and wind gusts related to them occur 
preferentially for TTI values around 50 K. It is also 
shown that when the observed wind gusts are not the 
result of lightnings the TTI ranges between 40 and 
50 K, probably revealing that these gusts are due to 
other reasons than lightning.

4.1.3 500 hPa wind speed
The 500 hPa isobaric level is particularly important 
for the evaluation of the atmosphere’s status . There-
fore, the wind at that level is a useful parameter 
for the study of the mid-tropospheric circulation. 
High wind speeds at 500 hPa are related to severe 
weather, mainly to gusty winds, because they pro-
vide an indication of the downward motion of the 
developed thunderstorms (Dotzek et al., 2009). 
In particular the rear-flank downdraft or dry rear 
inflow of well-organized local thunderstorms is 
mostly observed when the 500 hPa wind speed is 
high enough (Kaltenböck, 2004). As shown by the 
available data, wind speeds of 20 m s–1 or higher 
constitute a good index of the occurrence of light-
ning discharges, directly or indirectly accompanied 
by severe wind gusts (Fig. 5). In cases when wind 
gusts are not related to thunderstorm presence, the 
wind speeds at 500 hPa are lower.

4.1.4 0-6 km vertical wind shear
The difference of wind speed between the low 
(1000 hPa) and upper (500 hPa) atmosphere (ver-
tical wind shear, 0-6 km VWS) is another useful 
index of imminent atmospheric instability. Higher 
differences are observed in cases of thunderstorms 
accompanied with lightning activity and strong wind 
gusts. When the wind gusts are not due to lightning 
flashes the VWS values interval is bigger with an 
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average approximately equal to 10 m s–1. On the 
other hand, more than 50% (between the 25th and 
75th percentiles) of the events of lightning discharges 
and severe wind gusts are related to VWS of about 
15 m s–1 (Fig. 5). Therefore, this value is considered 
as a limit for the discrimination of wind gusts due to 
lightning those due to other reasons. These findings 
are in accordance with related works investigating 
events of severe weather phenomena closely related 
to thunderstorms and their general activity (e.g., Ras-
mussen and Blanchard, 1998; Schmid et al., 2000; 
Kaltenböck et al., 2009).

4.2 Model selection
In this work we propose a multilayer percep-
tron feed-forward neural network (MLP) model 
back-propagation learning algorithm in order to 
predict probable lightning flashes and wind gusts 1 
h ahead for a forecasting horizon of 24 h. This type 
of neural networks are widely applied in various 
disciplines mainly because they are capable of arbi-
trary mapping the input-output relationship (Zhang 
et al., 1995; Wei et al., 2000). Typically, such a net-
work consists of multiple layers of nodes; the first 
and last layers are the input and the output layers, 
respectively. Between them there are one or more 
so-called “hidden” layers of neurons fully intercon-
nected to each other with the use of proper weights. 
An example of a feed-forward neural network model 
is presented in Figure 6.

One of the most crucial aspects during an ANN 
model setup is the selection of the appropriate input 
values (Alexiadis et al., 1998; Zhang et al., 1998). 
The model topology, i.e., the number of hidden layers, 
weights and biases values, the training method, the 
least acceptable error and the number of iterations 
during training are the key factors that should be 
defined in advance, while their optimal combination 
is heuristic, using a trial-and-error approach. For our 
purpose we selected feed-forward neural network 
with a single hidden layer which allows skip-layer 
connections. As activation function fh of the hidden 
layer we selected the sigmoid function:

fh(x) =  
1

1 + exp(−x)
	 (3)

and the linear function as the output layer function, 
fο. The mοdel οutput yk is given by Eq. (4):

fh(x) =  
1

1 + exp(−x) 	 (4)

where xi is the inputs, αk and αh are the biases, and 
whk and wih are the set of weights of every link in the 
network. The sets of weights are adjusted by a general 
quasi-Newton optimization procedure, the BFGS 
algorithm (BFGS method), published simultaneously 
by Broyden (1970), Fletcher (1970), Goldfarb (1970), 
and Shanno (1970). This is an iterative algorithm 
for solving unconstrained non-linear optimization 
problems. Its advantage is that it gets close to a local 
minimum reaching it to the machine accuracy after 
a few iterations (Ripley, 1996). The algorithm uses 
function values and gradients to build up a picture of 
the surface to be optimized (Fletcher, 2000) and has 
been already applied in a variety of works resulting 
to better model fitting during training that led to more 
precise forecasts (Liu et al., 2013, 2018).

The inputs of our model are first lags of hourly 
data of CAPE, TTI, wind speed at 500 hPa and 
the 0-6 km VWS. Additional inputs tested are the 
corresponding lags of the difference between mean 
maximum and mean hourly wind speed as well as 
the first lag of the absolute maximum wind speed 
in the same hourly interval. The output layer of our 
model consists of one neuron providing the 1-h ahead 
forecast results for the next 24 h, whether or not a 

wih

xi

x3

x2

x1

whk

yk(x)

Hidden layersInput layers Output layers

Fig. 6. Example of a typical feed forward neural network.
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wind gust or a flash have been recorded. The output 
of both neurons is binary, i.e., equal to 0 if no event 
is forecasted or 1 if an event is forecasted. In order 
to produce the forecasts, the outputs of the model 
are parameterized as follows: (i) the “no existence” 
of the phenomena corresponds to 0; (ii) the “exis-
tence” of the phenomena corresponds to 1. Data of 
a whole year, from January 1, 2012 until December 
31, 2012, were used for determining the appropriate 
model parameters as well as its training. As already 
mentioned, the activation function is the sigmoid 
function (Eq. 1) and the linear function as the output 
function. The error, in order to achieve the optimum 
model performance is set equal to 10-4, while the 
maximum number of 1000 to iterations. Table III 
shows the tested model configurations.

Finally, the overall model performance is evaluated 
using the root mean square error,

=

=
N

t
te

N
RMSE

1

21
	 (5)

and the mean absolute percentage error, 

( )abs1
1

=
=

N

i
te

N
MAE 	 (6)

where N is the number of observations, et=ot- Ft the 
predicted error, ot the actual observation at time t, 
and Ft the corresponding forecast value. The Pearson 
correlation coefficient (R2) is also used in order to 
provide an insight of the model ability to simulate 
the occurrence of wind gusts and flashes rather than 
its overall forecasting performance.

5.	 Results
5.1 Model training
The statistical metrics of the training phase are shown 
in Table IV. As it can be seen (a) the best forecasts are 
given by model 6 for the wind gusts and model 5 for 
flashes, and (b) the training errors  decrease each time 
an additional parameter is used as input. This effect 
is more pronounced for the wind gust models, the 
RMSE and MAE, which are finally improved by 52 
and 74%, respectively. The corresponding improve-
ment for the flash models is 22 and 29%, respectively. 
It should also be noted that model configuration 7 
using as input the two thermodynamic parameters 
(CAPE, TTI) as well as wind speed at 500 hPa and 
the 0-6 km VWS, presents the highest training errors. 
This could be due either to the uncertainty of these 
parameters (being the result of reanalysis) or that they 
provide a more general prediction of future weather 

Table III. Tested model configurations.

Model configurations

Model Inputs Network topology

Wind gusts Flashes

1 Lag-1: absolute maximum wind speed 1-2-1 1-2-1
2 Lag-1: absolute maximum wind speed, ΤΤΙ 2-4-1 2-2-1
3 Lag-1: absolute maximum wind speed, ΤΤΙ, CAPE 3-5-1 3-4-1
4 Lag-1: absolute maximum wind speed, ΤΤΙ, CAPE,

500 hPa wind speed 4-7-1 4-6-1
5 Lag-1: absolute maximum wind speed, ΤΤΙ, CAPE,

500 hPa wind speed, 0-6 km VWS 5-10-1 5-7-1
6 Lag-1: absolute maximum wind speed, ΤΤΙ, CAPE,

500 hPa wind speed, 0-6 km VWS, mean maximum
wind speed-mean wind speed difference 7-14-1 7-12-1

7 Lag-1: ΤΤΙ, CAPE, 500 hPa wind speed, 0-6 km VWS 4-8-1 4-6-1

VWS: vertical wind shear.
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conditions, such as the possibility of thunderstorms 
and their intensity.

5.2 Forecast evaluation
In order to test the model effectiveness in forecast-
ing wind gusts and lightning activity in the area of 
interest, eight time periods, not belonging to the 
training sample, are used. These periods are expand-
ed from 24 to 72 h and presented in Table V. These 
periods correspond to three typical meteorological 
conditions accompanied by a range of weather phe-
nomena and affect the surrounding area during the 
examined three-year interval (2012-2014). Cases 
1 to 3 correspond to well-organized low-pressure 
systems accompanied by frontal activity. Cases 4 to 
6 correspond to thermal instability conditions. Cases 
7 and 8 correspond to consecutive passing troughs in 
the upper (500 hPa) atmosphere.

The forecasting results for both wind gusts and 
lightning flashes for the eight selected cases are given 
in Table VI. It can be seen that wind gust forecasts 
are more accurate than those of lightning flashes 

in every case. According to the presented results 
the model performs better under thermal instability 
conditions (cases 4 to 6) as well as when gusts of 
wind are considered as the forecasting parameter. 
The worst performance was observed for the frontal 
activity cases (1 to 3).

Figures 7 to 12 show the forecasting results. As 
already mentioned, the model forecasts wind gusts 
with remarkable accuracy. Nevertheless, there is an 
apparent difference concerning the amplitude of the 

Table IV. Statistic results of the training phase of the various models.

Parameter Applied model

1 2 3 4 5 6 7

Wind gusts RMSE 0.13 0.11 0.12 0.11 0.1 0.063 0.14
MAE 0.034 0.027 0.029 0.026 0.026 0.009 0.044
R2 0.35 0.46 0.45 0.53 0.55 0.84 0.24

Flashes RMSE 0.092 0.09 0.088 0.087 0.072 0.081 0.087
MAE 0.017 0.017 0.016 0.017 0.012 0.014 0.016
R2 0.06 0.11 0.13 0.15 0.43 0.28 0.16

Table V. Forecast cases.

Case study Date Weather conditions

1 18/1/2013 Frontal activity
2 24/1/2013 Frontal activity
3 28-29/12/2014 Frontal activity
4 13/5/2013 Thermal instability
5 5/6/2013 Thermal instability
6 8-10/7/2013 Thermal instability
7 27-28/3/2014 Trough
8 23-24/10/2014 Trough

Table VI. Forecasting results of wind gusts and flashes.

Case study

1 2 3 4 5 6 7 8 Average

Wind gusts RMSE 0.23 0.26 0.31 0.11 0.13 0.16 0.10 0.38 0.21
MAE 0.14 0.20 0.19 0.023 0.028 0.034 0.028 0.18 0.10
R2 0.78 0.75 0.68 0.99 0.99 0.94 0.91 0.39 0.80

Lightning
flashes

RMSE 0.50 0.53 0.34 0.20 0.21 0.20 0.24 0.36 0.32
MAE 0.35 0.36 0.14 0.048 0.049 0.048 0.090 0.15 0.15
R2 0.0 0.0 0.29 0.0 0.0 0.0 0.0 0.18 0.06
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forecasting curve revealing that the model underes-
timates future wind gusts. This is probably due to 
the first phase of forecasts, and especially to input 
pre-processing and the model training process. On 
the other hand, lightning flashes forecasts deviate 
significantly from the real events and are also un-
derestimated, which leads to a worse performance 
concerning the output flash events for the a few next 
hours, bigger forecasting errors and, eventually, re-
sults of lower credibility and usefulness.

The relation between forecasts and the prevailing 
meteorological conditions at the area of interest 
needs to be highlighted. When weather phenomena 
ensued from atmospheric instability, the forecasts 
of both wind gust and lighting strike events were 
closer, at least temporally, to the observed data and 
produce smaller errors. When weather phenomena 
ensued resulted from well-organized low-pres-
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sure systems or were due to a sequence of upper 
troughs, the forecasted events followed in general 
the observed ones, but with larger deviations. Again, 
wind gust forecasts were more accurate compared 
to those of lightning flashes. A probable cause could 
be that the number of gusts and flashes occurring 
during well-organized low-pressure systems differs 
from that occurring during atmospheric instabilities. 
When thunderstorms with their lightning activity 
result from atmospheric instability, the number of 
observed wind gusts is small and isolated, but when 
they are due to synoptic weather conditions their 
number increases significantly. Additionally, in the 
case of synoptic weather conditions, the phenom-
ena last longer and present important fluctuations 
during their occurrence, while most of times these 
phenomena are followed by highly fluctuated gusty 
wind speeds for a longer period. It should also be 
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noted that the simulated indices and particularly the 
lightning flashes present significantly lower ampli-
tude compared to those of observations.

6.	 Discussion and conclusions
In the first part of this study we investigated the re-
lationship between the wind speed gusts recorded at 
a wind power plant in a hilly area of western Greece 
and the corresponding lightning strikes detected in 
the surrounding area for a 3-year (2012-2014) peri-
od. The observed wind gusts are strongly correlated 
with the detected lightning flashes (r = 0.74), both 
on a seasonal and on a daily basis. Both parameters 
show a maximum during winter months. On a daily 
basis, a maximum is observed in the afternoon and 
a secondary peak during midnight. More than 65% 
of the overall recorded wind gusts were found to 
be related directly or indirectly to the presence of 
cumulonimbus clouds accompanied by lightning 
activity. On the other hand, the highest percentage 
of the lightning strikes (almost 90%) detected in the 
study area was followed by wind gusts and only a 
small percentage was not accompanied by any change 
in wind speed or direction.

A major part of the gusty wind patterns affecting 
the area of interest was found to be due, directly or 
indirectly, to the development and passage of thunder 
clouds accompanied by lightning activity. Neverthe-
less, a percentage of the total amount of the recorded 
gusts (30-35%) was due to other factors such as 
strong air streams resulting from the morphology of 
the area, turbulence in cases of strong upper winds 
when an atmospheric disturbance approaches without 
the development of significant weather phenomena, 
or even the passage over the area of a trough’s edge 
without causing any weather changes. However, it 
may be concluded that the presence of certain mete-
orological conditions that are able to produce severe 
weather like thunderstorms with lightning activity, 
causes strong to severe gusty winds. Consequently, 
those conditions might disrupt the operation of the 
wind power plant since they may delay or cancel 
maintenance works, damage the wind turbines or 
other equipment, or even lead to a complete shutdown 
in order to protect the wind turbines.

In the second part, we focused on the relation 
between wind speed gusts and lightning flashes 

with CAPE, TTI, wind speed at the 500 hPa isobaric 
level and the 0-6 km vertical wind shear. We also 
proposed a back-propagation feed forward ANN 
in order to produce a 1-h ahead forecast of these 
two variables. The proposed model manages to 
simulate the variability of the occurrence both of 
wind gusts and lightning flashes, especially when 
the four selected parameters were combined with 
wind data coming directly from wind turbines, 
such as absolute maximum and mean wind speeds. 
The forecasted wind speed gust values were more 
accurate and presented smaller errors, compared to 
those of flashes, which were underestimated. Nev-
ertheless, despite the apparent underestimations the 
model manages to capture the fluctuation of wind 
gusts and, in a smaller extent, of flashes occurrence. 
Based on these conclusions, we state that our model 
might provide good 1-h ahead forecasts of the wind 
speed gusts for a forecasting horizon of 1 to 72 h 
beforehand. Also, in the case of lightning flashes 
the proposed method may lead to a good evidence 
of the possibility of occurrence of such events, 
although such predictions still need great advances 
in scientific knowledge.

Lightning flashes are characterized by import-
ant spatial and temporal variability. Therefore, the 
performance of the proposed model is expected to 
be further improved if data of higher spatial and 
temporal resolution are available. In addition, we 
suggest combining the output of our model with 
those of high-resolution numerical models covering 
a longer time period and a larger area, in order to 
improve accuracy. Also, understanding the signifi-
cance of local and medium scale factors during the 
development and evolution of severe phenomena 
is a key parameter. In this context, data from other 
sites might also give additional insight of the way in 
which weather phenomena produce severe events. 
Such an analysis needs to be precisely designed in 
advance and include both coastal and mountainous 
areas as well as their combination, according to their 
special wind and temperature profile (Rudolf et al., 
2010). This type of analysis would be very useful, 
especially for areas like Greece, characterized by a 
complex morphology and abrupt terrain variations 
and changes between land and sea, where many sites 
could be potentially used for the construction of wind 
power plants.
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