Atmosfera 28(4), 283-296 (2015)

Role of forcing in large-time behavior of vorticity equation solutions on a
sphere

YURI N. SKIBA
Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de México, Circuito de la Investigacion
Cientifica s/n, Ciudad Universitaria, 04510 México, D.F.
E-mail: skiba@unam.mx

Received: January 29, 2015; accepted: August 20, 2015

RESUMEN

Se considera la ecuacion no lineal de vorticidad barotrépica (BVE) que describe la dindmica de vortice de un
fluido incompresible, viscoso y forzado sobre una esfera giratoria. Se estudia el comportamiento asintotico
de las soluciones de la BVE no estacionaria cuando # — . Se dan las formas particulares de la fuente ex-
terna de vorticidad que garantizan la existencia de un conjunto atractivo acotado en el espacio de fase de las
soluciones. Se muestra que el comportamiento asintotico de las soluciones BVE depende de la estructura y
la suavidad del forzamiento externo. También se dan tres tipos de condiciones suficientes para la estabilidad
asintdtica global de soluciones BVE, suaves y débiles. Se consideran conjuntos atractivos simples de un
fluido viscoso incompresible en una esfera cuando el forzamiento es un polinomio cuasi-periddico en tiem-
po. Cada conjunto atractivo representa una solucion cuasi-periddica de la BVE del subespacio complejo H,,
de dimension (2n + 1) que contiene los polinomios esféricos homogéneos de grado n. Su trayectoria es una
espiral abierta densamente enrollada alrededor de un toro 2n-dimensional en H,,, y por lo tanto su dimension
de Hausdorff es igual a 2n. Cuando el nimero generalizado de Grashof G se vuelve suficientemente peque-
o, el dominio de atraccion de tal solucion espiral se expande de H, a todo el espacio de fase de la BVE. Se
muestra que para un valor determinado G, existe un nimero entero n tal que cada solucion espiral generada
por un forzamiento de H, con n > nges estable global y asintdticamente. Asi, demostramos la diferencia en
el comportamiento asintético en los casos en que el numero de Grashof G esta fijo y acotado, pero el forza-
miento es estacionario o no estacionario. En el caso del forzamiento estacionario, la dimension del atractor de
fluido esta limitada desde arriba con el nimero G. Y en el caso del forzamiento no estacionario, la dimension
de la solucidn atractiva espiral (igual a 2n) puede ser arbitrariamente grande si el grado n del forzamiento
polinomial cuasi-periddico crece. Dado que las funciones cuasi-periddicas de pequefia escala, a diferencia
de las funciones estacionarias, representan mas adecuadamente el forzamiento en la atmésfera barotropica,
este resultado es de interés meteorologico y muestra que la dimension de los conjuntos atractivos no sélo
depende de la amplitud del forzamiento, sino también de su estructura espacial y temporal. Este ejemplo
también muestra que la busqueda de un atractor global de dimension finita en la atmosfera barotrépica no
esta bien justificada.

ABSTRACT

The nonlinear barotropic vorticity equation (BVE) describing the vortex dynamics of viscous incompressible
and forced fluid on a rotating sphere is considered. The asymptotic behavior of solutions of nonstationary BVE
as t — oo is studied. Particular forms of the external vorticity source are given that guarantee the existence of a
bounded attractive set in the phase space of solutions. The asymptotic behavior of the BVE solutions is shown
to depend on both the structure and the smoothness of external forcing. Three types of sufficient conditions
for global asymptotic stability of smooth and weak BVE solutions are also given. Simple attractive sets of
a viscous incompressible fluid on a sphere under quasi-periodic polynomial forcing are considered. Each
attractive set represents a BVE quasi-periodic solution of the complex (2n + 1)-dimensional subspace H, of
homogeneous spherical polynomials of degree n. The Hausdorff dimension of its trajectory, being an open
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spiral densely wound around a 2n-dimensional torus in H,, equals to 2n. As the generalized Grashof number
G becomes small enough then the domain of attraction of such spiral solution is expanded from H, to the
entire BVE phase space. It is shown that for a given G, there exists an integer 7 such that each spiral solution
generated by a forcing of H, with n > ng is globally asymptotically stable. Thus we demonstrate the difference
in the asymptotic behavior of solutions in the cases, then Grashof number G is fixed and bounded, but the
forcing is stationary or non-stationary. Whereas the dimension of the fluid attractor under a stationary forcing
is limited above by G, the dimension of the spiral attractive solution (equal to 27) may become arbitrarily
large as the degree n of the quasi-periodic polynomial forcing grows. Since the small-scale quasi-periodic
functions, unlike the stationary ones, more adequately depict the forcing in the barotropic atmosphere, this
result is of meteorological interest and shows that the dimension of attractive sets depends not only on the
forcing amplitude, but also on its spatial and temporal structure. This example also shows that the search of
a finite-dimensional global attractor in the barotropic atmosphere is not well justified.

Keywords: Incompressible viscous and forced fluid on a sphere, asymptotic behavior, global stability, at-

tractor dimension.

1. Introduction
The nonlinear barotropic vorticity equation (BVE)
describing the vortex dynamics of a viscous incom-
pressible and forced fluid on a rotating sphere is
considered, which takes into account the Rayleigh
friction, the sphere rotation, the external vorticity
source (forcing) F(¢, x), and the turbulent viscosity
term of common form v(—A)*"'y, where s > 1 is an
arbitrary real number. The case s = 1 corresponds to
the classical form used in Navier-Stokes equations
(Ladyzhenskaya, 1969; Szeptycki, 1973a, b; Temam,
1984; Tribbia, 1984; Ilyin and Filatov, 1988), while
the case s = 2 was considered for example in Sim-
mons et al. (1983), Dymnikov and Skiba (1987a, b),
and Skiba (1989). The turbulent term of such form
for natural numbers s is applied in Lions (1969) for
studying the solvability of Navier-Stokes equations in
a limited area by the artificial viscosity method. The
unique solvability of nonstationary BVE for arbitrary
real number s > 1, as well as the existence of weak
solution to the stationary BVE, was shown in Skiba
(2012). A condition guaranteeing the uniqueness of
such steady solution is given in the same work.
Many works have been devoted to the study of
large-time behavior of 2D vorticity equation solutions
(Temam, 1985; Marchioro, 1986; Ladyzhenskaya,
1987; Constantin et al., 1988; Giga and Kambe, 1988;
Giga et al. 1988, 2010; Doering and Gibbon, 1991;
Babin and Vishik, 1989; Ilyin, 1994; Skiba, 1994;
Gibbon, 1996; Gallagher and Gallay, 2005; Gallay
and Wayne, 2005, 2007; Yu, 2005). In particular, an
extensive literature deals with the question whether
or not the vorticity of unforced two dimensional flow
on R* converges to a self-similar solution (Giga and

Kambe, 1988; Giga et al., 1988, 2010; Carpio, 1994;
Gibbon, 1996; Cao et al., 1999; Gallagher and Gallay,
2005; Gallay and Wayne, 2005, 2007). Both exper-
imental and numerical studies of unforced viscous
fluid motion indicate that initially localized regions
of vorticity tend to evolve into isolated vortices and
that these vortices then serve as organizing centers
for the flow. It was proved by Gallay and Wayne
(2005) that in two dimensions, localized regions of
vorticity do evolve toward a vortex. More precisely
they prove that any solution of the two-dimension-
al Navier-Stokes equation, whose initial vorticity
distribution is integrable, converges to an explicit
self-similar solution called Oseen’s vortex. This
implies that the Oseen vortices are dynamically
stable for all values of Reynolds number, and these
vortices are the only solutions of the two-dimensional
Navier-Stokes equation with a Dirac mass as initial
vorticity. Under slightly stronger assumptions on the
vorticity distribution, they gave precise estimates on
the rate of convergence toward the vortex. This result
is applicable to the problem of the formation of the
Burgers vortex in a three-dimensional flow (Gallay
and Wayne, 2007), which is a very interesting topic
in fluid mechanics.

In this work, particular forms of the external vor-
ticity source have been found which guarantee the
existence of a bounded set that eventually attracts all
the BVE solutions. It is shown that the asymptotic
behavior of solutions depends on both the structure
and the smoothness of an external vorticity source.
Sufficient conditions for the global asymptotic sta-
bility of both smooth and weak BVE solutions are
also given.
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Simple attractive sets of a viscous incompress-
ible fluid on a sphere under quasi-periodic polyno-
mial forcing are considered. Each set represents a
quasi-periodic BVE solution of the subspace H, of
homogeneous spherical polynomials of degree n.
The Hausdorff dimension of its path, being an open
spiral densely wound around a 2n-dimensional to-
rus in H,, equals to 2n. As the generalized Grashof
number G becomes small enough then the basin of
attraction of such spiral solution is expanded from
H, to the entire phase space. It is shown that for a
given G, there exists an integer 7, such that each
spiral solution generated by a forcing of H, with n >
ng is globally asymptotically stable. Thus, whereas
the dimension of fluid attractor under a stationary
forcing is limited above by Grashof number G, the
dimension of a spiral attractive solution may, for a
fixed limited number G, become arbitrarily large as
the degree n of quasi-periodic polynomial forcing
grows. Since the small-scale quasi-periodic func-
tions, in contrast to the stationary ones, more ade-
quately represent the BVE forcing, this result has a
meteorological interest, showing that the dimension
of attractive sets depends not only on the amplitude,
but also on the spatial and temporal structure of the
forcing. This example also shows that the search of a
finite-dimensional global attractor in the barotropic
atmosphere is not well justified.

2. Spherical harmonics, projectors and fraction-
al derivatives

Let S= {x ER’: |x|= 1} be a unit sphere in the 3D
Euclidean space and let C*(S) be the set of infinitely
differentiable functions on S. We denote by

(frg)=Lf0)gl)ds and |If]|=<f" (M

the inner product and norm in C*(S), respectively.
Here x = (4, 1) is a point of the sphere, dS = didu is
an element of sphere surface, 4 = sing; u € [-1, 1],
¢ is the latitude, A € [0, 27) is the longitude and g is the
complex conjugate of g. It is well known that for each
integer n>0, the 2n + 1 spherical harmonics Y;'(4, )
with |m| < n are orthogonal eigenfunctions of the
spectral problem —AY;' =y, Y., (Im| <n, y,=n(n+ 1))
for spherical Laplace operator —A, which form a gen-
eralized (2n + 1)-dimensional eigensubspace

H, = {y: -Ay =y} )

of homogeneous spherical polynomials of degree n
(Richtmyer, 1981).

Orthogonal projector Y, : C*(S)~ H,, is introduced
by means of the convolution with Legendre polyno-
mial P,(x) (Skiba, 1989, 2004):

Yi(ysx) = Q2n+ 1) (y * P)(x) =
e W Yi(x),  n=0. 3

Note that each function w(x) € C*(S) is represent-
ed by its own Fourier-Laplace series Y-y Y,(¥; x)
and [jy|* = X7 1Y (s )|

Let s > 0 and w(x) € C*(S). The derivative A* =
(=A)"* of real order s is defined as a multiplier oper-
ator, defined by infinite set of multiplicators {y}*}%_;:

Y (Aw) =Y (w)=[n(n+ DY (w), n=1,2,3,.
Besides,
Ay(x) = X0 10V x) “4)

Obviously, operator A° may be defined on func-
tions from C*(S) = {yy € C*(S) : Yo(y) =0} by means
of (4) for any real degree s. In particular, A*" = (—-A)"
for a natural n, and operator A can be interpreted
as the square root of nonnegative and symmetric
Laplace operator. Unlike the local derivatives 0"/01"
and 0"/0u" , the derivatives A* and projectors Y, are
invariant with respect to any element of the group
SO(3) of sphere rotations (Skiba, 2012).

3. Hilbert spaces H’

We denote the completion of C3(S) in norm (1) as
the Hilbert space H® = L§(S) = &7, H,, of functions
on S. For any real s, we introduce the inner product
(s, *); and norm |||, in C3(S) as

W, by, =Wy, Nhy =301 oY), Yu(h) &)

lwlls = IAWI =, Wi = S ol (6)

We denote the Hilbert space obtained by closing
the space C3(S) in norm (10) as H*. We will keep
the symbols (¢, *) and ||*|| for the inner product and
norm in H'. Let 0 <s < 7. Then the imbeddings C7(S)
CH cH cH’cH* C H are continuous, and the
dual space (H)* coincides with H™ (Agranovich,
1965).
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Let s and r be real numbers. Operator A" = C%(S)
= C7(S) is symmetric, A"y, by, =<y, A"h),, and hence,
closable, and extended to H'. Namely, an element
z € H' is called the rth derivative A"y of a function
w € B if &z, b, = (z, A’h), holds for all 1 € C}(S)
(Skiba, 1989).

Lemma 1 (Skiba, 1989). Let s and r be real num-
bers, >0, and v € H*"". Then

[yl <272yl and [yl = AW, (7

Due to Lemma 1, the mapping A" : H'" ~ H® is
isometric and isomorphic for any real s and r. In
particular, at » = —2s, the operator A : H*  H' is
an isometric isomorphism.

Lemma 2 (Skiba, 1989). Let r, s and ¢ be real
numbers, < ¢, a =2 and w € H'™. Then

1A Wls < @™ || A"l ®)

4. Vorticity equation

The dynamics of viscous and forced nondivergent
barotropic fluid on the sphere S is described by the
nonlinear barotropic vorticity equation

%Av/ +J(y, Ay +2p)=—0cAy + v(-A)*"'y+F  (9)
written in the geographical coordinate system (4, u)
whose pole N is on the axis of rotation of the sphere
(Skiba, 1969). Here y is the streamfunction, Ay(?, x)
is the relative vorticity, Ay + 2u is the absolute
vorticity, F(¢, x) is the forcing, oAy describes the
Rayleigh friction in the planetary boundary layer
(020),

_OY oh _OY oh _
is the Jacobian, J(y, 2u) = 2y, describes the rotation
of sphere, and 77 is the unit outward normal at a point
of the sphere. The fluid velocity ¥V =7 x Vi is sole-
noidal: V ¢« ¥ =0. The turbulent viscosity term has the
form v(-A)"y, where v> 0 and s > 1 is arbitrary real
number (Skiba, 2012). As it was mentioned before,
the value s = 1 corresponds to the classical viscosity
term in Navier-Stokes equations (Szeptycki, 1973a, b;
Temam, 1984, 1985; Ladyzhenskaya, 1987; Ilyin
and Filatov, 1988), s = 2 was considered in (Sim-
mons et al., 1983; Dymnikov and Skiba, 1987a, b;
Skiba, 1994), while natural numbers of s were used

in (Lions, 1969) for proving the solvability of Na-
vier-Stokes equations in a limited area by means of
the method of artificial viscosity. Note that (14) is
considered in the classes of functions, orthogonal to
a constant on S, thus, Yy(y) =0 and Y(¥) = 0.

We now briefly consider the main properties of
Jacobian (15). Let all functions be complex-valued.
It is clear that

Sy, h)=-J(h,y), ReJ(y, )=0

(11)

Let n be a natural, and r be a real. Since A*Y,(y)
= v2Y, (), we get J(y, A'w) = 0 for any y € H,.
Obviously, J(yw, h) = 0 for any zonal functions y(u)
and A(w). Also note that

[, J(y, ) dS=0 (12)

Re(y, Ay), u» =0 (13)
and

Sy, g), hy=U(g, h), w)=J(y, h), g (14)

holds for sufficiently smooth complex-valued func-
tions y, g and 4 on S (Skiba, 1989).

Let C be the set of complex numbers, y € C*(S),
v : S — C, and let G(y) = G o y be a superposition
of two functions. Then (J(y, &), G(y)) = 0.

Lemma 3 (Skiba, 2012). Let » be a real number,
and y, h € C*(S). Then

Sy, =0, Uy, 1), Ny)=0 15)
Lemma 4 (Skiba, 1989). Let w, & € H’. Then
J(w, h) belongs to H and
I Cw, ) (| = M [yl (|l (16)
5. Attractive set of BVE solutions
The existence and uniqueness of the weak solution to
nonstationary BVE (14), as well as the existence of a
weak solution of steady BVE were proved in Skiba
(2012). A condition for the uniqueness of the steady
solution was also given in Skiba (2012). Besides
self-interest, the analysis of classes of functions,
in which there exist BVE solutions is particularly
important in the stability study of solutions.
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We now consider particular forms of the forcing
guaranteeing the existence in a phase space X of a
bounded set B.

Theorem 1 (Skiba, 2013). Let s > 1 in (14) and
let F(x) € H be a steady forcing where » >—1. Then
every solution y(¢, x) of BVE (14) will eventually be
attracted by a bounded set B C X. Moreover,

L. If » > 0 then X = H? and

B={y €H: |y, < Ci(r, s)[[Fl],} where

C(r,s)=a'(c+2v)"! (17)
IL Ifr €[-1,0) then X = H' and
B={yEH" : |yl < Cyr, s)||F||.} where
Cy(r, s)=a " (o +2'v)" (18)

Here a =\2 is the constant from Lemma 2.

Remark 1. All the steady and periodic solutions
(if they exist) belong to the set B. Obviously, the
set B contains the maximal attractor of the BVE
(Temam, 1985).

Remark 2. If F(¢, x) is a periodic forcing of space
C(0, w; H") where w is the time period, then Theorem
1 is also valid with the obvious change of the norm
|, by the norm 1 |[F]..

We now show that under certain conditions on
the forcing and dissipation, the maximal attractor of
BVE (9) coincides with the zero solution.

Theorem 2. If forcing F(¢, x) is such that the
integral [¢||F (¢, x)||,dt converges then ||jy(¢)|l\— O as
t — oo, Besides, X =H*if r >0 and X =H'if -1 <
r<a0.

Proof. Consider only the case F(z, x) € H where
r> 0, since the case F(¢, x) € H where r € [-1,0) is
proved similarly. Taking the inner product of Eq. (9)
with Ay and using Lemma 3 we get

Ay, Ayy =—0 (Ay, Ayy + W(—A)"y, Ay) +

(F, Apy =0 [|[Ap|* v AP +<F, Ayy - (19)

With lemmas 1 and 2, the terms (¥, Ay) and
v [|A ||’ can be estimated as

KE, Ayl < |IFI[ [|[Awll < a [|F]]: [| Ayl
where a =\2. , and

VA= 2 (| Ay

Then (19) implies
0
7 1AVl = Ayl + a” [|Fll where p = o+ 2'v (20)

Integrating (20) with respect to ¢ from 7 to ¢ we
obtain
[l < @b+ a" I7 ||F1].dt @2y
where ||y, = [|Ay|| (see [6] and [7]). Multiplying

(20) by ||Ay|| and integrating the result with respect
to ¢ from 7 to ¢, we obtain

I+ 2p [Nl de' < [yl +
207 [ @] |y (@) adlt’

Estimating the norm ||y/(¢')||, in the r.h.s. of the last
inequality with the help of (21) we get

@I+ 2p [t [yl dt’ < |y (o)
+2a” {|ly@l. + [LIF@), dt'} [ |F@)], dt’
<2 |lw(@)| + 3(a [ |F(e)|, dr'y

Here we have 0 < 7 <t < T. Hence, if integral
[& ||F(¢, x)||, dt s finite then integral [¢* ||y} d is also
finite. Therefore, there exists a subsequence #, — ©
such that ||y(#)|l, — 0. Using (21) in the case when
7 = t, we obtain that ||y()||, — 0 as t — . The the-
orem is proven.

6. Positive functional for the stability study
We now introduce a positive functional related with
kinetic energy and enstrophy of perturbations and
derive an equation describing its behavior in time.
Examples are given for the meteorologically import-
ant flows having the form of a super-rotation flow, a
homogeneous spherical polynomial of degree n or a
Rossby-Haurwitz wave.

Let w(z, A, 1) be a solution to BVE (9) under
consideration, and let {/(#, 4, u) be another solution
of (9). Then

LAy + (AT + . Ap) +

2% +J(y,Ay) = (o + vA®) Ay

(22)

where s >1,v>0, and 6> 0, holds for the perturbation
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w(t, A, w) =y (t, A, u) — (e, 4, u) of . Taking the
inner product (1) of Eq. (22) successively with y and
Ay and using the relations (14) and Lemma 3, we
obtain two integral equations:

é%KKQ+KJWAAWLW)Y+

(23)
26K(1) +vI Ayl 2 =0

L 1(0) Iy A). AF)) +
20n(0) + vi A2yl 2 = 0

24

for the kinetic energy K(7) =1 ||Vy/|* and enstrophy
n(f) = 5 ||Ay||* of the perturbation, respectively.

It follows from (23) and (24) that the Jacobian
J(y, Ay) in (22) can change the perturbation enstro-
phy #(#) but does not affect the perturbation energy
K(?). On the contrary, the other Jacobian J(7, Ay) in
(22) has no effect on 7(¢) but can change K(¢). As for
the last two terms in the L.h.s. of (22) (the super-ro-
tation term and the non-linear term), they both have
no influence on the behavior of K(¢) and #(?).

Example 1. If ¥ = 0 (such a solution exists if
F(x)=0) thenJ(y, Ay), %)) = 0 and J(y, Ap),Ap))=0
in (23) and (24). Therefore, in the non-dissipative
case (o = u = 0), the zero solution is stable, since the
perturbation energy and enstrophy will be constant.
In a dissipative case (o # 0 and/or x4 # 0), the zero
solution is globally asymptotically stable, since the
perturbation energy and enstrophy will exponentially
decrease in time.

Let now i be a solution of (9), and let p and ¢ be
non-negative numbers, not equal to zero simultane-
ously. We will measure the magnitude of perturbation
with the functional

O, q, w, 1) = O() = pK(1) + gn(t) =

T @IVYIP + qllAw|P) (25)

Multiplying (23) and (24) by p and ¢, respectively,
and combining the results, we obtain

£.0() = ~200() = R() -
vpl Astlyl 2 = vgl As2yl 2

(26)

where

R(O)=(J(v.Ay), piy — qAy7) (27)

Lemma 2 leads to —||A™"y|* < -27||Vy||* and
| A2y < -27|Ay||*, and hence (26) can be esti-
mated as
20() < -2p0()~R(), p = 6 +2°V (28)

Example 2. Super-rotation basic flow. Let §y =
(1) = Cu where C is a constant. Then R(f) = 0 due
to (15) and Q(p, g, v, 1) is the Liapunov function.
Thus the super-rotation flow is Liapunov stable if
o= u =0, and is the global attractor (asymptotically
Liapunov stable) if p > 0. The same is true for any
flow from subspace H, (Skiba, 1989).

Example 3. Flow in the form of a homogeneous
spherical polynomial. Let (¢, x) € H, for some
n>2, that is,

FD =Y POy

m=—n

(29)

In particular, it can be a zonal Legendre-poly-
nomial flow: y(«) = CP, (¢). Then J(y, Ay) = 0 for
any perturbation of H,, and R(f) = 0. By (22), any
perturbation of H, will never leave H,, that is, H,, is
invariant set of perturbations to flow (29); besides,
due to (28)’ Q(pa q, Y, t) = Q(pa q, Y, O) exp(—Zpt).
Thus any initial perturbation of H, will exponentially
tend to zero with time not leaving H,, that is, set H,
belongs to the domain of attraction of solution (29).

Example 4. The basic flow i is a linear combi-
nation of the flows considered in examples 2 and 3.
In particular, (¢, 4, 4) can be a Rossby-Haurwitz
wave (Skiba, 1989, 2004).Then the result obtained
in example 3 is also valid in this case.

7. Evolution of functional O(p, q, v, t)
Eq. (22) for a perturbation (¢, x) of solution (¢, x)
can be written as

LAy = Ly~ J(w.Ap) (30)
where
Ly==J(y,Ay)— J(y,Ay) —

31)

8_1//_ 2s
26/1 (o +vA*) Ay

is a linear operator that has a compact resolvent if
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v >0 (Skiba, 1989, 1998). Using the Lagrange iden-
tity for defining the adjoint operators, Eq. (26) can
be written as

L0() = By.w) (32)
where
B= %[q(AL +L'A) —p(L+L")] (33)

is the symmetric operator in the space H’.

Let w, and G,(x) be eigenvalues and orthonormal
eigenfunctions of the spectral problem
BG,=0,G, (34)
Note that functions G,(x) represent the orthonormal
basis in the real space H’, and operator B : H’ — H’
also has a compact resolvent (v > 0), and w, are real
isolated eigenvalues of geometrical multiplicity
one. The only possible limit point of the spectrum is
@ =—o0. Thus the number of positive eigenvalues of
B is finite.

Let us now renumerate the eigenvalues {w,} of
operator B in such a way that their values are de-
creasing with increasing values of 7. Besides, assume
that the first N eigenvalues w,,..., w, are positive.
The streamfunction of a perturbation (¢, x) can be
represented by its Fourier series

y(tx) =" anH)Gax) (39)
As a result we obtain
Lo =Y. o, a) (36)

Assume that an initial perturbation y(z,, x) has
the form of a single eigenfunction G,(x): w(t, x) =
a,(t))G,(x), then
L 0(10) = @y ax(to) (37)

Therefore, if w, > 0 (or w, <0) the functional O(¢)
of such initial perturbation will increase (decrease).
Note that the growth (decay) rate of Q(¢) at the mo-
ment ¢, is determined by the modulus of eigenvalue
®, and by the amplitude a,(t,) of perturbation. In
particular, if p = 1, ¢ = 0 and all the eigenvalues are
ordered so that w,., < w,, then perturbation of the

289

form of eigenfunction G,(x) will cause the fastest
growth of the perturbation energy K(?).

Let us consider a sequence {a,} of the Fourier
coefficients of a perturbation (35) as a point in the
phase space of perturbations to BVE solution /(#, x).
Then due to (36), the condition

© 2 N 2
E o, a; < E O, a
n:N+l| nl i e

defines a subset M, in the coordinate space of points
{a,}.Any perturbation y, whose Fourier coefficients
{a,} belong to M, generates the growth of O(%).

It is interesting to study a structure of the set M,
Obviously, set M is unbounded because it includes
the N-dimensional Euclidean space Ey of vectors
{a,, a,..., ay} except for its origin {0, 0,..., 0}. The
set M, is of infinite dimension and is not invariant
with respect to applying the nonlinear operator
Ly — J(y, Ay) of Eq. (22), that is, the trajectory of
perturbation (¢, x) can enter and leave the set M.
Obviously, among all the points {a,} belonging to a
surface Y, a; = C = const the maximum of £Q(%)
is achived when a, = \C and a,=0 foralln>2.

It follows from (38) that if 3w, a; is bounded
then Y y.1|w,|a; is also bounded. Since |w,| — o to
as n — oo (recall that the operator B has a compact
resolvent), the inequality > v.i|w,|az < C defines a
compact set in the coordinate space of sequences
{a,}%-n+1, which is orthogonal to the N-dimensional
Euclidean space E,.

Thus, the nonlinear evolution process for per-
turbations can be described by the following way.
Assume that at an initial moment ¢, the perturbation
w(ty, x) is such that a,(t,) = 0 for all n > N, i.e. the
point {a,(t,)} € Ey. Then functional Q(¢) will grow.
Since Ey is not invariant, nonzero coefficients a,(f)
for n > N will appear. Their growth will render the
inequality (38) invalid, and the point {a,(¢)} will
leave the set M. From this moment the functional
O(t) will decrease. Note that the larger the number of
nonzero coefficients a,(¢) with n > N, the higher the
possibility for the point {a,(¢)} to leave the set M.

Example 5. Super-rotation basic flow. Let =
(1) = Cu where C is a constant. Then

(3%)

Ly = [2(C—1) —CA]Z—V/{ — (0 + vA%) Ay

Since A and £ are commutative, the operator
[2(C —1) — CA] £ is skew symmetric, and hence,
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By = —(o + vA*)(qA* — pA)y

Thus, the spherical harmonics Y;'(x) (n=1, 2, 3,...;
|m| < n) are the eigenfunctions G,(x) of operator B
corresponding to the eigenvalues m, = —(a + v (qx,
+ px.) where y, = n(n + 1). Since w, < 0 for all #,
the set M defined by (38) is empty and Q(¢) — 0 in
time for any perturbation of super-rotation flow y7(u)
= Cu (see Example 2).

8. Conditions for global asymptotic stability
In a limited domain on the plane, in the absence of
linear drag, a condition for global asymptotic stability
of a BVE solution was derived by Sundstrom (1969),
provided that the solution has continuous derivatives
up to the third order. In this section we give three suf-
ficient conditions for the global asymptotic stability
of smooth and weak BVE solutions (theorems 3-5).
These conditions differ by the smoothness of basic
solution. The first two conditions were proved in Skiba
(2013). The first condition (Theorem 3) generalizes
Sundstrom’s result to a flow on a rotating sphere
when the linear drag is also taken into account and
s > 1 in the turbulent term. However, in the general
case, the solvability theorems (Skiba, 2012) do not
guarantee the existence of the solution whose third
or higher derivatives are continuous. Therefore in
the second condition (Theorem 4), the restriction on
the smoothness of basic solution is weakened (only
continuous derivatives up to the second order are
required) and is in full accordance with the solvability
theorems. The third condition (Theorem 5) is proved
in this section for a weak BVE solution. Examples
are given for a homogeneous spherical polynomial
of subspace H, and a pure dipole modon.

First, consider a rather smooth basic solution
y(t,x) of BVE (9) that has continuous derivatives up
to the third order, so that

p =sup max |[VAy(r,x)| and

>0 XYES

- _ (39)
g =sup max |V|//(t,x) |
120 YES

are both finite. Let us estimate the inner product (27)
by means of functional (25) with p and ¢ defined by
(39):

R(O)| = [(J(pV — gAT,w), Ay) | <

(40)
2pgl VyllAy < 2 [pq O(1)

Then substitution of (40) in (28) leads to

Theorem 3 (Skiba, 2013). Let s > 1, v> 0 and
o > 0. If a solution ¥/(t, x) of Eq. (9) is such that the
numbers p and g defined by (39) are finite, and
o+2'v> [pq 41)
then Q(p, g, y, t) is the Liapunov function, besides
any perturbation of (¢, x) will exponentially decrease
in time .

In the particular case when s = 1 and o = 0, The-
orem 3 is analogous to the assertion (Sundstrom,
1969; Yu, 2005) for the flows in a limited domain on
the plane. Note that both results demand the uniform
boundedness of [VAy(¢, x)| and |V (¢, x)|. However,
the existence of BVE solutions is proved only in the
classes of twice continuously differentiable stream-
functions (Skiba, 2012). It was shown in Skiba (2013)
that the restriction on the smoothness of solution
could be weakened so as to be in accordance with the
requirements of the solvability theorems.

Theorem 4 (Skiba, 2013). Lets>1,v>0,0>0,
and let (¢, x) be a solution of Eq. (9) such that
numbers
p =sup max |Ay(t,x)| and

120 XES

(42)
g =sup max |§(5x)|
1>0 ¥ES
defined by (42) are finite. If
v(o +2%v) > 26°D2pg (43)

then QO(p, g, y, t) is the Liapunov function, besides
any perturbation of (¢, x) will exponentially decrease
in time.

Note that in contrast to Theorem 3, Theorem 4
requires a non-zero viscosity coefficient v.

Unlike (39), condition (43) can be applied to a
wider class of BVE solutions. For example, if y7(¢, x)
is a modon by Tribbia (1984), Verkley (1987) or
Neven (1992), subjected to the linear drag and
viscosity and supported by a certain forcing, then
condition (43) is applicable, whereas (41) cannot
be used because VAy/(¢, x) is discontinuous on the
boundary between the inner and outer regions of
the modon.

Example 6. Let 0 =0 and s =1 in Eq. (9), and let
(x) be a stationary BVE solution from H, (n > 2):



Role of forcing in large-time behavior of vorticity equation solutions on a sphere 291

T =Y 7 e

m=-n

(44)

This solution is supported by a steady forcing F{(x)
whose Fourier coefficients are equal to F = (—vy,
+ i2m)ip" where i =V—1and y, = n(n + 1). Due to
Example 3, subspace H,, is the basin of attraction of
solution y7(x) for any v. Besides, (42) leads to p = .4,
and by Theorem 4, solution (44) is the global attractor
if v>g~\Nn(n + 1)/2. Thus, the larger the velocity and
degree n of flow (50), the larger must be the viscosity
coefficient v to provide its global asymptotic stability.

Example 7. Pure dipole modon. Let us now
specify condition (43) for the pure dipole stationary
modon by Verkley (1987) provided that ¢ = 0 and
s =11n Eq. (9). Such a modon has the form

V(A ') = R(n)cos A (45)
in the local coordinate system (4', 1), besides,
AV =~y + (o —2)0ipn (46)

in the inner region S; = {(A, u) €S : u'>a}, and

AV = —xoW + (X0 = 2)0,p (47)
in the outer region S, = {(A’, u) € S : u' < a} of the
modon (Ja| < 1). It can be shown that

(Ko —2)0i = (X6 —2)0, = 2

for the stationary modon (43). In the relations (45)-
(47), u 1s the sine of latitude in the geographical sys-
tem (4, #) whose pole 4 = 1 is on the axis of rotation
of sphere, and y, and y, are the eigenvalues of the
spherical harmonics used in constructing the modon
in regions S; and S, besides, y, > 0 and y, is a real.
Note that p < max{y,,|x.|}g + 2, where ¢ is defined
by (42). As a result, condition (43) for the global
asymptotic stability of modon explicitly depends on
Yoo | 2| and g: v? = q[3 max {y,, | x|} +1.

We now derive a condition for the global asymp-
totic stability of a steady weak solution §(x) € H'*?
(s > 1), whose existence is proved in (Skiba,
2012).

Theorem 5. Let s > 1, v> 0 and o > 0. A steady
weak solution 7(x) € H*? of BVE (9) is globally
asymptotically stable if

v(o +2%v) > 27 6+hp? (48)

where p = Col|Ay|lis) = ([s/A7]'dS)" and
q = Col|¥||L4s), and C, is the constant from the es-
timate

IVl g < Col Ayl (49)

L4S)

(see lemmas 6 and 7 from Leray, 1933).

Proof. The functions y7(x) and Ay(x) belong to
L*(S) due to lemma 4 from Leray (1933), and apply-
ing Holder’s inequality to (27) we get

R = |{J(w,Ap), pi — qAT )| <

PLT1 Ligg) + 9V AT Lo )1 VW1 o] VAYI

Integrating the last inequality and applying (49)
we obtain

t
j R(t)dz < Co(pl 1 g+
0

t
gl A wsﬂf" Ayl Ayl dr
0

Setting p = Co||Ay|r4s) and g = Co|||r4s) and using
e-inequality, we get

J.R(t)dr < 2pe? J. O, q,w(1),7)dr +
0 0 (50)

t
Pq 30 2
pocll LESUARCE
0
The integration of Eq. (26) in time and the use of

the inequalities —{|A™"w|* < —2°||Vy/||* and —||A*y|*
< 27Ny lead to

0(1) < 00) = [ Rydz = 2p [ O(x)de -
t 0 0 (51)
25" lvg III Ayl dr
0

with p = o + 2°v. Applying (50) in (51) we obtain
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0() < 0(0) ~2(p—pe?) | O(x)dr -
0

t
g2y — %) j | Ayl dr
&
0

The last term in this inequality is eliminated by
setting & = p/(2*"'v). Thus, (x) is globally asymp-
totically stable if p — pe® > 0. The theorem is proved.

Remark 3. The restriction on the coefficient v
weakens when the order s in the turbulent term of Eq. (9)
increases. Also note that although the number ¢ is
absent in (48), it is present implicitly through the
definition of functional Q(p, ¢, v, ?).

9. Hausdorff dimension of spiral attractor for a
quasi-periodic forcing of H,

9.1 Hausdorff dimension of BVE attractor subjected
to a stationary forcing

Estimates of the Hausdorff dimension of attractor in
a viscous incompressible 2D fluid subjected in the
periodic hypercube to a stationary forcing were made
in Babin and Vishik (1989) and, in the more general
case, in Constantin et al. (1988), Doering and Gib-
bon (1991), and Gibbon (1996). They state that the
attractor dimension is limited by the nondimensional
generalized Grashof number (Temam, 1984, 1985).
In the case of sphere, the Hausdorftf dimension of
attractor of vorticity equation

Ay + Iy, Ay +24) =

ot
v(s)(=A)* 1y + F(x)
was estimated in Ilyin (1994) as
< T
dimA(s) < 2|:7r(2s+ D) +€6() X

G(k)Y@stD % |:logG(s) + (52)

s 1/(2s+2) VGt

log 12265+ 1)
Jr

where g5 — 0 as G(s) — oo, and G(s) is the gener-

alized Grashof number

G(s) = [[FGll 122 1v(s) (53)

and

| F(4,%)]

(IS|F(x)|2dx) -

» n 12
(z 5 F|>
n=l m=n

is the L,-norm of the stationary forcing, and F; is its
Fourier coefficient with respect to the orthonormal
set of spherical harmonics Y;'(x) of the zonal number
m and degree n > 1. In particular, the inequality (52),
as applied to large-scale barotropic processes of the
atmosphere for s = 2 and G(2) = 1500, yields the
upper limit of the barotropic atmosphere attractor
dimension (Ilyin, 1994):

(54

dim A4(2) <60 (55)

Despite the fact that the results (52) and (55)
are of considerable theoretical interest in hydrody-
namics, their practical application to the barotropic
atmosphere raises doubts. Indeed, the forcing of the
BVE (9) describes the influence of nonstationary
small-scale baroclinic processes with rather compli-
cated spatial and temporal behavior. So it is natural
to expect that in contrast to stationary functions,
small-scale quasi-periodic functions more adequately
represent the BVE forcing.

9.2 Quasi-periodic spiral solution

In order to show that the Hausdorff dimension of
attractive sets crucially depends on the spectral
composition of BVE forcing, we now consider the
asymptotic behavior of solutions to the BVE (9) for
a forcing which is quasi-periodic in time and has
the form of a homogeneous spherical polynomial
of degree n:

i) = 3 Fu1co)

m=-n

(56)

where

Fu(t) = fuexp{imonty, |m| <n (56)
i is the imaginary unit, f,, is a constant amplitude,

and the numbers w,, are some incommensurate
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fundamental frequencies. Obviously, the geometric
scale of forcing decreases as n increases. Note that
the spherical variant of the well-known example
by Marchioro (1986) corresponds to the time-in-
dependent forcing (56) of degree n = 1. Also note
that the norm

n 12 n 12
[ F(t,x)||=<z |Fm(z)|2> =<Z me|2> (58)

of forcing (56), (57) is time-independent, and we
will use the same generalized Grashof number (53)
as in the case of stationary forcing. Obviously, there
is a host of quasi-periodic forcings (56) that have the
same norm (58) (or the same Grashof number [53]),
but differ in their degrees n and amplitudes f,,.

Dueto (2) and (11), J(y, Ay) =0 for any w € H,,
and hence, H, is the invariant set of BVE solutions:
any solution of (9) that starts in H, will never leave
H,. Moreover, it follows from (27) that R(¢) =0, and
by (26), the subspace H, is the attraction domain
for the solution ¥,(t, x) € H, defined by its Fourier
coefficients (Skiba, 2013):

V() = AnFu(t) = —{[o +viilxn +
im(xnom —2) " Fu(0),

(39)
Im| < n

Since the frequencies w,, are rationally indepen-
dent, the attractive solution y/(¢, x) is quasi-periodic,
and its path is an open (endless) spiral densely
wound around a 2n-dimensional torus in the (27 + 1)-
dimensional complex subspace H,. According to
theorem 3 by Samoilenko (1991), the closure of this
trajectory coincides with the torus. Hence, the Haus-
dorff dimension of attractive solution (59) equals 2x.

9.3 Global asymptotic stability of spiral solution
(59)

Sufficient condition for the global asymptotic stabili-
ty of solution (59) is given by Theorem 3. In our case
y(t, x) € H,, and (39) leads to p = y,g = n(n + 1)q.
As a result, the condition (41) for global asymptotic
stability of solution (59) accepts the form

o+2'v>q.[xn (60)

where

g =sup max [V (t,x)

(>0 xES | ‘ (61)

It is easy to show (see Skiba, 1994, Appendix
B) that

2

~ 12 - ~m
IViF|" = | 7OV X

ey 2 - m 2 2n+ 1§ ~2
< = =T 1
<1yl {z |VY,,(x)|} A

According to (59) we have ||i7(¢, x)|| <[+ vy] " %
% ||F|| where ||F]| is the time-independent norm (58)
of forcing (56). Using the last estimates in (61) we get

q < /% [o+vys] L = 32 b, FI

where b, V(2n + 1)/4n[c+ vy;] " and hence, condition
(60) is satisfied if o + 2°v > b, ||F|| and even more so if

s 2n+1 1
25y > i vyl | FI

Using (53), condition (62) can be written in terms
of generalized Grashof number: 2>y N/(2n + 1) >
G(s), and hence, it is satisfied if

(62)

23/2—sﬁn2s—1/2 > G(s) (63)
Thus, we have proved the following assertion:
Theorem 6. Lets>v>1,v>0,06>0, F(¢,x) €EH,

be a quasi-periodic BVE forcing (56), and let G(s) be
the generalized Grashof number (53) of this equation.
Then solution (59) of H, is globally asymptotically
stable provided that inequality (63) is fulfilled. More-
over, for a fixed finite Grashof number G(s), there is
an integer 1 so that for any n > n;, the spiral solution
generated by any forcing (56) of H, with Grashof
number G is globally asymptotically stable.

In particular, solution (59) is globally asymptoti-
cally stable if 2"\ n”? > G(2) and 2"z n** > G(1).
The last case corresponds to the Navier-Stokes
equations. For example, the condition 2"z n”? >
G(2) is satisfied for any forcing (56) of degree n > 8
if G(2) = 1500.

The result obtained is not unexpected. Indeed,
for a fixed coefficient v(s), the number G(s) is fixed
if the L,-norm (58) of the forcing is a constant in-
dependent of n. The amplitudes |f,,| of forcing must
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decrease as n grows, and for n large enough (or for
the amplitudes |f,,| small enough) the viscosity v(s)
is sufficient to make the quasi-periodic solution (59)
globally asymptotically stable.

Thus, whereas the Hausdorff dimension of the
BVE attractor subjected to a stationary forcing is
limited above by the generalized Grashof number G
(Ilyin, 1994), the Hausdorff dimension 2n of globally
attractive spiral solution (59) may become arbitrarily
large as the degree n of quasi-periodic forcing (56)
grows. This result has a meteorological interest, since
it shows that the dimension of the global attractor in
the barotropic atmosphere crucially depends on the
spatial and temporal structure of BVE forcing and
it can be unlimited even if the Grashof number (53)
is bounded.

Remark 4. For a steady forcing F(z, x) € H,,
condition (63) guarantees the global asymptotic
stability of the steady BVE solution (¢, x) € H, as
well.

10.Conclusions

The nonlinear barotropic vorticity equation (BVE)
describing the vortex dynamics of viscous incom-
pressible and forced fluid on a rotating sphere is
considered. It takes into account the Rayleigh friction,
the rotation of sphere, the external vorticity source
(forcing) F(¢,x), and the turbulent viscosity term of
common form v(-A)"" y, where A is the spherical
Laplace operator and s > 1 is a real number.

The large-time behavior of its solutions is studied.
Specific forms of steady BVE forcing have been
found which guarantee the existence of a limited set
that eventually attracts all the BVE solutions (The-
orem 1). Additionally, theorem 2 shows that under
certain conditions on the nonstationary forcing, the
maximal BVE attractor coincides with the zero solu-
tion. Thus, the asymptotic behavior of BVE solutions
depends on both the structure and the smoothness
of forcing. Three sufficient conditions for the global
asymptotic stability of BVE solutions of different
degree of smoothness are also given (theorems 3-5).

Simple attractive sets of the BVE (9) subjected
to a quasi-periodic forcing of subspace H, of ho-
mogeneous spherical polynomials of degree n are
analyzed. Each such set is a spiral quasi-periodic
BVE solution densely wound on a 2n-dimensional
torus in H,,. The Hausdorff dimension of its trajectory
equals to 2n. As the generalized Grashof number G

becomes small enough then the basin of attraction
of such spiral solution is expanded from H, to the
entire BVE phase space. It is shown that for a given
G, there exists an integer n; such that each spiral
solution generated by a forcing of H, with n > n, (and
Grashof number G) is globally asymptotically stable
(Theorem 6). Thus, whereas the Hausdorff dimension
of global attractor of the BVE subjected on a sphere
to a stationary forcing is limited by Grashof number
G, the Hausdorff dimension of globally attractive
spiral solution (59) may become arbitrarily large as
the degree n of quasi-periodic forcing (56) grows.
Unlike a steady forcing, a quasi-periodic forcing
more adequately describes the effects of small-scale
baroclinic processes in the BVE, and therefore the
last result is of meteorological interest, showing that
the dimension of the global BVE attractor can be
unlimited even if the generalized Grashof number
is limited, and hence, the global attractor dimension
crucially depends not only on the magnitude but also
on the spatial and temporal structure of forcing. This
also shows that the search of a finite-dimensional
global attractor in the barotropic atmosphere is not
well justified.
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