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RESUMEN

Se considera la ecuación no lineal de vorticidad barotrópica (BVE) que describe la dinámica de vórtice de un 
fluido incompresible, viscoso y forzado sobre una esfera giratoria. Se estudia el comportamiento asintótico 
de las soluciones de la BVE no estacionaria cuando t → ∞. Se dan las formas particulares de la fuente ex-
terna de vorticidad que garantizan la existencia de un conjunto atractivo acotado en el espacio de fase de las 
soluciones. Se muestra que el comportamiento asintótico de las soluciones BVE depende de la estructura y 
la suavidad del forzamiento externo. También se dan tres tipos de condiciones suficientes para la estabilidad 
asintótica global de soluciones BVE, suaves y débiles. Se consideran conjuntos atractivos simples de un 
fluido viscoso incompresible en una esfera cuando el forzamiento es un polinomio cuasi-periódico en tiem-
po. Cada conjunto atractivo representa una solución cuasi-periódica de la BVE del subespacio complejo Hn 
de dimensión (2n + 1) que contiene los polinomios esféricos homogéneos de grado n. Su trayectoria es una 
espiral abierta densamente enrollada alrededor de un toro 2n-dimensional en Hn, y por lo tanto su dimensión 
de Hausdorff es igual a 2n. Cuando el número generalizado de Grashof G se vuelve suficientemente peque-
ño, el dominio de atracción de tal solución espiral se expande de Hn a todo el espacio de fase de la BVE. Se 
muestra que para un valor determinado G, existe un número entero nG tal que cada solución espiral generada 
por un forzamiento de Hn con n ≥ nG es estable global y asintóticamente. Así, demostramos la diferencia en 
el comportamiento asintótico en los casos en que el número de Grashof G está fijo y acotado, pero el forza-
miento es estacionario o no estacionario. En el caso del forzamiento estacionario, la dimensión del atractor de 
fluido está limitada desde arriba con el número G. Y en el caso del forzamiento no estacionario, la dimensión 
de la solución atractiva espiral (igual a 2n) puede ser arbitrariamente grande si el grado n del forzamiento 
polinomial cuasi-periódico crece. Dado que las funciones cuasi-periódicas de pequeña escala, a diferencia 
de las funciones estacionarias, representan más adecuadamente el forzamiento en la atmósfera barotrópica, 
este resultado es de interés meteorológico y muestra que la dimensión de los conjuntos atractivos no sólo 
depende de la amplitud del forzamiento, sino también de su estructura espacial y temporal. Este ejemplo 
también muestra que la búsqueda de un atractor global de dimensión finita en la atmósfera barotrópica no 
está bien justificada.

ABSTRACT

The nonlinear barotropic vorticity equation (BVE) describing the vortex dynamics of viscous incompressible 
and forced fluid on a rotating sphere is considered. The asymptotic behavior of solutions of nonstationary BVE 
as t → ∞ is studied. Particular forms of the external vorticity source are given that guarantee the existence of a 
bounded attractive set in the phase space of solutions. The asymptotic behavior of the BVE solutions is shown 
to depend on both the structure and the smoothness of external forcing. Three types of sufficient conditions 
for global asymptotic stability of smooth and weak BVE solutions are also given. Simple attractive sets of 
a viscous incompressible fluid on a sphere under quasi-periodic polynomial forcing are considered. Each 
attractive set represents a BVE quasi-periodic solution of the complex (2n + 1)-dimensional subspace Hn of 
homogeneous spherical polynomials of degree n. The Hausdorff dimension of its trajectory, being an open 
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spiral densely wound around a 2n-dimensional torus in Hn, equals to 2n. As the generalized Grashof number 
G becomes small enough then the domain of attraction of such spiral solution is expanded from Hn to the 
entire BVE phase space. It is shown that for a given G, there exists an integer nG such that each spiral solution 
generated by a forcing of Hn with n ≥ nG is globally asymptotically stable. Thus we demonstrate the difference 
in the asymptotic behavior of solutions in the cases, then Grashof number G is fixed and bounded, but the 
forcing is stationary or non-stationary. Whereas the dimension of the fluid attractor under a stationary forcing 
is limited above by G, the dimension of the spiral attractive solution (equal to 2n) may become arbitrarily 
large as the degree n of the quasi-periodic polynomial forcing grows. Since the small-scale quasi-periodic 
functions, unlike the stationary ones, more adequately depict the forcing in the barotropic atmosphere, this 
result is of meteorological interest and shows that the dimension of attractive sets depends not only on the 
forcing amplitude, but also on its spatial and temporal structure. This example also shows that the search of 
a finite-dimensional global attractor in the barotropic atmosphere is not well justified.

Keywords: Incompressible viscous and forced fluid on a sphere, asymptotic behavior, global stability, at-
tractor dimension.

1.	 Introduction
The nonlinear barotropic vorticity equation (BVE) 
describing the vortex dynamics of a viscous incom-
pressible and forced fluid on a rotating sphere is 
considered, which takes into account the Rayleigh 
friction, the sphere rotation, the external vorticity 
source (forcing) F(t, x), and the turbulent viscosity 
term of common form v(–Δ)s+1ψ, where s ≥ 1 is an 
arbitrary real number. The case s = 1 corresponds to 
the classical form used in Navier-Stokes equations 
(Ladyzhenskaya, 1969; Szeptycki, 1973a, b; Temam, 
1984; Tribbia, 1984; Ilyin and Filatov, 1988), while 
the case s = 2 was considered for example in Sim-
mons et al. (1983), Dymnikov and Skiba (1987a, b), 
and Skiba (1989). The turbulent term of such form 
for natural numbers s is applied in Lions (1969) for 
studying the solvability of Navier-Stokes equations in 
a limited area by the artificial viscosity method. The 
unique solvability of nonstationary BVE for arbitrary 
real number s ≥ 1, as well as the existence of weak 
solution to the stationary BVE, was shown in Skiba 
(2012). A condition guaranteeing the uniqueness of 
such steady solution is given in the same work.

Many works have been devoted to the study of 
large-time behavior of 2D vorticity equation solutions 
(Temam, 1985; Marchioro, 1986; Ladyzhenskaya, 
1987; Constantin et al., 1988; Giga and Kambe, 1988; 
Giga et al. 1988, 2010; Doering and Gibbon, 1991; 
Babin and Vishik, 1989; Ilyin, 1994; Skiba, 1994; 
Gibbon, 1996; Gallagher and Gallay, 2005; Gallay 
and Wayne, 2005, 2007; Yu, 2005). In particular, an 
extensive literature deals with the question whether 
or not the vorticity of unforced two dimensional flow 
on 2 converges to a self-similar solution (Giga and 

Kambe, 1988; Giga et al., 1988, 2010; Carpio, 1994; 
Gibbon, 1996; Cao et al., 1999; Gallagher and Gallay, 
2005; Gallay and Wayne, 2005, 2007). Both exper-
imental and numerical studies of unforced viscous 
fluid motion indicate that initially localized regions 
of vorticity tend to evolve into isolated vortices and 
that these vortices then serve as organizing centers 
for the flow. It was proved by Gallay and Wayne 
(2005) that in two dimensions, localized regions of 
vorticity do evolve toward a vortex. More precisely 
they prove that any solution of the two-dimension-
al Navier-Stokes equation, whose initial vorticity 
distribution is integrable, converges to an explicit 
self-similar solution called Oseen’s vortex. This 
implies that the Oseen vortices are dynamically 
stable for all values of Reynolds number, and these 
vortices are the only solutions of the two-dimensional 
Navier-Stokes equation with a Dirac mass as initial 
vorticity. Under slightly stronger assumptions on the 
vorticity distribution, they gave precise estimates on 
the rate of convergence toward the vortex. This result 
is applicable to the problem of the formation of the 
Burgers vortex in a three-dimensional flow (Gallay 
and Wayne, 2007), which is a very interesting topic 
in fluid mechanics.

In this work, particular forms of the external vor-
ticity source have been found which guarantee the 
existence of a bounded set that eventually attracts all 
the BVE solutions. It is shown that the asymptotic 
behavior of solutions depends on both the structure 
and the smoothness of an external vorticity source. 
Sufficient conditions for the global asymptotic sta-
bility of both smooth and weak BVE solutions are 
also given. 
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Simple attractive sets of a viscous incompress-
ible fluid on a sphere under quasi-periodic polyno-
mial forcing are considered. Each set represents a 
quasi-periodic BVE solution of the subspace Hn of 
homogeneous spherical polynomials of degree n. 
The Hausdorff dimension of its path, being an open 
spiral densely wound around a 2n-dimensional to-
rus in Hn, equals to 2n. As the generalized Grashof 
number G becomes small enough then the basin of 
attraction of such spiral solution is expanded from 
Hn to the entire phase space. It is shown that for a 
given G, there exists an integer nG such that each 
spiral solution generated by a forcing of Hn with n ≥ 
nG is globally asymptotically stable. Thus, whereas 
the dimension of fluid attractor under a stationary 
forcing is limited above by Grashof number G, the 
dimension of a spiral attractive solution may, for a 
fixed limited number G, become arbitrarily large as 
the degree n of quasi-periodic polynomial forcing 
grows. Since the small-scale quasi-periodic func-
tions, in contrast to the stationary ones, more ade-
quately represent the BVE forcing, this result has a 
meteorological interest, showing that the dimension 
of attractive sets depends not only on the amplitude, 
but also on the spatial and temporal structure of the 
forcing. This example also shows that the search of a 
finite-dimensional global attractor in the barotropic 
atmosphere is not well justified.

2.	 Spherical harmonics, projectors and fraction-
al derivatives

Let S = {x ∈ 3 : |x|= 1} be a unit sphere in the 3D 
Euclidean space and let ∞(S) be the set of infinitely 
differentiable functions on S. We denote by

 f, g  = ∫s f(x)g(x)dS    and    || f || =  f, f 1/2	 (1)

the inner product and norm in ∞(S), respectively. 
Here x = (λ, µ) is a point of the sphere, dS = dλdµ is 
an element of sphere surface, µ = sinϕ; µ ∈ [–1, 1], 
ϕ is the latitude, λ ∈ [0, 2π) is the longitude and g– is the 
complex conjugate of g. It is well known that for each 
integer n ≥ 0, the 2n + 1 spherical harmonics Yn

m(λ, µ) 
with |m| ≤ n are orthogonal eigenfunctions of the 
spectral problem –ΔYn

m = χnYn
m, (|m| ≤ n, χn = n(n + 1)) 

for spherical Laplace operator –∆, which form a gen-
eralized (2n + 1)-dimensional eigensubspace

Hn = {ψ : –Δψ = χnψ}	 (2)

of homogeneous spherical polynomials of degree n 
(Richtmyer, 1981).

Orthogonal projector Yn : ∞(S)  Hn is introduced 
by means of the convolution with Legendre polyno-
mial Pn(x) (Skiba, 1989, 2004):

Yn(ψ; x) = (2n + 1) (ψ * Pn)(x) = 
    ∑n

m=–n ψn
mYn

m(x),     n ≥ 0.	 (3)

Note that each function ψ(x) ∈ ∞(S) is represent-
ed by its own Fourier-Laplace series ∑∞

n=0 Yn(ψ; x) 
and ||ψ||2 = ∑∞

n=1 ||Yn(ψ; x)||2.
Let s > 0 and ψ(x) ∈ ∞(S). The derivative Λs = 

(–∆)s/2 of real order s is defined as a multiplier oper-
ator, defined by infinite set of multiplicators {χn

s/2}∞
n=1:

Yn(Λsψ) = χn
s/2Yn(ψ) = [n(n + 1)]s/2Yn(ψ),     n = 1, 2, 3,...

Besides,

Λsψ(x) = ∑∞
n=1 χn

s/2Yn(ψ; x)	 (4)

Obviously, operator Λs may be defined on func-
tions from ∞(S) = {ψ ∈ ∞(S) : Y0(ψ) = 0} by means 
of (4) for any real degree s. In particular, Λ2n = (–Δ)n 
for a natural n, and operator Λ can be interpreted 
as the square root of nonnegative and symmetric 
Laplace operator. Unlike the local derivatives ∂n/∂λn 
and ∂n/∂µn , the derivatives Λs and projectors Yn are 
invariant with respect to any element of the group 
SO(3) of sphere rotations (Skiba, 2012).

3.	 Hilbert spaces s

We denote the completion of ∞
0(S) in norm (1) as 

the Hilbert space 0 = 2
0(S) = ∞

n=1 Hn of functions 
on S. For any real s, we introduce the inner product 
•, • s and norm ||•||s in ∞

0(S) as

ψ, h s = Λsψ, Λsh  = ∑∞
n=1 χn

s Yn(ψ), Yn(h) 	 (5)

||ψ||s = ||Λsψ|| = ψ, ψ s
1/2 = {∑∞

n=1 χn
s ||Yn(ψ)||2}1/2	 (6)

We denote the Hilbert space obtained by closing 
the space ∞

0(S) in norm (10) as s. We will keep 
the symbols •, •  and ||•|| for the inner product and 
norm in 0. Let 0 < s < r. Then the imbeddings ∞

0(S) 
 r  s  0  s  r  are continuous, and the 

dual space ( s)* coincides with s (Agranovich, 
1965).
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Let s and r be real numbers. Operator Λr = ∞
0(S) 

 ∞
0(S) is symmetric, Λrψ, h s = ψ, Λrh s, and hence, 

closable, and extended to s. Namely, an element 
z ∈ s is called the rth derivative Λrψ of a function 
ψ ∈ s if z, h s = z, Λrh s holds for all h ∈ ∞

0(S) 
(Skiba, 1989).

Lemma 1 (Skiba, 1989). Let s and r be real num-
bers, r > 0, and ψ ∈ s+r. Then

||ψ||s ≤ 2–r/2||ψ||s+r  and  ||ψ||s+r = ||Λrψ||s	 (7)

Due to Lemma 1, the mapping Λr : s+r  s is 
isometric and isomorphic for any real s and r. In 
particular, at r = –2s, the operator Λ–2s : –s  s is 
an isometric isomorphism.

Lemma 2 (Skiba, 1989). Let r, s and t be real 
numbers, r < t, a =  and ψ ∈ s+t. Then 

||Λrψ||s ≤ ar–t||Λtψ||s	 (8)

4.	 Vorticity equation
The dynamics of viscous and forced nondivergent 
barotropic fluid on the sphere S is described by the 
nonlinear barotropic vorticity equation

∂
∂ − − 	 (9)

written in the geographical coordinate system (λ, µ) 
whose pole N is on the axis of rotation of the sphere 
(Skiba, 1969). Here ψ is the streamfunction, Δψ(t, x) 
is the relative vorticity, Δψ + 2µ is the absolute 
vorticity, F(t, x) is the forcing, σΔψ describes the 
Rayleigh friction in the planetary boundary layer 
(σ ≥ 0),

∂
∂

∂
∂ − ∂

∂
∂
∂

∆ ∆	 (10)

is the Jacobian, J(ψ, 2µ) = 2ψλ describes the rotation 
of sphere, and n→ is the unit outward normal at a point 
of the sphere. The fluid velocity v→ = n→ × ψ is sole-
noidal:  • v→ = 0. The turbulent viscosity term has the 
form v(–Δ)s+lψ, where v > 0 and s ≥ 1 is arbitrary real 
number (Skiba, 2012). As it was mentioned before, 
the value s = 1 corresponds to the classical viscosity 
term in Navier-Stokes equations (Szeptycki,1973a, b; 
Temam, 1984, 1985; Ladyzhenskaya, 1987; Ilyin 
and Filatov, 1988), s = 2 was considered in (Sim-
mons et al., 1983; Dymnikov and Skiba, 1987a, b; 
Skiba, 1994), while natural numbers of s were used 

in (Lions, 1969) for proving the solvability of Na-
vier-Stokes equations in a limited area by means of 
the method of artificial viscosity. Note that (14) is 
considered in the classes of functions, orthogonal to 
a constant on S, thus, Y0(ψ) = 0 and Y0(F) = 0.

We now briefly consider the main properties of 
Jacobian (15). Let all functions be complex-valued. 
It is clear that

J(ψ, h) = –J(h, ψ),     ReJ(ψ, ψ) = 0	 (11)

Let n be a natural, and r be a real. Since ΛsYn(ψ) 
= χn

s/2Yn(ψ), we get J(ψ, Λsψ) = 0 for any ψ ∈ Hn. 
Obviously, J(ψ, h) = 0 for any zonal functions ψ(µ) 
and h(µ). Also note that

∫s J(ψ, h) dS = 0	 (12)

Re J(ψ, Δψ), µ  = 0	 (13)

and

J(ψ, g), h  = J(g, h
– 
), ψ–  = J(ψ, h

– 
), g–

 
	 (14)

holds for sufficiently smooth complex-valued func-
tions ψ, g and h on S (Skiba, 1989). 

Let  be the set of complex numbers, ψ ∈ ∞(S), 
ψ : S → , and let G(ψ) = G ° ψ be a superposition 
of two functions. Then J(ψ, h),  = 0.

Lemma 3 (Skiba, 2012). Let r be a real number, 
and ψ, h ∈ ∞(S). Then

J(ψ, h)  = 0,    J(ψ, µ),  = 0	 (15)

Lemma 4 (Skiba, 1989). Let ψ, h ∈ 2. Then 
J(ψ, h) belongs to 0 and

||J (ψ, h) || ≤ M ||ψ||2 ||h||2 	 (16)

5.	 Attractive set of BVE solutions
The existence and uniqueness of the weak solution to 
nonstationary BVE (14), as well as the existence of a 
weak solution of steady BVE were proved in Skiba 
(2012). A condition for the uniqueness of the steady 
solution was also given in Skiba (2012). Besides 
self-interest, the analysis of classes of functions, 
in which there exist BVE solutions is particularly 
important in the stability study of solutions.
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We now consider particular forms of the forcing 
guaranteeing the existence in a phase space X of a 
bounded set B.

Theorem 1 (Skiba, 2013). Let s ≥ 1 in (14) and 
let F(x) ∈ r be a steady forcing where r ≥ –1. Then 
every solution ψ(t, x) of BVE (14) will eventually be 
attracted by a bounded set B  X. Moreover,

I. If r ≥ 0 then X = 2 and

B = {ψ ∈ 2 : ||ψ||2 ≤ C1(r, s)||F||r} where
       C1(r, s) = a–r(σ + 2sv)–1	 (17)

II. If r ∈ [-1,0) then X = 1 and

B = {ψ ∈ 1 : ||ψ||1 ≤ C2(r, s)||F||r} where
       C2(r, s) = a–(r+1)(σ + 2sv)–1	 (18)

Here a =  is the constant from Lemma 2.
Remark 1. All the steady and periodic solutions 

(if they exist) belong to the set B. Obviously, the 
set B contains the maximal attractor of the BVE 
(Temam, 1985).

Remark 2. If F(t, x) is a periodic forcing of space 
C(0, ω; r) where ω is the time period, then Theorem 
1 is also valid with the obvious change of the norm 
||F||r by the norm  ||F||r.

We now show that under certain conditions on 
the forcing and dissipation, the maximal attractor of 
BVE (9) coincides with the zero solution.

Theorem 2. If forcing F(t, x) is such that the 
integral ∫0

∞||F(t, x)||rdt converges then ||ψ(t)||x→ 0 as 
t → ∞. Besides, X = 2 if r ≥ 0 and X = 1 if –1 ≤ 
r < 0.

Proof. Consider only the case F(t, x) ∈ r where 
r ≥ 0, since the case F(t, x) ∈ r where r ∈ [–1,0) is 
proved similarly. Taking the inner product of Eq. (9) 
with Δψ and using Lemma 3 we get

Δψt, Δψ  = –σ Δψ, Δψ  + v (–Δ)s+1ψ, Δψ  +
     F, Δψ  = –σ ||Δψ||2 –v ||Λs+2ψ||2 + F, Δψ 	 (19)

With lemmas 1 and 2, the terms F, Δψ  and 
v ||Λ s+2ψ||2 can be estimated as

| F, Δψ | ≤ ||F|| ||Δψ|| ≤ a–r ||F||r ||Δψ||

where a = , and

v ||Λs+2ψ||2 ≥ 2sv ||Δψ||2

Then (19) implies

∂
∂t ||Δψ|| ≤ –ρ ||Δψ|| + a–r ||F||r where ρ = σ + 2sv 	(20)

Integrating (20) with respect to t from τ to t we 
obtain

||ψ(t)||2 ≤ ||ψ(τ)||2 + a–r ∫τ
t ||F||rdt	 (21)

where ||ψ||2 =  ||Δψ|| (see [6] and [7]). Multiplying 
(20) by ||Δψ|| and integrating the result with respect 
to t from τ to t, we obtain

||ψ(t)||22 + 2ρ ∫τ
t ||ψ(t')||22 dt' ≤ ||ψ(τ)||22 + 

     2a–r ∫τ
t ||F(t')||r ||ψ(t')||2dt'

Estimating the norm ||ψ(t')||2 in the r.h.s. of the last 
inequality with the help of (21) we get

||ψ(t)||22 + 2ρ ∫τ
t ||ψ||22 dt' ≤ ||ψ(τ)||22

+ 2a–r {||ψ(t)||2 + ∫τ
t ||F(t')||r dt'} ∫τ

t ||F(t')||r dt' 

≤ 2 ||ψ(τ)||22 + 3(a–r ∫τ
t ||F(t')||r dt')2

Here we have 0 ≤ τ ≤ t ≤ T. Hence, if integral 
∫0

∞ ||F(t, x)||r dt is finite then integral ∫0
∞ ||ψ||22 dt is also 

finite. Therefore, there exists a subsequence tk → ∞ 
such that ||ψ(tk)||2 → 0. Using (21) in the case when 
τ = tk we obtain that ||ψ(t)||2 → 0 as t → ∞. The the-
orem is proven.

6.	 Positive functional for the stability study
We now introduce a positive functional related with 
kinetic energy and enstrophy of perturbations and 
derive an equation describing its behavior in time. 
Examples are given for the meteorologically import-
ant flows having the form of a super-rotation flow, a 
homogeneous spherical polynomial of degree n or a 
Rossby-Haurwitz wave.

Let ψ~(t, λ, µ) be a solution to BVE (9) under 
consideration, and let ψ̂ (t, λ, µ) be another solution 
of (9). Then

∂
∂

∂
∂ −

	 (22)

where s ≥ 1, v > 0, and σ ≥ 0, holds for the perturbation 
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ψ(t, λ, µ) = ψ̂ (t, λ, µ) – ψ~(t, λ, µ) of ψ~. Taking the 
inner product (1) of Eq. (22) successively with ψ and 
Δψ and using the relations (14) and Lemma 3, we 
obtain two integral equations:

∂
∂

ǁ ǁ
	 (23)

∂
∂ −

ǁ ǁ
	 (24)

for the kinetic energy K(t) =  || ψ||2 and enstrophy 
η(t) =  ||Δψ||2 of the perturbation, respectively.

It follows from (23) and (24) that the Jacobian  
J(ψ, Δψ~) in (22) can change the perturbation enstro-
phy η(t) but does not affect the perturbation energy 
K(t). On the contrary, the other Jacobian J(ψ~, Δψ) in 
(22) has no effect on η(t) but can change K(t). As for 
the last two terms in the l.h.s. of (22) (the super-ro-
tation term and the non-linear term), they both have 
no influence on the behavior of K(t) and η(t).

Example 1. If ψ~ = 0 (such a solution exists if 
F(x) ≡ 0) then J(ψ, Δψ), ψ~)  =  0  and J(ψ, Δψ),Δψ~)  = 0 
in (23) and (24). Therefore, in the non-dissipative 
case (σ = µ = 0), the zero solution is stable, since the 
perturbation energy and enstrophy will be constant. 
In a dissipative case (σ ≠ 0 and/or µ ≠ 0), the zero 
solution is globally asymptotically stable, since the 
perturbation energy and enstrophy will exponentially 
decrease in time.

Let now ψ~ be a solution of (9), and let p and q be 
non-negative numbers, not equal to zero simultane-
ously. We will measure the magnitude of perturbation 
with the functional

Q(p, q, ψ, t) ≡ Q(t) = pK(t) + qη(t) =
       (p|| ψ||2 + q||Δψ||2)	 (25)

Multiplying (23) and (24) by p and q, respectively, 
and combining the results, we obtain

∂
∂ − − −

ǁ ǁ − ǁ ǁ
	 (26)

where

− 	 (27)

Lemma 2 leads to –||Λs+1ψ||2 ≤ –2s|| ψ||2 and 
–||Λs+2ψ||2 ≤ –2s||Δψ||2, and hence (26) can be esti-
mated as

∂
∂ ≤ − − 	 (28)

Example 2. Super-rotation basic flow. Let ψ~ = 
ψ~(µ) ≡ Cµ where C is a constant. Then R(t) = 0 due 
to (15) and Q(p, q, ψ, t) is the Liapunov function. 
Thus the super-rotation flow is Liapunov stable if  
σ = µ = 0, and is the global attractor (asymptotically 
Liapunov stable) if ρ > 0. The same is true for any 
flow from subspace H1 (Skiba, 1989).

Example 3. Flow in the form of a homogeneous 
spherical polynomial. Let ψ~(t, x) ∈ Hn for some 
n ≥ 2, that is,

∑
−

	 (29)

In particular, it can be a zonal Legendre-poly-
nomial flow: ψ~(µ) = CPn (µ). Then J(ψ, Δψ) = 0 for 
any perturbation of Hn, and R(t) ≡ 0. By (22), any 
perturbation of Hn will never leave Hn, that is, Hn is 
invariant set of perturbations to flow (29); besides, 
due to (28), Q(p, q, ψ, t) ≤ Q(p, q, ψ, 0) exp(–2ρt). 
Thus any initial perturbation of Hn will exponentially 
tend to zero with time not leaving Hn, that is, set Hn 
belongs to the domain of attraction of solution (29).

Example 4. The basic flow ψ~ is a linear combi-
nation of the flows considered in examples 2 and 3. 
In particular, ψ~(t, λ, µ) can be a Rossby-Haurwitz 
wave (Skiba, 1989, 2004).Then the result obtained 
in example 3 is also valid in this case.

7.	 Evolution of functional Q(p, q, ψ, t)
Eq. (22) for a perturbation ψ~(t, x) of solution ψ~(t, x) 
can be written as

∂
∂ − 	 (30)

where

− − −
∂
∂ −

	 (31)

is a linear operator that has a compact resolvent if 
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v > 0 (Skiba, 1989, 1998). Using the Lagrange iden-
tity for defining the adjoint operators, Eq. (26) can 
be written as

	 (32)

where

* − * 	 (33)

is the symmetric operator in the space 0.
Let ωn and Gn(x) be eigenvalues and orthonormal 

eigenfunctions of the spectral problem

BGn = ωnGn	 (34)

Note that functions Gn(x) represent the orthonormal 
basis in the real space 0, and operator B : 0 → 0 
also has a compact resolvent (v > 0), and ωn are real 
isolated eigenvalues of geometrical multiplicity 
one. The only possible limit point of the spectrum is 
ω = –∞. Thus the number of positive eigenvalues of 
B is finite.

Let us now renumerate the eigenvalues {ωn} of 
operator B in such a way that their values are de-
creasing with increasing values of n. Besides, assume 
that the first N eigenvalues ω1,…, ωn are positive. 
The streamfunction of a perturbation ψ(t, x) can be 
represented by its Fourier series 

∑ ∞ 	 (35)

As a result we obtain 

∑ 	 (36)

Assume that an initial perturbation ψ(t0, x) has 
the form of a single eigenfunction Gn(x): ψ(t0, x) = 
an(t0)Gn(x), then

	 (37)

Therefore, if ωn > 0 (or ωn < 0) the functional Q(t) 
of such initial perturbation will increase (decrease). 
Note that the growth (decay) rate of Q(t) at the mo-
ment t0 is determined by the modulus of eigenvalue 
ωn and by the amplitude an(t0) of perturbation. In 
particular, if p = 1, q = 0 and all the eigenvalues are 
ordered so that ωn+1 ≤ ωn, then perturbation of the 

form of eigenfunction G1(x) will cause the fastest 
growth of the perturbation energy K(t).

Let us consider a sequence {an} of the Fourier 
coefficients of a perturbation (35) as a point in the 
phase space of perturbations to BVE solution ψ~(t, x). 
Then due to (36), the condition

∑ ∑ 	 (38)

defines a subset M0 in the coordinate space of points 
{an}. Any perturbation ψ, whose Fourier coefficients 
{an} belong to M0, generates the growth of Q(t).

It is interesting to study a structure of the set M0. 
Obviously, set M0 is unbounded because it includes 
the N-dimensional Euclidean space N of vectors 
{a1, a2,…, aN} except for its origin {0, 0,..., 0}. The 
set M0 is of infinite dimension and is not invariant 
with respect to applying the nonlinear operator 
Lψ – J(ψ, Δψ) of Eq. (22), that is, the trajectory of 
perturbation ψ(t, x) can enter and leave the set M0. 
Obviously, among all the points {an} belonging to a 
surface ∑N

n=1 a2
n = C = const the maximum of Q(t) 

is achived when a1 =  and an = 0 for all n ≥ 2.
It follows from (38) that if ∑N

n=1ωn a2
n is bounded 

then ∑∞
n=N+1|ωn|a2

n is also bounded. Since |ωn| → ∞ to 
as n → ∞ (recall that the operator B has a compact 
resolvent), the inequality ∑∞

n=N+1|ωn|a2
n < C defines a 

compact set in the coordinate space of sequences 
{an}∞

n=N+1, which is orthogonal to the N-dimensional 
Euclidean space N.

Thus, the nonlinear evolution process for per-
turbations can be described by the following way. 
Assume that at an initial moment t0 the perturbation 
ψ(t0, x) is such that an(t0) = 0 for all n > N, i.e. the 
point {an(t0)} ∈ N. Then functional Q(t) will grow. 
Since N is not invariant, nonzero coefficients an(t) 
for n > N will appear. Their growth will render the 
inequality (38) invalid, and the point {an(t)} will 
leave the set M0. From this moment the functional 
Q(t) will decrease. Note that the larger the number of 
nonzero coefficients an(t) with n > N, the higher the 
possibility for the point {an(t)} to leave the set M0.

Example 5. Super-rotation basic flow. Let ψ~ ≡ 
ψ~(µ) = Cµ where C is a constant. Then

− − ∂
∂ −

Since Δ and  are commutative, the operator 
[2(C – 1) – CΔ]  is skew symmetric, and hence,
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− −

Thus, the spherical harmonics Yn
m(x) (n = 1, 2, 3,...; 

|m| ≤ n) are the eigenfunctions Gn(x) of operator B 
corresponding to the eigenvalues ωn = –(σ + vχs

n)(qχ2
n 

+ pχn) where χn = n(n + 1). Since ωn < 0 for all n, 
the set M0 defined by (38) is empty and Q(t) → 0 in 
time for any perturbation of super-rotation flow ψ~(µ) 
= Cµ (see Example 2).

8.	 Conditions for global asymptotic stability
In a limited domain on the plane, in the absence of 
linear drag, a condition for global asymptotic stability 
of a BVE solution was derived by Sundström (1969), 
provided that the solution has continuous derivatives 
up to the third order. In this section we give three suf-
ficient conditions for the global asymptotic stability 
of smooth and weak BVE solutions (theorems 3-5). 
These conditions differ by the smoothness of basic 
solution. The first two conditions were proved in Skiba 
(2013). The first condition (Theorem 3) generalizes 
Sundström’s result to a flow on a rotating sphere 
when the linear drag is also taken into account and 
s ≥ 1 in the turbulent term. However, in the general 
case, the solvability theorems (Skiba, 2012) do not 
guarantee the existence of the solution whose third 
or higher derivatives are continuous. Therefore in 
the second condition (Theorem 4), the restriction on 
the smoothness of basic solution is weakened (only 
continuous derivatives up to the second order are 
required) and is in full accordance with the solvability 
theorems. The third condition (Theorem 5) is proved 
in this section for a weak BVE solution. Examples 
are given for a homogeneous spherical polynomial 
of subspace Hn and a pure dipole modon.

First, consider a rather smooth basic solution 
ψ~(t, x) of BVE (9) that has continuous derivatives up 
to the third order, so that

≥ ∈

≥

and

∈

	 (39)

are both finite. Let us estimate the inner product (27) 
by means of functional (25) with p and q defined by 
(39):

− ≤

ǁ ǁǁ ǁ ≤
	 (40)

Then substitution of (40) in (28) leads to
Theorem 3 (Skiba, 2013). Let s ≥ 1, v > 0 and 

σ ≥ 0. If a solution ψ~(t, x) of Eq. (9) is such that the 
numbers p and q defined by (39) are finite, and

	 (41)

then Q(p, q, y, t) is the Liapunov function, besides 
any perturbation of ψ~(t, x) will exponentially decrease 
in time .

In the particular case when s = 1 and σ = 0, The-
orem 3 is analogous to the assertion (Sundström, 
1969; Yu, 2005) for the flows in a limited domain on 
the plane. Note that both results demand the uniform 
boundedness of | Δψ~(t, x)|  and | ψ~(t, x)|. However, 
the existence of BVE solutions is proved only in the 
classes of twice continuously differentiable stream-
functions (Skiba, 2012). It was shown in Skiba (2013) 
that the restriction on the smoothness of solution 
could be weakened so as to be in accordance with the 
requirements of the solvability theorems.

Theorem 4 (Skiba, 2013). Let s ≥ 1, v > 0, σ ≥ 0, 
and let ψ~(t, x) be a solution of Eq. (9) such that 
numbers

≥ ∈

≥

and

∈

	 (42)

defined by (42) are finite. If

− 	 (43)

then Q(p, q, y, t) is the Liapunov function, besides 
any perturbation of ψ~(t, x) will exponentially decrease 
in time.

Note that in contrast to Theorem 3, Theorem 4 
requires a non-zero viscosity coefficient v.

Unlike (39), condition (43) can be applied to a 
wider class of BVE solutions. For example, if ψ~(t, x) 
is a modon by Tribbia (1984), Verkley (1987) or 
Neven (1992), subjected to the linear drag and 
viscosity and supported by a certain forcing, then 
condition (43) is applicable, whereas (41) cannot 
be used because Δψ~(t, x) is discontinuous on the 
boundary between the inner and outer regions of 
the modon.

Example 6. Let σ = 0 and s = 1 in Eq. (9), and let 
ψ~(x) be a stationary BVE solution from Hn (n ≥ 2):
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∑
− 	 (44)

This solution is supported by a steady forcing F(x) 
whose Fourier coefficients are equal to Fn

m = (–vχ2
n 

+ i2m)ψ~n
m where i =  and χn = n(n + 1). Due to 

Example 3, subspace Hn is the basin of attraction of 
solution ψ~(x) for any v. Besides, (42) leads to p = χnq, 
and by Theorem 4, solution (44) is the global attractor 
if v ≥ q . Thus, the larger the velocity and 
degree n of flow (50), the larger must be the viscosity 
coefficient v to provide its global asymptotic stability.

Example 7. Pure dipole modon. Let us now 
specify condition (43) for the pure dipole stationary 
modon by Verkley (1987) provided that σ = 0 and 
s = 1 in Eq. (9). Such a modon has the form

' ' ' '	 (45)

in the local coordinate system (λ', µ'), besides,

− − 	 (46)

in the inner region Si = {(λ', µ') ∈ S : µ' > a}, and

− − 	 (47)

in the outer region So = {(λ', µ') ∈ S : µ' < a} of the 
modon (|a| < 1). It can be shown that

− −

for the stationary modon (43). In the relations (45)-
(47), µ is the sine of latitude in the geographical sys-
tem (λ, µ) whose pole µ = 1 is on the axis of rotation 
of sphere, and χα and χσ are the eigenvalues of the 
spherical harmonics used in constructing the modon 
in regions Si and So, besides, χα > 0 and χσ is a real. 
Note that p ≤ max{χα, | χσ|}q + 2, where q is defined 
by (42). As a result, condition (43) for the global 
asymptotic stability of modon explicitly depends on 
χα, | χσ| and q: v2 ≥ q[  max{χα, | χσ|} +1.

We now derive a condition for the global asymp-
totic stability of a steady weak solution ψ~(x) ∈ s+2 
(s ≥ 1), whose existence is proved in (Skiba,  
2012).

Theorem 5. Let s ≥ 1, v > 0 and σ ≥ 0. A steady 
weak solution ψ~(x) ∈ s+2 of BVE (9) is globally 
asymptotically stable if

− 	 (48)

where p  = C0| |Δψ~ | | 4(S) = (∫S|Δψ~ | 4dS)1/4 and 
q = C0||ψ~|| 4(S), and C0 is the constant from the es-
timate

ǁ ǁ ≤ ǁ ǁ	 (49)

(see lemmas 6 and 7 from Leray, 1933).
Proof. The functions ψ~(x) and Δψ~(x) belong to 

4(S) due to lemma 4 from Leray (1933), and apply-
ing Hölder’s inequality to (27) we get

− ≤

ǁ ǁ ǁ ǁ ǁ ǁ ǁ ǁ

Integrating the last inequality and applying (49) 
we obtain

≤ ǁ ǁ

ǁ ǁ ǁ ǁǁ ǁ

Setting p = C0||Δψ~|| 4(S) and q = C0||ψ~|| 4(S) and using 
ε-inequality, we get

≤

ǁ ǁ

	 (50)

The integration of Eq. (26) in time and the use of 
the inequalities –||Λs+1ψ||2 ≤ –2s|| ψ||2 and –||Λs+2ψ||2 
≤ –2s–1||Λ3ψ||2 lead to

≤ − − −

− ǁ ǁ

	 (51)

with ρ = σ + 2sv. Applying (50) in (51) we obtain
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≤ − − −

− − ǁ ǁ

The last term in this inequality is eliminated by 
setting ε2 = p/(2s+1v). Thus, ψ~(x) is globally asymp-
totically stable if ρ – pε2 > 0. The theorem is proved.

Remark 3. The restriction on the coefficient v 
weakens when the order s in the turbulent term of Eq. (9) 
increases. Also note that although the number q is 
absent in (48), it is present implicitly through the 
definition of functional Q(p, q, ψ, t).

9.	 Hausdorff dimension of spiral attractor for a 
quasi-periodic forcing of Hn

9.1 Hausdorff dimension of BVE attractor subjected 
to a stationary forcing
Estimates of the Hausdorff dimension of attractor in 
a viscous incompressible 2D fluid subjected in the 
periodic hypercube to a stationary forcing were made 
in Babin and Vishik (1989) and, in the more general 
case, in Constantin et al. (1988), Doering and Gib-
bon (1991), and Gibbon (1996). They state that the 
attractor dimension is limited by the nondimensional 
generalized Grashof number (Temam, 1984, 1985). 
In the case of sphere, the Hausdorff dimension of 
attractor of vorticity equation

∂
∂

−

was estimated in Ilyin (1994) as

≤ ×

	 (52)

where εG(s) → 0 as G(s) → ∞, and G(s) is the gener-
alized Grashof number

G(s) = ||F(x)|| /22s–1v2(s)	 (53)

and

ǁ ǁ ≡ ≡

∑ ∑
−

	 (54)

is the L2-norm of the stationary forcing, and Fn
m is its 

Fourier coefficient with respect to the orthonormal 
set of spherical harmonics Yn

m(x) of the zonal number 
m and degree n ≥ 1. In particular, the inequality (52), 
as applied to large-scale barotropic processes of the 
atmosphere for s = 2 and G(2) = 1500, yields the 
upper limit of the barotropic atmosphere attractor 
dimension (Ilyin, 1994):

dim A(2) ≤ 60	 (55)

Despite the fact that the results (52) and (55) 
are of considerable theoretical interest in hydrody-
namics, their practical application to the barotropic 
atmosphere raises doubts. Indeed, the forcing of the 
BVE (9) describes the influence of nonstationary 
small-scale baroclinic processes with rather compli-
cated spatial and temporal behavior. So it is natural 
to expect that in contrast to stationary functions, 
small-scale quasi-periodic functions more adequately 
represent the BVE forcing.

9.2 Quasi-periodic spiral solution
In order to show that the Hausdorff dimension of 
attractive sets crucially depends on the spectral 
composition of BVE forcing, we now consider the 
asymptotic behavior of solutions to the BVE (9) for 
a forcing which is quasi-periodic in time and has 
the form of a homogeneous spherical polynomial 
of degree n:

∑
−

	 (56)

where

≤ 	 (56)

i is the imaginary unit, fm is a constant amplitude, 
and the numbers ωm are some incommensurate 
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fundamental frequencies. Obviously, the geometric 
scale of forcing decreases as n increases. Note that 
the spherical variant of the well-known example 
by Marchioro (1986) corresponds to the time-in-
dependent forcing (56) of degree n = 1. Also note 
that the norm

ǁ ǁ ∑
−

∑
−

	 (58)

of forcing (56), (57) is time-independent, and we 
will use the same generalized Grashof number (53) 
as in the case of stationary forcing. Obviously, there 
is a host of quasi-periodic forcings (56) that have the 
same norm (58) (or the same Grashof number [53]), 
but differ in their degrees n and amplitudes fm.

Due to (2) and (11), J(ψ, ∆ψ) = 0 for any ψ ∈ Hn, 
and hence, Hn is the invariant set of BVE solutions: 
any solution of (9) that starts in Hn will never leave 
Hn. Moreover, it follows from (27) that R(t) ≡ 0, and 
by (26), the subspace Hn is the attraction domain 
for the solution ψ~m(t, x) ∈ Hn defined by its Fourier 
coefficients (Skiba, 2013):

≡ −

− − ≤
	 (59)

Since the frequencies ωm are rationally indepen-
dent, the attractive solution ψ~(t, x) is quasi-periodic, 
and its path is an open (endless) spiral densely 
wound around a 2n-dimensional torus in the (2n + 1)- 
dimensional complex subspace Hn. According to 
theorem 3 by Samoilenko (1991), the closure of this 
trajectory coincides with the torus. Hence, the Haus-
dorff dimension of attractive solution (59) equals 2n.

9.3 Global asymptotic stability of spiral solution 
(59)
Sufficient condition for the global asymptotic stabili-
ty of solution (59) is given by Theorem 3. In our case 
ψ~(t, x) ∈ Hn, and (39) leads to p = χnq = n(n + 1)q. 
As a result, the condition (41) for global asymptotic 
stability of solution (59) accepts the form

	 (60)

where

≥ ∈

∆

	 (61)

It is easy to show (see Skiba, 1994, Appendix 
B) that

∆ ∑
−

≤ ǁ ǁ ∑
−

ǁ ǁ

∆

∆

×

According to (59) we have ||ψ~(t, x)|| ≤ [σ + vχs
n]–1 × 

χn
–1 ||F|| where ||F|| is the time-independent norm (58) 

of forcing (56). Using the last estimates in (61) we get

≤ − ǁ ǁ ≡ − ǁ ǁ

where bn  [σ + vχs
n]–1 and hence, condition 

(60) is satisfied if σ + 2sv > bn ||F|| and even more so if

ǁ ǁ	 (62)

Using (53), condition (62) can be written in terms 
of generalized Grashof number: 22–sχs

n  > 
G(s), and hence, it is satisfied if

− − 	 (63)

Thus, we have proved the following assertion:
Theorem 6. Let s ≥ v > 1, v > 0, σ ≥ 0, F(t, x) ∈ Hn 

be a quasi-periodic BVE forcing (56), and let G(s) be 
the generalized Grashof number (53) of this equation. 
Then solution (59) of Hn is globally asymptotically 
stable provided that inequality (63) is fulfilled. More-
over, for a fixed finite Grashof number G(s), there is 
an integer nG so that for any n ≥ nG, the spiral solution 
generated by any forcing (56) of Hn with Grashof 
number G is globally asymptotically stable.

In particular, solution (59) is globally asymptoti-
cally stable if 21/2

 n7/2 > G(2) and 21/2  n3/2 > G(1). 
The last case corresponds to the Navier-Stokes 
equations. For example, the condition 21/2

 n7/2  > 
G(2) is satisfied for any forcing (56) of degree n ≥ 8 
if G(2) = 1500.

The result obtained is not unexpected. Indeed, 
for a fixed coefficient v(s), the number G(s) is fixed 
if the L2-norm (58) of the forcing is a constant in-
dependent of n. The amplitudes |fm| of forcing must 
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decrease as n grows, and for n large enough (or for 
the amplitudes |fm| small enough) the viscosity v(s) 
is sufficient to make the quasi-periodic solution (59) 
globally asymptotically stable.

Thus, whereas the Hausdorff dimension of the 
BVE attractor subjected to a stationary forcing is 
limited above by the generalized Grashof number G 
(Ilyin, 1994), the Hausdorff dimension 2n of globally 
attractive spiral solution (59) may become arbitrarily 
large as the degree n of quasi-periodic forcing (56) 
grows. This result has a meteorological interest, since 
it shows that the dimension of the global attractor in 
the barotropic atmosphere crucially depends on the 
spatial and temporal structure of BVE forcing and 
it can be unlimited even if the Grashof number (53) 
is bounded.

Remark 4. For a steady forcing F(t, x) ∈ Hn, 
condition (63) guarantees the global asymptotic 
stability of the steady BVE solution ψ~(t, x) ∈ Hn as 
well.

10.	Conclusions
The nonlinear barotropic vorticity equation (BVE) 
describing the vortex dynamics of viscous incom-
pressible and forced fluid on a rotating sphere is 
considered. It takes into account the Rayleigh friction, 
the rotation of sphere, the external vorticity source 
(forcing) F(t,x), and the turbulent viscosity term of 
common form v(–∆)s+1 ψ, where ∆ is the spherical 
Laplace operator and s ≥ 1 is a real number.

The large-time behavior of its solutions is studied. 
Specific forms of steady BVE forcing have been 
found which guarantee the existence of a limited set 
that eventually attracts all the BVE solutions (The-
orem 1). Additionally, theorem 2 shows that under 
certain conditions on the nonstationary forcing, the 
maximal BVE attractor coincides with the zero solu-
tion. Thus, the asymptotic behavior of BVE solutions 
depends on both the structure and the smoothness 
of forcing. Three sufficient conditions for the global 
asymptotic stability of BVE solutions of different 
degree of smoothness are also given (theorems 3-5).

Simple attractive sets of the BVE (9) subjected 
to a quasi-periodic forcing of subspace Hn of ho-
mogeneous spherical polynomials of degree n are 
analyzed. Each such set is a spiral quasi-periodic 
BVE solution densely wound on a 2n-dimensional 
torus in Hn. The Hausdorff dimension of its trajectory 
equals to 2n. As the generalized Grashof number G 

becomes small enough then the basin of attraction 
of such spiral solution is expanded from Hn to the 
entire BVE phase space. It is shown that for a given 
G, there exists an integer nG such that each spiral 
solution generated by a forcing of Hn with n ≥ nG (and 
Grashof number G) is globally asymptotically stable 
(Theorem 6). Thus, whereas the Hausdorff dimension 
of global attractor of the BVE subjected on a sphere 
to a stationary forcing is limited by Grashof number 
G, the Hausdorff dimension of globally attractive 
spiral solution (59) may become arbitrarily large as 
the degree n of quasi-periodic forcing (56) grows. 
Unlike a steady forcing, a quasi-periodic forcing 
more adequately describes the effects of small-scale 
baroclinic processes in the BVE, and therefore the 
last result is of meteorological interest, showing that 
the dimension of the global BVE attractor can be 
unlimited even if the generalized Grashof number 
is limited, and hence, the global attractor dimension 
crucially depends not only on the magnitude but also 
on the spatial and temporal structure of forcing. This 
also shows that the search of a finite-dimensional 
global attractor in the barotropic atmosphere is not 
well justified. 
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