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Seasonal prediction of tropical cyclone activity over the North Indian Ocean
using the neural network model
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RESUMEN

Se desarrolla un modelo de red neuronal para predecir el numero estacional de ciclones tropicales (CT) que
se desarrollan en el Océano Indico septentrional después de la estacion del monzoén (octubre a diciembre).
Se analizan la frecuencia de los CT y las variables climaticas de gran escala derivadas de la base de datos
de reanalisis del NCEP/NCAR con resolucion de 2.5 x 2.5° para el periodo 1971-2013. Se utilizaron datos
del periodo 1971-2002 para desarrollar el modelo, y éste se prob6 con datos de muestreo independientes del
periodo 2003-2013. Se eligieron cinco variables climaticas de gran escala (altura geopotencial a 500 hPa,
humedad relativa a 500 hPa, presion superficial en el mar, y viento zonal a 700 y 200 hPa para el mes previo
[septiembre]) como predictores para aplicar un analisis de correlacion. Con base en algunos parametros
estadisticos de desempefio, se evalua la eficacia del modelo de redes neuronales y los resultados se compa-
ran con el modelo lineal de regresion multiple. Los resultados indican que el numero de ciclones tropicales
calculado por medio de ambos modelos es muy similar al numero real de ciclones ocurridos en cada afio.
Sin embargo, los resultados del modelo de redes neuronales fueron superiores a los del modelo linear de
regresion multiple, de modo que esta técnica de prediccion de ciclones tropicales puede ser muy util para
propositos operativos de prediccion.

ABSTRACT

A neural network (NN) model is developed to predict the seasonal number of tropical cyclones (TCs) formed
over the north Indian Ocean during the post-monsoon season (October, November, December). The frequency
of TCs and the large scale climate variables derived from the NCEP/NCAR reanalysis dataset of resolution
2.5° x 2.5° have been analyzed for the period 1971-2013. Data for the years 1971-2002 have been used for
the development of the model, which is tested with independent sample data for the years 2003-2013. Ap-
plying correlation analysis, five large-scale climate variables, namely geopotential height at 500 hPa, relative
humidity at 500 hPa, sea level pressure, and zonal wind at 700 hPa and 200 hPa for the antecedent month
September are selected as predictors. Based on some performance parameter statistics, the performance of the
NN model is evaluated and the results are compared with the multiple linear regression (MLR) model. From
the results it is inferred that the predicted tropical cyclone count by both models is very close to the actual
counts for both periods. However, the NN model is found to be superior to the MLR model. This tropical
cyclone prediction technique may be useful for operational prediction purposes.

Keywords: Tropical cyclone, seasonal prediction, neural network, artificial neural network, multiple linear
regression, jackknife, north Indian Ocean.
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1. Introduction

A natural hazard affects the environment and leads
to huge economic losses and casualties. Tropical
cyclones (TCs) are some of the most frequent and
destructive natural hazards in TC-prone areas. In
2008, tropical cyclone Nargis was the second dead-
liest disaster of the decade in Myanmar. It caused
138 366 human causalities (Vos et al., 2009). So,
disaster managers and planners needed high quality
forecasts to save human lives and prevent property
losses. Tropical cyclone activity depends on both
thermodynamical and dynamical factors, which is
also reported by several researchers (Palmen, 1948;
Gray, 1968; Elsberry and Jeffries, 1996; DeMaria et
al.,2001). The seasonal TC activity forecasts for the
Australian and North Atlantic regions were first made
by Nicholls (1979) and Gray (1984 a, b), respectively.
Since then, several methodologies have been adopted
for the seasonal TC activity forecast in different TC-
prone areas of the world, such as Poisson regression
models (Elsner and Schmertmann, 1993; Lehmiller
et al., 1997; Kim et al., 2010), Bayesian regression
models (Elsner and Jagger, 2004, 2006; Chu and
Zhao, 2007; Chu et al.,2010; Lu et al., 2010; Werner
and Holbrook, 2011), projection pursuit regression
(Chan et al., 1998, 2001). However, studies of the
neural network (NN) approach to seasonal cyclone
activity forecasting are limited.

The application of the NN model in the field of
meteorology has been discussed by several resear-
chers (Pozzi et al., 2000; Richaume et al., 2000;
Schroeder et al., 2002; Bourras et al., 2003; Mitra
et al., 2010). McCann (1992) and Kuligowski and
Barros (1998) found that this model is superior as
compared to the traditional weather prediction model.
The NN model also has been applied to project future
heavy rainfall events for Oahu, Hawaii (Norton et al.,
2011). Other studies also show that the prediction of
cyclone intensity has been improved by the artificial
neural network (ANN) over the linear regression
method (Baik and Hwang, 1998; Baik and Pack,
2000; Ramirez and Veneros, 2004; Ramirez and
Castro, 2006).

There are several studies on the genesis (Roy
Bhowmik, 2003; Kotal et al., 2009; Nath et al., 2013)
and intensity prediction (Dvorak, 1975; Roy Bhow-
mik et al., 2007; Kotal et al., 2008) of cyclones over
the Indian Sea. However, in comparison the Indian
Sea has received relatively limited attention, given
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that several studies have documented the seasonal
prediction (including the NN method approach) of
cyclones in other ocean basins of the world. Hence,
an attempt has been made to develop an NN model
to forecast seasonal TC activity over the north Indian
Ocean (NIO).

In the present study, the NN and multiple linear
regression (MLR) using jackknife approaches have
been used to predict the seasonal activity of TCs
in the post-monsoon season (October, November,
December) over the NIO, which has a pre-monsoon
(March, April, May) and a post-monsoon (October,
November, December) cyclone season. Figure 1
shows the monthly distribution of TC frequency
formed over the NIO from 1971 to 2013. The large
inter-seasonal contrast is evident, with a highest peak
occurring in November. The total frequency of TCs
for the post-monsoon season from 1971 to 2013 over
the NIO is presented in Figure 2.
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Fig. 1. Monthly distribution of all TCs formed over the
north Indian Ocean during the period 1971-2013.

The structure of this paper is as follows: data and
methodology are described in section 2; procedures
for selecting predictors are explained in section 2.1;
model formulation is described in section 2.2; model
evaluation is presented in section 3, and the conclud-
ing remarks are given in section 4.

2. Data and methodology

The monthly tropical cyclone series of the north
Indian Ocean from 1971 to 2013 was obtained from
the frequency of cyclone disturbances archives of
the India Meteorological Department (IMD) New
Delhi (www.imd.gov.in), which is a recognized Re-
gional Specialized Meteorological Centre (RSMC)
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Fig. 2. Distribution of TCs formed over the north Indian Ocean for the
post-monsoon season during the period 1971-2013.

for tropical cyclone warning advisories by the World
Meteorological Organization (WMO). Monthly sea
level pressure, zonal wind data at 700 hPa and 200
hPa, geopotential height at 500 hPa, and relative hu-
midity at 500 hPa over the region under analysis were
derived from the NCEP/NCAR reanalysis dataset for
developing the model. Horizontal resolution of the
dataset is 2.5° latitude x 2.5° longitude.
Low-pressure systems over the Indian region are
classified based on the maximum sustained wind
speed and the pressure deficit/number of closed
isobars associated with the system. The pressure cri-
teria are used when the system is over land and wind
criteria is used when the system is over the sea. The
system is classified as low if there is one closed isobar
in the interval of 2 hPa; as a depression if there are
two closed isobars; as a deep depression if there are
three closed isobars; and as a cyclonic storm if there
are four or more closed isobars. The detailed classi-
fication based on the wind criteria (WMO, 2014) is
given in Table I. Considering wind criteria, systems

Table I. Classification of low-pressure systems according
to wind speed.

Type of disturbance Corresponding wind
speed (knots)

Low pressure area (L) <17

Depression (D) 17-27

Deep depression (DD) 28-33

Cyclonic storm (CS) 34 - 47

Severe cyclonic storm (SCS) 48 - 63

Very severe cyclonic

storm (VSCS) 64-119

Super cyclone (SC) >120

with wind speed of 17-27 knots are called depression
and low pressure systems with maximum sustained
3-min surface winds between 28 and 33 knots are
called deep depressions. Systems with maximum
sustained 3-min surface winds of 34 knots or more
are called cyclonic storms, which may be classified as
cyclonic storms, severe cyclonic storms, very severe
cyclonic storms and super cyclones.

2.1 Procedures for selecting predictors

The modulations of seasonal TCs activity by large-
scale environmental conditions have been reported
by several researchers (Gray, 1977; Watterson et
al., 1995; Chu and Zhao, 2007). In the present study
correlation analysis between seasonal TC occurrences
and the mean environmental parameters (e.g., relative
humidity, wind) for the post-monsoon season over the
region (50-140° E, 20° S-25° N) is used to identify
physical relationships. After examining the correla-
tion between large-scale environmental parameters
and TC counts, a correlation analysis between season-
al TC occurrences for the preceding month (Septem-
ber) is performed to find the stability of large-scale
environmental parameters. The stable parameters
for September are derived as predictors. Significant
correlation areas have been demarcated for each pa-
rameter. Areas with fairly large spatial extent (at least
10° latitude x and 15° longitude) have been selected
in order to avoid the correlation bullseyes that some-
times exist in the NCEP/NCAR reanalysis (Klotzbach
and Philip, 2008). When correlations over a particular
area between 50-140° E, 20° S-25° N that are found
to be statistically significant at the 95% confidence
level, the parameter over the area is retained as a
potential predictor variable. For a sample size of 32,
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this critical value is |0.35| when a two-tailed #-test is
applied. The contour plot for the correlation between
the seasonal TC frequencies over the north Indian
Ocean for the month of September and all the pre-
dictors for critical domains are shown in Figure 3a-e.
Figure 3a shows the correlation between the season-
al TC counts and the antecedent September month
geopotential height at 500 hPa (GPH500). A strong
negative correlation pattern is found in most of the
Bay of Bengal and China Sea in the region under
analysis. The pattern may persist and support con-
vection and the development of TCs.

Figure 3b displays the correlation between season-
al TC counts and mid tropospheric relative humidity
at 500 hPa (RH500) during the antecedent month.
Critical regions with significantly high positive cor-
relations are found over the Philippine Sea and the
northwest of the south China Sea. As a result of this
positive correlation, higher moisture content over the
aforementioned regions could be expected, leading
to more TCs over the north Indian Ocean during the
post-monsoon season.

Figure 3¢ shows the correlation between seasonal
TC counts and the SLP during the antecedent month.
A critical area with negative correlation is found
in most of the Bay of Bengal for the region under
analysis. This result is physically reasonable as lower
SLPs trigger higher TC frequencies.

Figure 3d shows the correlation between seasonal
TC counts and zonal wind at 700 hPa (U700) for the
antecedent month. Critical regions with significant
positive correlations are found in the Arabian Sea
region.

Figure 3e shows the correlation between seasonal
TC counts and zonal wind at 200 hPa (U200) for the
antecedent month. Critical regions with significant
negative correlations are found in the Arabian Sea and
the adjoining south Indian Ocean region. According-
ly, strong zonal currents at the upper level and weak
at lower levels may disrupt the development of con-
vection and cyclonic systems. It is clearly indicated
that strong upper and weak lower level winds during
September over the critical regions were instrumental
for lower TC activity over the NOI.

2.2 Model formulation

2.2.1 Multiple linear regression model

The MLR model is developed using the multiple
linear regression technique:

y:ao+31X1+azx2+'..+an-xm (1)

where y is the dependent variable (predictant) and x;,
X,,..., X, are independent variables (predictors). a,,
,..., a, are regression coefficients. The five large-
scale climate variables, namely geopotential height
at 500 hPa, relative humidity at 500 hPa, sea level
pressure, and zonal wind at 700 hPa and 200 hPa for
the antecedent month (September) are used as pre-
dictors and the seasonal number of tropical cyclones
formed over the north Indian Ocean during the post
monsoon season is used as predictand.

The jackknife method was applied to all 32 years,
with one year being removed. Thus, the model was
developed for the remaining 31 years and tested on
the missing year. In this way 32 predictions were
obtained. Predicted values were then correlated with
observations and the overall forecast skill have been
determined for the training period. The skill of the
testing period is evaluated using 32 years training
period data as input.

2.2.2 Neural network model

The neural network technique proposed here is based
on the three-layer back propagation for seasonal
TC frequency, using the same predictors from the
multiple linear regression model and the Leven-
berg-Marquardt training algorithm, as shown in
Figure 4. The mean square error is minimized (Ma-
gsood et al., 2002; Marquardt, 1963) in this method.
This optimization method is more powerful than the
conventionally used gradient descent techniques
(E1-Bakry, 2003; Hagan and Mehnaj, 1994; Cigizo-
glu and Kisi, 2006). It has now become a standard
technique for nonlinear least-square problems, widely
adopted in various disciplines including atmospheric
sciences for dealing with data-fitting applications
(Mitra et al., 2010; Ustaoglu et al., 2008; Young,
2006; Chase et al., 2011). Considering its popularity
and robustnes, the Levenberg-Marquardt algorithm
(LMA) is adopted in this paper. The model contains
five neurons, which correspond to the predictors used
in the MLR, five neurons in the hidden layers and
one neuron in the output layer, namely the seasonal
number of tropical cyclones formed over the north
Indian Ocean during the post monsoon seasons. The
hidden layer and transfer function are determined
during the network architecture design, considering
that there should not be any significant overfitting
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Fig. 3 Correlation map between seasonal TC counts and the antecedent month (September). (a)
Geopotential height at 500 hPa. (b) Relative humidity at 500 hPa. (c) Sea level pressure. The
points with significant negative correlation are marked as “—" and points with positive correlation
are marked as “+”.
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Fig. 3 Correlation map between seasonal TC counts and the antecedent month (September). (d)
Zonal wind at 700 hPa. (¢) Zonal wind at 200 hPa. The points with significant negative correlation
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Fig. 4. Three layer backpropagation neural network.
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and the network should have better performance. In
this study, five hidden neurons are found to produce
the best result.

The neuron in the output layer corresponds to
the predicted TC frequency. The optimum network
performance has been achieved using the tan-sigmoid
transfer function from the input layer to the hidden
layer and the linear transfer function from the hidden
layer to the output layer. The NN model is developed
using 32 year data samples. A training set and inde-
pendent data samples from the remaining 11 years
are used for model testing.

3. Model evaluations

In this section, the skill level of both predictive mod-
els discussed above is evaluated. The performance
of the model has been evaluated by the following
parameters: mean value of the actual observation
(O), standard deviation of the actual observation (S,),
mean value of the predicted variable (P), standard
deviation of the predicted variable (S,), and estimated
values of the predicted variable (P)) under the least-
squares regression .= a + b O,. The performance of
the model is also evaluated by the “index of agree-
ment” (d), and the systematic and unsystematic mean
square errors (MSE, and MSE,, respectively). As
proposed by Willmott (1982), the index of agreement
and the systematic and unsystematic mean square
errors are defined as:

d: 1_|:i(Pi_Oi)2/i
(|Pi_0|+|0i_0|)2:|, 0<d<l
(2)

MSE, =+ Y. (pi— O

N

(Pi—p)

M=

1
N

MSE, =

where N is the number of observations. The better
predictive models would be identified as those having
lower systematic errors, unsystematic errors nearer
to the RMSE, and a higher index of agreement (Will-
mott, 1982). In his study, Willmott (1982) also sug-
gested that RMSEu can be interpreted as a measure
of accuracy. In the present study, all the parameters

277

described above and the mean absolute error (MAE)
are computed to evaluate and compare the perfor-
mance of the developed models described in the
preceding section. The statistics of these parameters
for the training and testing periods are presented in
Tables II and 111, respectively.

Table II. Performance parameters for the training period.

Performance parameters MLR NN
Mean of actual observation (O) 2.75  2.75
Mean of predicted variable (P) 281  2.63
Standard deviation of actual

observation (So) .21 1.21
Standard deviation of predicted

variables (Sp) 0.82 1.02
Root mean square error (RMSE) 1.0 0.92
Unsystematic root mean square error

(RMSE,) 0.88  0.83
Systematic root mean square error

(RMSEy) 026 0.28
Index of agreement (d) 0.80  0.90
Mean absolute error (MAE) 0.86  0.63

Table III. Performance parameters for the testing period.

Performance Parameter MLR NN
Mean of actual observation (O) 2 2
Mean of predicted variable (P) 2.6 2.2
Standard deviation of actual

observation (S,) 0.89 0.89
Standard deviation of predicted

variables (S,) 0.60 0.77
Root mean square error (RMSE) 0.94 0.51
Unsystematic root mean square error

(RMSE)) 0.81 0.40
Systematic root mean square error

(RMSEy) 0.19 0.32
Index of agreement (d) 0.33 0.67
Mean absolute error (MAE) 0.84 0.42

3.1 Model performance during the training period
(1971-2002)

Table II shows that statistic values P and S, are
close to the corresponding observed parameters O
and S, in both models, but in the MLR model P is
closer to O as compared to the NN model, where
S, is closer to S,. A more comprehensive evaluation
has been made based in difference indices. With
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respect to MAE, there is a clear distinction between
both models. The value of MAE is lower in the NN
model as compared to the MLR model, which is
also suggested by the RMSE. RMSE and RMSEu
are higher and lower, respectively, in the NN model.
This implies that the NN model is better than the
MLR model, as explained by Willmott (1982). The
value of Willmott’s index d also indicates that the
NN model has a higher value of d than the MLR
model. It can therefore be inferred that the NN mod-
el produces forecasts in better agreement with the
actual TC activity formed over NIO than the MLR
model, which is evident in Figure 5.

Figure 5 schematically presents time series plots
for actual and predicted TC counts from the MLR
and NN methods. It is clear from this figure that
in some test cases the predicted values differ from
the actual values, whereas some of them almost
coincide with the actual values. Analyzing Figure
5, it can be inferred that there is somewhat a close
association between the actual TC counts and
those predicted by both the NN and MLR models.
However, the NN predicted TC counts are closer to
actual observations.

3.2 Model performance during the testing period
(2003-2013)

Table III shows that statistics P and S, are close to
the corresponding observed parameters O and S,
in both models, which is also found in the training
period. The value of MAE is lower in the NN mod-
el as compared to the MLR model, which is also

S. Nath et al.

suggested by the RMSE. RMSE, and RMSE, are
higher and lower, respectively, in the NN model,
which implies that the NN model is better than the
MLR model as explained in the training section.
Willmott’s index d has a higher value in NN model
than in the MLR model. It can therefore be inferred
that the NN model produces forecasts in better
agreement with the actual TC activity formed over
NIO than the MLR model, which is evident from
Figure 6. It is clear from this figure that in some
test cases the predicted values differ from the ac-
tual values, whereas some of them almost coincide
with the actual values. Analyzing Figure 6, it can be
inferred that there is somewhat a close association
between actual TC counts and those predicted by
both the NN and MLR models.

The comprehensive evaluation of different indices
indicates that the NN model is potentially more ac-
curate as compared to the MLLR model, which is also
found in the training period. The model prediction
using independent data samples is also consistent
with the prediction of the development period.

4. Concluding remarks

Due to the interannual variations of climate in the
tropics and the existence of vast ocean basins, there
is no guarantee that the seasonal TC prediction mod-
el developed for the Atlantic and Pacific oceans by
several research teams is also applicable to the Indian
Ocean. Although several studies have documented
the seasonal prediction of cyclones for other ocean
basins of the world, the Indian seas have received

| --4--MLRM ---m-- Observation —e— NN |
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Fig. 5. Time series plots for actual and predicted TC counts from the MLR and NN methods
for the training period. The solid line with a solid circle represents the NN predicted value.
The dotted line with a solid square represents the actual observation. The boldface dashed
line with a solid triangle represents the predicted value from the MLR model.
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for the testing period. The solid line with a solid circle represents the NN predicted value. The
dotted line with a solid square represents the actual observation. The boldface dashed line with
a solid triangle represents the MLR model predicted value.
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relatively less attention. Therefore, an attempt has
been made to predict the seasonal (October, No-
vember, December) TC activity over the NIO using
the NN technique. The model was developed based
on monthly mean sample data of large-scale climate
variables from the preceding month (September) for
the period 1971-2002, and tested for the independent
period 2003-2013. Using the correlation analysis
between TC frequency and individual variables over
the Indian Ocean and the adjacent sea area, critical
regions were demarcated and their data were used
to prepare predictor datasets. The five predictors
considered here are geopotential height at 500 hPa,
relative humidity at 500 hPa, sea level pressure, and
zonal wind at 700 hPa and 200 hPa. Based on some
performance parameters, the MLR model and the NN
model were evaluated. Moreover, the results show
that the predicted tropical cyclone count by both
models is very close to the actual counts. It is noted
that the skill level achieved by the NN model is better
than the MLR model. The results of the development
period are consistent with the independent period. In
conclusion, the model appears to be promising for
operational applications of TC prediction for the NIO.
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