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RESUMEN

Este trabajo evalta el uso de modelos numéricos de prediccion del tiempo (NWP, por sus siglas en inglés) por
conjuntos para la reduccion dindmica de escala de la temperatura en una region calida y compleja. Este enfoque
ofrece informacion sobre la incertidumbre de los modelos NWP y proporciona informacion probabilistica
para compararlos con los modelos NWP sencillos que se utilizan en la actualidad. Se construyo6 un sistema
por conjuntos utilizando cuatro partes con una resolucion de 7 km sobre Oman. Dichas partes estuvieron
conformadas por dos modelos de area limitada (LAM, por sus siglas en inglés), el modelo de alta resolucion
y el modelo del Consorcio para la Modelacion de Pequeiia Escala. Los dos LAM se derivaron ¢ inicializaron
utilizando datos del modelo de circulacion general del modelo global aleman, que opera con una resolucion
de 40 km con base en dos estados atmosféricos iniciales. El primer estado inicial fue proporcionado por el
sistema de asimilacion de datos 3Dvar del Servicio Meteoroldgico Aleman, y el segundo estado inicial se
obtuvo a partir de los datos de reanalisis (ERA-Interim) del Centro Europeo para la Prediccion del Tiempo
a Plazo Medio. Los resultados manifiestan una incertidumbre en la prediccion de la temperatura relacionada
con la incertidumbre de los modelos NWP utilizados, e indican que no hay un modelo idéneo para la totalidad
del dominio. En general, el promedio del conjunto tuvo un mejor desempeiio que las partes individuales.

ABSTRACT

This paper evaluates the use of ensemble numerical weather prediction (NWP) models for dynamical down-
scaling of temperature over a complex, hot region. This approach delivers information about the uncertainty
of the NWP models and provides probabilistic information for comparison with the currently used single
NWP model. An ensemble system was constructed using four members with a 7 km resolution over Oman.
Two limited-area models (LAMs), the high-resolution model (HRM) and the model from the Consortium
for Small-Scale Modeling (COSMO) formed the ensemble members. The two LAMs were derived and
initialized using the general circulation model (GCM) data from the German Global Model (GME), which
runs at 40 km resolution, using two different initial atmospheric states. The first initial state was provided
by the 3Dvar data assimilation system at the German Weather Service (Deutscher Wetterdienst, DWD),
and the second initial state was provided from the reanalysis data (ERA-Interim) from the European Centre
for Medium-Range Weather Forecasts (ECMWF). The results reveal the uncertainty in temperature prediction
related to the uncertainty of the NWP models that were used and indicate that there is no best model for the
entire domain. On average, the ensemble mean performed better than individual members.
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1. Introduction
Over the last decade, the availability of increasing
computing power has supported concerted efforts to
improve the resolution of numerical weather prediction
(NWP) models (Ruby Leung et al., 2003). Despite
these efforts, the resolution of NWPs remains coarse.
The typical resolution ranges from a few dozen kilo-
meters for general circulation models (GCMs) down
to a few kilometers for limited-area models (LAMs)
(Eccel et al., 2007). The air temperature at 2 m above
the ground is one of the main meteorological parame-
ters forecasted by NWP models, but this prediction is
closely tied to the topographic position assigned by the
model to each grid point. Air temperature is strongly
affected by topography, and large-scale models can be
a source of strong bias in complex terrain. The lowest
model layer is much higher than 2 m, adding to the
bias introduced by the horizontal resolution. Therefore,
the 2 m temperature is not a prognostic model vari-
able but is interpolated from the lowest model layer.
The type of interpolation will contribute to the bias
in the forecasted 2 m temperature compared with the
measured one. Therefore, a downscaling approach is
used as a post-processing step for deriving finer reso-
lution information from large-scale NWP models and
to relate grid point predictions to the actual physical
sites (Hewitson and Crane, 1996; Eccel et al., 2007).
There are two principal types of downscaling
techniques: statistical/probabilistic and dynamical.
Statistical/probabilistic downscaling methods use his-
torical data and archived forecasts to generate down-
scaled data from large-scale forecasts (Murphy, 1998;
Rummukainen, 2010). Statistical downscaling consists
in identifying empirical links between large-scale
patterns of climate elements (predictors) and local
climate (the predictands), and applying them to output
from global or regional models. This approach is very
simple to implement, fits well with areas with large
datasets and generates consistent estimates for periods
similar to those used for their calibration. Successful
downscaling depends on long, reliable observational
series of predictors and predictands. Dynamical down-
scaling methods encompass dynamic models of the
atmosphere nested within the grids of the large-scale
forecast models. Typically, one-way nested LAMs are
implemented to generate finer resolutions for different
applications, with GCMs providing initial and lateral
boundary conditions. Dynamic downscaling has be-
come very popular; the physical model formulation

offers strong justification for its application under a
variety of climate and weather conditions, particularly
for locations with strong boundary forcing, such as
complex terrain with irregular orography (Murphy,
1998; Rummukainen, 2010). The disadvantage of this
approach is related to the high computational cost and
data requirements (e.g., three dimensional boundary
and initial conditions).

Statistical and dynamic downscaling techniques
have been used, separately or combined, in meteorol-
ogy and hydrology to improve understanding of local
climate variability (Al-Yahyai et al., 2011; Burger,
1996; Fowler et al., 2007; Fuentes and Heimann, 2000;
Haas and Born, 2011; Hubener and Kerschgens, 2007;
Kidson and Thompson, 1998; Maraun et al., 2010;
Michelangeli et al., 2009; Pinto et al., 2010; Wilby
et al., 1998; Wilby and Wigley, 1997). Ensemble ap-
proaches were introduced in meteorology (Galmarini
etal.,2001) and hydrology (Stedinger and Kim, 2009)
to improve model forecasts and reduce the model
uncertainty. Any group of model forecasts with the
same valid time is called an ensemble (UCAR, 2009),
and each forecast is called an ensemble member.
The extent of agreement among the members can be
considered a measure of forecast certainty (Stensrud
et al., 1999). Ensemble forecasting can quantify and
propagate forecast uncertainty (Tiwari and Chatterjee,
2010; National Research Council, 2006).

The implementation of downscaling techniques
in developing countries poses a real challenge due to
the modest computational infrastructure. The main
motivation of this study is to construct an ensemble of
forecasts over a complex, hot area. Several techniques
for constructing the ensemble have been developed
and exhibit better performance than any single model
system (Callado et al., 2013). The proposed method-
ology suggests using various sources of NWP model
uncertainty as a starting point to generate an ensemble
of NWP predictions for temperature data. This meth-
od can be achieved by using different LAMs (initial/
boundary) derived by different GCMs. The Sultan-
ate of Oman, characterized by a hyper-arid climate
because of its position astride the tropic of Cancer,
was selected as a reference area for this application
(Fig. 1). The rainfall regime, the teleconnections and
the wet- and dry-spell patterns have been analyzed on
aregional scale in this region (Charabi, 2009; Charabi
and Hatrushi, 2010; Charabi and Al-Yahyai, 2011).
The studies have shown that the area is influenced by
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Fig. 1. 2.8 km averaged elevation (m) of the study area.

different atmospheric mechanisms which contribute
to local climate diversity and that are characterized
by a strong gradient of temperature induced by the
complexity of the topography. There are no studies
of this region that address the interaction between
such complex topography and temperature at local
scales. The outline of the paper is as follows: section 2
details the proposed approach; section 3 discusses the
main findings based on a case study over Oman; and
section 4 concludes the paper.

2. Data sets and methodology

Figure 2 gives a comprehensive overview of the
ensemble NWP model approach for dynamical
downscaling of temperature. It shows that initial and
lateral boundary conditions from [M] GCMs (40 %
40 km) are used to derive and initialize [N] LAMs
(7 x 7 km). This permutation generates an ensemble
system [M x N] member. In this combination, each
LAM will be initialized by [M] different GCMs. The
models are equally weighted, meaning the ensemble
members for each model are calculated first and then
averaged to form the multi-model mean. This regional
scale ensemble prediction is validated with the ground
observations and used to derive and initialize a local
scale high-resolution model (2.8 x 2.8 km). Notice that
the number of ensemble members is controlled by the
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COSMO (7 km) HRM (7 km)
GCM 1] T

GCM [n]
Initial condition
Boundary condition

__GME-DWD

Initial condition
Boundary condition
ECMWF
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Local scale model
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Simulation of temperature

Fig. 2. Diagram of the ensemble NWP model approach
for dynamical downscaling of temperature.

availability of the GCMs data and the computational
power. The higher the number of members, the more
confident the derived statistics but the more computa-
tional power required (Al-Yahyai et al., 2011). For this
application, an ensemble system was constructed using
four members and covering the domain 49.0-64.0° E
and 13.0-28.0° N with a 7 km resolution with 241 x
241 grid points and 41 vertical layers. Two LAMs,
namely the high-resolution model (HRM), which is
hydrostatic (Majewski, 2009), and the model from
the Consortium for Small-Scale Modeling (COSMO),
which is non-hydrostatic (Doms and Schattler, 2008),
formed the ensemble members.

Each model run is initialized at 00:00 UTC and
generates output for 30 hours. The first six hours are
discarded due to the spin-up of the model. The two
LAMs are derived and initialized by the GCMs’ data
from the German Global Model (GME), which runs
at 40 km resolution using two different initial states of
the atmosphere. The first initial state of the atmosphere
is provided by the 3Dvar data assimilation system at
the German Weather Service (Deutscher Wetterdienst,
DWD), and the second initial state is provided from the
reanalysis data ERA-Interim from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWE,
2006). The HRM model has been an operational model
at the Directorate General of Meteorology and Air Nav-
igation (DGMAN), Oman, since 1999. The COSMO
model has recently been implemented as a test bed under
the research agreement between DGMAN and DWD.
Through this cooperative agreement, DWD provided
the initial and lateral boundary conditions for 2009 for
this study; the study therefore covers only 2009. The PC
cluster of the DGMAN was used to run the case study
after the operational runs of its operational models.
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3. Results and discussion above the ground from the four ensemble members.
Figure 3 shows the annual mean temperature at 2 m  This figure shows the uncertainty of the NWP models
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Fig. 3. Annual mean temperature at 2 m above the ground from the four ensem-
ble members. (a) COSMO-ECMWF; (b) HRM-ECMWF; (¢) COSMO-GME;
(d) HRM-GME.
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and illustrates the effects of model dynamics, numerical
schemes and the initial conditions. The HRM-DWD
and COSMO-DWD maps clearly highlight the effect
of the model dynamic and numerical schemes. The two
LAMs are initialized with the same atmospheric states
engendered in two different forecasts. The effect of the
initial state is clearly shown, with maps of the same
model (e.g. HRM) using different initial states engen-
dering two different forecasts. Notice that the effects of
the model dynamics and numerical schemes are more
pronounced than the effect of the initial state. It can
be seen that the HRM model is more sensitive to the
initial and boundary condition data than the COSMO
model. The HRM model initialized by the DWD 3D
data assimilation produced high temperatures over the
Empty Quarter desert.

Figure 4 shows the annual ensemble mean of
the system. The ensemble mean smoothed out the
unpredictable events, such as the high temperature
over the Empty Quarter desert. On the other hand,
the more predictable events, such as low air tem-
perature over the mountains, were maintained in the
ensemble mean.

Eleven meteorological stations were selected to
verify the robustness of the temperature simulation
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Fig. 4. Annual mean temperature at 2 m above the ground
from the ensemble mean.

of the four ensemble members and the ensemble
mean against ground observations. Figure 5 shows
the scatter plot for different forecasts over Salalah.
In most cases, the model underestimated the low
temperature values and overestimated the high
temperature values. Therefore, the NWP models
have warm and cold biases over Salalah. Due to the
variation in bias of the models, the ensemble mean
showed outliers in the scatter plot. Monthly time se-
ries of the mean temperature were also computed. The
diagram at the lower right corner shows the model
validation data over Salalah against the observation
data (black curve). All models underestimated the
temperature during winter and overestimated the tem-
perature during summer. The model discrimination
over Salalah is believed to be related to the complex
terrain surrounding the observational station and the
large seasonal temperature variation. The southern
part of Oman, where Salalah is located, is influenced
by the Arabian summer monsoon from June to Sep-
tember, which considerably reduces the temperature.
Compared with Salalah, the scatter plot over Sohar
shows a better correlation with the measurement
observations, as shown in Figure 6. Similar results
from the ensemble mean model were observed for
the other stations.

The mean error (bias) of the four ensemble mem-
bers and the ensemble mean is calculated as described

by Eq. (1):
1 N

Bias=— Y F, - O, 1
V2EO (1)

where F is the model forecast, O is the observation
and N is the total number of data sets.

The mean error is determined from the means of
the closest points of the model to an observational
station and the bi-linearly interpolated value of the
four surrounding points. Figure 7 shows the mean
error (bias) of the four ensemble members, the mean
error of the ensemble mean using the closest grid
point approach and the bi-linear interpolation of the
four surrounding grid points for eleven meteorolog-
ical stations. It clearly shows that all members are
overestimating the temperature for all stations by
1-3.5 °C. The highest overestimation is shown in
Buraimi and Ibri. This significant difference can be
explained by the topographic divergence between
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Fig. 5. Verification results for the Salalah station scatter plots for different forecasts: (a) T
C-HRM-GME; (b) T C-HRM-ECMWF; (¢) T C-COSMO-GME); (d) T C-COSMO-EC-
MWEF; (e) T C-Ensemble Mean); (f) Comparison of ensemble members, ensemble mean
and observed monthly mean time series).
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Fig. 7. Mean error (bias) of the ensemble members at
different locations.

the elevation of the station and the elevation per-
ceived by the model. For these two stations, the
difference is more than 100 m. Moreover, these
differences in temperatures may be related to plan-
etary boundary layer (PBL) heights. PBL heights
are underestimated in those regions, which may be
a result of differences in land cover between our
downscaling models data set and the ground-truth
data. Furthermore, Burimi and Ibri are highly in-
fluenced by the strong sea breeze blowing from the
northeast coast of the United Arab Emirates. This
deep penetration of sea breezes over a large flat area
contributes to a reduction in the air temperature
(Charabi and Al-Yahyai, 2011).

Among the four members and the mean error of
the ensemble mean, HRM-GME performed better for
Duqum; HRM-ECMWEF performed better in the case
of Sohar; and Ibra, Ibri and As Seeb were forecasted
better by COSMO-GME. Adam, Buraimi, Masirah,
Nizwa, and Salalah were forecasted better by the en-
semble mean. These results highlight the uncertainty
of the NWP model and show that there is no best
model for the entire domain. The bi-linear approach
indicated that the ensemble mean performed better
for six stations.

4. Conclusion

This paper assesses the use of ensemble NWP models
for dynamical downscaling of temperature over a
complex hot area. The results show the uncertainty
in temperature prediction due to the uncertainties in
the NWP models that were used and indicate that

there is no best model for the entire domain. The
NWP models performed relatively poorly in pre-
dicting temperature; this is mainly because the NWP
models reliance on simple soil physics is insufficient
to capture the temperature cycle over the different
topographic settings. The multilayer soil model used
in NWP models mainly simulates soil temperature
evolution; soil vegetation, humidity and canopy are
based on seasonal variations in land cover and are
not explicitly computed. In Oman, accurate topo-
graphical information and advanced surface physics
are required to improve temperature prediction.
Therefore, soil hydrological models and plant cano-
py models are important for realistic assessments of
evaporation, evapotranspiration and their impacts on
the latent and sensible surface heat fluxes that directly
influence the air temperature.

iThe ensemble mean performed better on aver-
age than individual members. The atmosphere is
a chaotic system, where predictability is lost in a
manner-dependent flow; providing a single control
forecast is of limited use. An ensemble approach,
where multiple predictions are generated through
initial and model perturbations, can be used to assess
variations in predictability and substantially reduce
the uncertainty.
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