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RESUMEN

Se aplica el modelo logistico bivariado con distribuciones marginales de valores extremos de dos componentes
(BTCEV) para obtener un estimador regional de las velocidades de viento. Los parametros fueron calculados
por el método de maxima verosimilitud a través de un algoritmo de optimizacién multivariado restringido. El
modelo se ajusto a los registros de velocidades de vientos extremos de 45 estaciones localizadas en Holanda.
Los resultados fueron comparados con aquellos obtenidos por el ajuste de las distribuciones Gumbel (G),
General de Valores Extremos (GVE), Weibull Inversa (RW) y valores exremos de dos componentes (TCEV);
las distribuciones bivariadas con marginales G, GVE y RW y tres métodos regionales: estaciones-afio, ave-
nida indice (viento-indice) y momentos-L. En general, se tienen mejoras significativas, medidas a través
de un criterio de bondad de ajuste, empleando la modelacion bivariada en comparacion de su contraparte
univariada y regional, y las diferencias entre los estimadores en el sitio y regional de los eventos de disefio
pueden ser importantes conforme se incrementa el periodo de retorno. Los resultados sugieren que es muy
importante considerar el uso de las distribuciones bivariadas para el ajuste de velocidades de viento extremo,
especialmente para el caso de muestras pequeiias.

ABSTRACT

The bivariate logistic model with two-component extreme value marginal distributions (BTCEV) is applied
to provide a regional at-site wind speed estimate. The maximum likelihood estimators of the parameters
were obtained numerically by using a multivariable constrained optimization algorithm. A total of 45 sets of
largest annual wind speeds gathered of stations located in The Netherlands were selected to apply the model.
Results were compared with those obtained by the univariate distributions: Gumbel (G), Generalized Extreme
Value (GEV), Reverse Weibull (RW) and two-component extreme value (TCEV); the bivariate distributions
with marginals G, GEV and RW; and three regional methods: station-year, index flood (index-wind) and
L-moments. In general, a significant improvement occurs, measured through the use of a goodness-of-fit
test, when estimating the parameters of the marginal distribution with the bivariate distributions instead of
its univariate and regional counterpart, and differences between at-site and regional at-site design events can
be significant as return period increases. Results suggest that it is very important to consider the bivariate
joint estimation option when analyzing extreme wind speeds, especially for short samples.
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1. Introduction

Extreme wind speeds (EWS) have been analyzed through the use of univariate distributions. Several
assumptions underlay the statistical estimate of the wind speed. The most important one, that all
extremes (up to return periods of 10* yr) belong to the same population, is hard to verify from the
available short observational sets.

Van Den Brink ef al. (2004) noticed the existence of areas where the extreme value distribution
of extratropical winds was double populated. They demonstrated that the local wind can be caused
by two meteorological systems a and b of different physical nature, each of them generating its
own distribution F,(s) and F(s). Then, the parent distribution F(s) is said to be mixed. The simplest
case of F{(s) represents the multiplication of two exponential distributions which Rossi et al. (1984)
calls the two-component extreme value (TCEV) distribution:

F(s) = exp[—A, exp(=s/a,) — A, exp(—s/o)]; s>0 ()
and its probability density function is:
S(s) = exp[—h, exp(—s/a,) — Ay, exp(—s/a,)] [(—A/ 1) exp(=s/a,) + (M/au,) exp(—s/o,)] ()

where A, >0, A, >0, A, > A, o, > 0, o, = 0 are the parameters of data to be estimated.

The TCEV distribution can be interpreted as the cumulative density function of the annual
maximum for a poissonian process composed of a mixture of two independent populations. One
population is called ordinary or basic component (subscripts of parameters = a) and represents
the s values that occur more frequently; the other is called extraordinary component (subscripts of
parameters = b) and represents the population that includes outliers.

Theoretical properties of TCEV distribution have been widely investigated (Rossi et al., 1984;
Beran et al., 1986; Rossi et al., 1986). This distribution needs of a larger sample in order to obtain
a robust estimation of the parameters. For this reason such kind of distribution is often used on
regional basis (Fiorentino et al., 1987; Furcolo et al., 1995; Francés, 1998; Boni et al., 2000).

The regional frequency analysis (RFA) approach reduces the uncertainty associated to lack
of records at gauged sites and extends the analysis results to non-gauged sites. As mentioned by
Cunnane (1988), some RFA methods assume that a region is homogeneous in some quantifiable
manner. This homogeneity is exploited to produce quantile estimates which, in most of cases, are
more reliable than those obtainable from at-site data alone. It is important to mention that regional
homogeneity is not required in the joint multivariate estimation method, but even in such case it
helps to improve the quantile estimates.

In general, when data exist but not with the length of record required to provide accurate
parameter estimates, the error of the 7-year estimate can be very large and inefficient for design
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purposes. A mean to reduce this error is by applying a joint estimation model, where information
from nearby sites in the region may be combined with the record of inadequate length to increase
information and to provide a regional at-site estimate. In order to achieve this goal, the logistic
model for bivariate extreme value distribution is applied. The logistic model has already been used
in flood frequency analysis by considering Gumbel (G), Generalized Extreme Value (GEV), Gumbel
for two populations, Reverse Weibull (RW) and mixed Reverse Weibull as marginal distributions
(Raynal, 1985; Escalante 1998, 2007). Herein, the TCEV distribution is considered as an additional
option to model extreme wind speeds.

2. Bivariate distribution
The general form of the logistic model for bivariate extreme value distributions is (Gumbel, 1960):

F(x, y, my) = exp{~[(~LnF(x)y" + (-LnF(y))]"]""} 3)

where x and y represent the magnitudes of annual maximum wind speed at two neighboring stations,
m, is the bivariate association parameter (m, > 1), F(x) and F(y) are the marginal distributions. (In
this case TCEV distribution functions.)

The corresponding probability density function is:

f(xa ) mb) =

MM — my=lr_ my=1 —[(-LnF "o (—LnF my, 1
T F P T L FO) exp{-[(-LnF(x))" +(~-Ln F(3))" "™}

[ELnF ()" +(-LnF(y))]""" {m, 1) + [(~Ln F(x))™ + (-Ln F(n))" "} 4)
For m, = 1, the bivariate distribution function reduces into the product of the marginals as:

Fx, y, 1) = F(x) F(y) )

this is the case of independence.
When m,, = oo, the bivariate distribution function is:

F(x, y, 00) = min [F(x), F(y)] (6)

Gumbel and Mustafi (1967) obtained the analytical relationship between the product-moment
correlation coefficient p and the association parameter m, for the bivariate distribution when both
marginals are G distributions as:

p=(1-1/mp2) (7)

From this expression a value of m,= 2 corresponds with a correlation coefficient equal to 0.750.
Raynal (1985) obtained the relationship between the population product-moment correlation



376 C. Escalante-Sandoval

coefficient and the association parameter m, for the bivariate distribution when both marginals
are GEV distributions by a numerical procedure for selected values of the shape parameters. For
instance, when m, =2 values of correlation coefficient vary from 0.420 to 0.856 depending on the
combination of shape parameters.

Since the parameters of the bivariate extreme value distribution with TCEV marginals (BTCEV)
are unknown, they must be estimated from data. The method of maximum likelihood was selected
due to its wide applicability and the efficiency features associated with it, which are not easily
found in other methods of parameter estimation.

The proposed method allows analyzing samples with different lengths of record. The general
form of the bivariate likelihood function is (Raynal, 1985):

Ly, O =[1 7(p, O 117, . OF 111 /(g1 O (8)

where @1is the set of parameters to be estimated; n, and #; are the univariate lengths of record before
and after the common period, respectively; n, is the length of record in the common period; p is the
variable x or y before the common period, x, y are the variables with length n,; p is the variable x
or y after the common period, and /; is a indicator number such that ;=1 if n,> 0 or =0 if n, = 0.

Because of the expression provided by the natural logarithm of Eq. (8) is easier to handle, the
Log-Likelihood (LL) function will be used:

LL(x, 3, 01= 1, [Y Lnf(p, )1+ L [Y Lnf(x, 7, OV, [Y, Lnf (g, 0)] ©)

The maximum likelihood estimators of parameters of bivariate extreme value distribution are
those values for which equation (9) is maximized. Given the complexity of the corresponding partial
derivatives with respect to the parameters, the multivariable constrained Rosenbrock optimization
algorithm (Kuester and Mize, 1973) was applied to obtain the maximum likelihood estimators of
the parameters by the direct maximization of equation (9). A summary of the proposed procedure
follows.

Step 1. For each station with length of record 7, the univariate maximum likelihood estimators
of the parameters must be computed by direct maximizing of the LL function of Eq. (10).

LL(s,\,,q,)=
z [[-A,exp(=s/a,)— L, exp(—s/a,)]+Ln[(A,/a,)exp s/a,)+ (A, /a,)+exp(=s/a,)]] (10)
i=1

Step 2. For each station, all possible combinations by pairs must be explored. The required initial
values of the parameters to start the optimization of the general equation (9) are those obtained in
step 1. So, A, o, Ay, O, stand for the basic station, and As, a3, A4, o for each neighboring station.
The initial value of the association parameter m, is assumed equal to 2, which implies that it behaves
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in a similar way like those obtained by the bivariate distributions with G and GEV marginals
(Gumbel and Mustafi, 1967; Raynal, 1985).

Step 3. For each basic station all possible combinations are explored, and the best one is chosen
according to the criterion of minimum standard error of fit, as defined by Kite (1988):

SEF =3, (g, ~ h)"/(n, — )] (1)

where g;,i=1,.. ., ny are the recorded events; 4;,i =1, ..., n; are the event magnitudes computed
from the probability distribution (1) at probabilities obtained from the sorted ranks of g;, i =1, .. ., ny; g
is the number of parameters estimated for the marginal distribution, and x is the length of record.
For the TCEV distribution ¢ is equal to 4.

Step 4. Estimate regional at-site extreme quantiles of different return periods with the best
combination for each basic station by using Eq. (1).

3. Reliability of estimated quantiles

Any statistical approach must show whether or not the estimated quantiles are more reliable than
those computed through existing approaches. This reliability can be quantified by several measures
such as the bias, mean squared error and variance.

Let 7 be the quantile to be estimated; 7,1= 1. . ., n, the estimates obtained from each sample and , the
number of samples. Then, the bias and mean squared error (MSE) of the estimator may be computed as:

bias = m(7) — # (12)
MSE = m(#) + [m(9) = A1’ (13)
where m(p) and $%(7) are the mean and variance obtained from generated samples:

mii) = /1/n) % 4, (14
and

@) =0/n) £ ) -, P (15)

When estimating the parameters and quantiles of a distribution, one would like to have unbiased
and minimum MSE estimators. The MSE involves both the variance of the estimator and the squared
of the bias. If a given estimator is unbiased, the MSE is equal to the variance of the estimator.

TCEV numbers with population parameters A, = 450, o, = 2.5, A, = 35 and o, = 2.5 were
generated and grouped into samples of size n = 10, 20, 50 and 100. The number of samples for
each size was equal to 10,000.
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For the case of the BTCEV distribution, quantiles were obtained by combining each generated
sample with another of the same “n,” or longer length of record “n,”. So, the explored cases have
lengths 10-10, 10-20, 10-50, 10-100, 20-20, 20-50, 20,100, 50-50 and 50-100. The associated

TCEV numbers have population parameters A; = 300, a; = 3, A, = 60 and o, = 3.

A comparison was made in relation to estimating quantiles corresponding to 0.50, 0.80, 0.90,
0.95, 0.98, and 0.99 non-exceedance probabilities. In fact, when the associated length in the bivariate
combination increased, the bias and mean squared error of the short series decreased throughout
the range 0.5 < F' < 0.99 (Tables I and II). This means that there was a gain in information when
the parameters of the short series were estimated based on the short “n,* and longer series “n,".

Table 1. Quantile biases obtained for the TCEV marginal with length of record n;.

Sample sizes Non-exceedance probability
M 2 0.50 0.80 0.90 0.95 0.98 0.99
10 10 -0.173 —-0.268 —-0.344 —0.424 —0.538 -0.629
10 20 —-0.162 -0.253 —0.324 —0.401 —-0.511 —-0.599
10 50 —-0.151 -0.240 -0.312 —-0.388 —0.496 —-0.583
10 100 —0.166 —-0.241 —-0.296 —-0.351 —-0.427 —-0.486
20 20 —0.160 -0.241 -0.297 —-0.353 —-0.430 —0.488
20 50 -0.158 —-0.234 —0.294 —-0.345 —0.413 —-0.468
20 100 -0.156 —-0.231 —0.284 —-0.337 —0.409 -0.465
50 50 —-0.123 —0.194 —-0.242 —0.288 —-0.350 —-0.397
50 100 —-0.070 -0.129 -0.168 -0.206 —-0.255 —-0.292
True value (m/s) 16.377 19.210 21.086 22.886 25.215 26.961

Table II. Quantile mean squared errors obtained for the TCEV marginal with length of record n;.

Sample sizes Non-exceedance probability
i 2 0.50 0.80 0.90 0.95 0.98 0.99
10 10 0.031 0.073 0.120 0.182 0.293 0.401
10 20 0.027 0.065 0.107 0.163 0.263 0.362
10 50 0.027 0.062 0.099 0.152 0.249 0.343
10 100 0.026 0.060 0.089 0.126 0.186 0.240
20 20 0.026 0.059 0.089 0.125 0.185 0.239
20 50 0.026 0.056 0.083 0.117 0.176 0.225
20 100 0.025 0.054 0.081 0.115 0.168 0.218
50 50 0.015 0.038 0.059 0.084 0.123 0.158
50 100 0.007 0.019 0.031 0.046 0.070 0.090
4. Case study

The BTCEYV distribution is used to model jointly the annual maximum wind speed data gathered
of the hourly potential winds computed at 45 stations located in The Netherlands (Fig. 1). Data
are available from the Royal Netherlands Meteorological Institute (KNMI). Some statistical
characteristics of the analyzed samples are shown in Table III.
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Table III. Some characteristics of the analyzed stations in case study.

Period Years of mean L-moments L-Cv L-skew  L-kurtosis

Wind station ofdata  record (m/s) S Cv A2 A3 A4 T2 3 4
Arcen 1991-2004 14 15.3 1.2 0.08 0.67 0.10 0.07 0.04 0.15 0.11
Beek 1962-2005 44 17.8 23  0.13 1.30  0.09 0.11 0.07 0.07 0.09
Cabauw 1987-2004 18 19.1 3.0 0.16 1.69  0.38 0.24 0.09 0.22 0.14
Cadzand 1972-2004 33 20.7 2.5 0.12 144  0.17 0.06 0.07 0.12 0.04
De Bilt 1961-2005 45 16.5 25 0.15 1.36  0.20 0.28 0.08 0.15 0.20
De Kooy 1972-2004 33 21.8 28 0.13 1.56 0.22 0.16 0.07 0.14 0.10
Deelen 1961-2005 45 18.5 29 0.16 1.65 0.14 0.19 0.09 0.09 0.11
Eelde 1961-2005 45 18.6 23  0.12 128 0.29 0.15 0.07 0.22 0.12
Eindhoven 1960-2005 46 17.6 26 0.15 149 027 0.06 0.08 0.18 0.04
Europlatform 1984-2005 22 23.1 2.1 0.09 1.14  0.36 0.20 0.05 0.31 0.18
Gilze-Rijen 1961-2005 45 17.3 25 0.15 142 024 0.11 0.08 0.17 0.08
Heino 1991-2004 14 16.5 1.9 0.11 1.07 -0.18 0.14 0.07 -0.17 0.13
Herwijnen 1966-2004 39 19.1 29 0.15 1.66 022 0.23 0.09 0.14 0.14
Hoek van Holland 1962-2005 44 20.6 2.0 0.10 1.13  0.04 0.19 0.05 0.04 0.17
Hoogeven 1981-2004 24 17.5 2.0 0.11 1.13 -0.10 0.18 0.06 -0.09 0.16
Hoorn 1995-2004 10 20.9 1.4 0.07 0.78 0.31 0.19 0.04 0.40 0.24
Houtrib 1977-1994 18 20.0 27 0.14 1.58 0.21 0.26 0.08 0.14 0.17
Huibertgat 1981-2004 24 23.2 23 0.10 1.20 037 0.28 0.05 0.30 0.24
Hupsel 1990-2004 15 17.2 2.8 0.16 1.60  0.29 0.24 0.09 0.18 0.15
IJmuiden 1952-2005 54 214 2.1 0.10 1.17  0.13 0.12 0.05 0.11 0.11
K13 1983-2004 22 23.9 28 0.12 141  0.50 0.37 0.06 0.35 0.26
L. E. Goeree 1975-2004 30 21.2 24  0.11 1.36 0.14 0.17 0.06 0.10 0.12
Lawersoog 1969-2004 36 21.1 24  0.11 1.29  0.30 0.23 0.06 0.23 0.17
Leeuwarden 1962-2005 44 20.2 28 0.14 1.51 043 0.23 0.07 0.29 0.15
Lelystad 1983-2004 22 19.0 32 017 1.77  0.39 0.31 0.09 0.22 0.18
Marknesse 1990-2004 15 17.7 1.7 0.09 094 021 0.16 0.05 0.22 0.17
Meetpost Noordwijk 1991-2005 15 22.8 2.0 0.09 1.14 024 0.20 0.05 0.21 0.17
Niuew Beerta 1991-2004 14 19.5 2.0 0.10 1.13  0.28 0.18 0.06 0.25 0.16
Oosterschelde 1982-2004 23 21.6 2.0 0.09 1.10  0.19 0.15 0.05 0.17 0.13
Rotterdam Geulhaven 1981-2004 24 19.6 28 0.14 1.55 037 0.16 0.08 0.24 0.10
Schaar 1983-2003 21 20.8 1.8 0.09 099 0.25 0.18 0.05 0.25 0.18
Schiphol 1950-2005 56 20.8 26 0.13 148 0.12 0.19 0.07 0.08 0.13
Soesterberg 1959-2005 47 17.3 25 0.15 140 024 0.21 0.08 0.17 0.15
Stavoren-Haven 1991-2002 12 19.9 1.3 0.07 0.74 -0.11 0.16 0.04 -0.15 0.22
Terschelling 1969-1995 27 22.3 2.0 0.09 1.14  0.11 0.08 0.05 0.10 0.07
Texelhors 1969-2004 36 21.8 29 0.13 1.58 037 0.30 0.07 0.24 0.19
Tholen 1983-2003 21 19.6 24 0.12 1.35  0.19 0.17 0.07 0.14 0.12
Twenthe 1971-2004 34 16.8 29 0.17 1.65 0.28 0.07 0.10 0.17 0.04
Valkenburg 1982-2004 23 20.2 26 0.13 148 0.17 0.21 0.07 0.11 0.14
Vlissingen 1959-2005 47 20.0 22  0.11 1.19  0.23 0.22 0.06 0.19 0.18
Volkel 1971-2004 34 17.3 2.8 0.16 1.52 032 0.35 0.09 0.21 0.23
Wijdenes 1995-2004 10 19.7 2.1 0.10 1.22 -0.11 0.09 0.06 -0.09 0.07
Wilhelminadorp 1990-2004 15 19.1 23 0.12 1.31  0.28 0.10 0.07 0.22 0.08
Wownsdrecht 1996-2004 9 16.8 25 0.15 1.36  0.38 0.37 0.08 0.28 0.27

Zeistienhoven 1962-2005 44 19.5 2.5 0.13 134  0.23 0.34 0.07 0.17 0.25
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Fig. 1. Location of wind stations used in case study.

According to Simiu (2002), wind speed series used in extreme value analysis should be
micrometeorologically homogeneous. That is, they should be: (a) recorded over terrain with the
same roughness characteristics over the entire duration of the record being considered, (b) either
recorded at or converted to the same elevation above ground, and (c) averaged over the same time
interval. To assure this condition we use corrected wind speeds at 10 m height over open land with
roughness length equal to 0.03 m, and averaged in an hour.

The at-site information will be related with that from EWS records of neighboring gauging
stations, which can be considered to behave in similar fashion. The delineation of homogeneous
regions was obtained by plotting the corresponding L-Cv coefficients and setting confidence limits
(mean L-Cv plus and minus one standard deviation). Close inspection of Figure 2 indicates that there
are three homogeneous regions; one of them is represented by the 14 stations listed in Table IV.

For instance, EWS data of Hupsel station can be combined with the 13 neighboring stations
located at the same homogeneous region. Table IV also shows the available length of each record
and the relative sample sizes of each bivariate combination.
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Table IV. Bivariate combinations for Hupsel station.

Basic Length of Neighboring Length of Relative sample sizes
station record (years) station record (years) n n, ns
Hupsel 15 Twenthe 34 19 15 0
Cabauw 18 3 15 0
Volkel 34 19 15 0
Woensdrecht 9 6 9 0
Lelystad 22 7 15 0
Beek 44 28 15 1
Soesterberg 47 31 15 1
Herwijnen 39 24 15 0
De Bilt 45 29 15 1
Gilze-Rijen 45 29 15 1
Eindhoven 46 30 15 1
Deelen 45 29 15 1
Arcen 14 1 14 0
EWS Holland
012 4
17 L_Cvm9d+scv .o-oo..
L0 ——————————————esssses
(_I) 000 00OOGEOONOSNOSDO
- 0.06 | (XX NN Y]
004 loee TreEEme L-CV ey~ Sy Fig. 2. Delineation of homogeneous
002 | regions by considering the L-Cv
coefficients.
0.00

1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Stations

For the bivariate combination (Hupsel-Twenth) the LL function to be maximized would be:

LL(x 3 0= 2 | Ln[(2,/a,) exp(-y, /a,) + (h, /a,) exp(-y,/a,)]

Lo f(x) + Lnf(y)-F(y)+

(m, — )Ln [-Ln F(x)]+(m, — 1) [-LnF(p)]
+{~[(~Ln F(x))" + (~-Ln F(»))" 1"} (16)
+(1/m,=2) Ln[(-LnF(x))"” + (-Ln F(y))™]

|+ Ln {(m,— 1) + [(-Ln F(X))" + (~-Ln F(y))" 1"}

o _[—ABexp(—yi/%)—/{A‘ exp(_yi/a4)]+ :| +

o
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where
F(x) = exp[-4,exp(-x, /&) — 1, exp(~x,/ a,)] (17)
f(x)=
exp[—A xp(—x, /a,) = A, exp(=x, /o) [(1, /&) exp(~x, [ a,) + (A, | a,) exp(-x, / a,)] (18)
F(y)=exp[-Ayexp(—y,/a;) — 2, exp(—y,/a,)] 19)
f(x)=

exp[—Ay xp(=y,/ay) — A, exp(=y, la)][(4;/a5) exp(=y,;/a;)+ (A, /a,)exp(=y,/a,)] (20)

The required initial values of the parameters to start the optimization procedure are those obtained
by the univariate approach (Table V). The final bivariate parameters and return levels (m/s) for the
same cases presented in Table V are shown in Tables VI and VII.

In order to compare the goodness of fit among the univariate and bivariate estimates of return
levels, the corresponding SEF values were computed. For the univariate case, the G, GEV, RW
and TCEV distributions were fitted to the data. Three bivariate (B) distributions with G, GEV and
RW marginals were used (BG, BGEV and BRW).

An additional comparison was made by considering three of the most popular techniques used
in regional flood frequency analysis: the station-year, regional L-moments and the index flood,
here called index-wind (Singh, 1987; Cunnane, 1988).

Table V. Univariate TCEV parameters for Hupsel station and neighboring stations.

Basic Neighboring Univariate parameters
station station /11 a /12 a, /13 a, /14 a, m,
Hupsel Twenthe 1537.120 2.168 67.687  0.095 460.956  2.278 36.176 1.725 2
Cabauw 460.868  2.873 38.839 2877 2
Volkel 1654.125  2.154  112.246 2,157 2
Woensdrecht 4540.013  2.083 8.540 1.884 2
Lelystad 557.531 2.561  427.375 2553 2
Beek 2397.555  2.063  847.462 2.061 2
Soesterberg 2134273 2.118  991.444 0.101 2
Herwijnen 1642.731 2395  316.046 0370 2
De Bilt 683.071  2.267  192.740 2258 2
Gilze-Rijen 1595.519  2.195 159.889 0.093 2
Eindhoven 488.076  2.621 34.999 2617 2
Deelen 451.237  2.778 35.394 2815 2
Arcen 2124.131  1.939 35.070 0.071 2
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Table VI. BTCEV parameters for Hupsel station and neighboring stations.
Basic Neighboring Univariate parameters

station station /11 a, iz a, l3 a, /14 a, m,
Hupsel Twenthe 492.990 2408 54.685 2967 450.017 2.522 35.013  2.506 2.802
Cabauw 495.025 2454 52481 27769  449.995  2.900 68.798  2.488 5.364
Volkel 490.860 2272  51.826 3.432 447.478 2.616 41.742 2455 3519
Woensdrecht ~ 492.933 2497  52.298 2967 430.085 2.454 466.023 2301 2.762
Lelystad 484.041 2589 53989 2496 450.423  2.861 35.189  2.871 3.764
Beek 494.252 2286 34785 3.751  576.122  2.607 35.095  2.565 3.267
Soesterberg 484.143  2.601 54.090 2586 473.845 2.554 72736 2.712  2.729
Herwijnen 498.638 2375 51.851 3456 453716 2798 129.512 2.728 4.647
De Bilt 484.071 2.652 46.636 2769  450.577 2.491 35560 2.459 2.169
Gilze-Rijen 579.300 2386  53.443 3511 593.707 2465 133916 2484 2.404
Eindhoven 490.078 2.479 51.876 3.479  462.620 2.643 48.182  2.571 3.857
Deelen 492.762  2.667 54962 2963  558.867 2.707 35902 2495 3.671
Arcen 878.004 1.585 35.859 4441 449.858 2.428 35.687 2.153 4.654

Table VII. Return levels U(m/s) and SEF (in m/s) for Hupsel station obtained by fitting the BTCEV distribution.
Basic Neighboring Return period (years) SEF
station station 2 5 10 20 50 100  (m/s)
Hupsel Twenthe 16,6 195 215 233 258 27.6 0474

Cabauw 16.6 195 214 232 255 273 0.496
Volkel 16.8 200 223 245 274 297 0.520
Woensdrecht 17.1  20.0 22.0 239 263 282 0.565
Lelystad 172 20.1 220 239 263 281 0.634
Beek 169 203 227 251 283 308 0.679
Soesterberg  17.3 202 222 241 265 283 0.749
Herwijnen 17.3 205 228 250 279 30.1 0.859
De Bilt 17.7 207 227 246 27.1 29.0 1.157
Gilze-Rijen 17.7 21.0 232 255 284 30.7 1292
Eindhoven 17.8 21.0 233 255 284 30.6 1.352
Deelen 18.0 21.1 232 251 277 29.6 1562
Arcen 176 22,6 259 29.1 332 363 2448

In the station-year method the standardized data recorded by all individual stations in a region can
be combined so as to obtain a single regional frequency curve applicable, after appropriate rescaling,
anywhere in the homogeneous region. Regional pooling was fitted by the TCEV distribution (RTCEV).

Once obtained the regional (R) weighted average values of L-moments (LM), they can be
used to estimate parameters of a selection of probability distributions. In this case, the G, GEV,
Gamma with two parameters (GM2) and Normal (N) distributions were fitted to the data (RGLM,
RGEVLM, RGM2LM and RNLM)

The at-site and regional at-site return levels U(m/s) of Hupsel station are shown in Table VIII.
The best univariate fit was obtained with the G distribution with a SEF = 0.69 m/s. Fitting the
BTCEV distribution its SEF reduced to 0.46 m/s. The return level, which is used in structural
engineering, increased from 24.3 to 25.8 m/s.
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Table VIII. Return levels U(m/s) and SEF (in m/s) obtained by univariate, bivariate

and regional distributions for Hupsel station.

Distribution Return period (years) SEF
2 5 10 20 50 100 (m/s)
G 16.7 19.1 20.7 22.3 243 25.8 0.69
BG 16.6 19.4 21.2 23.0 252 26.9 0.50
GEV 16.7 19.1 20.8 22.3 24.4 26.0 0.71
BGEV 16.6 19.5 21.3 23.0 252 26.8 0.50
RW 17.3 19.8 20.9 21.8 22.7 233 0.87
BRW 17.4 19.8 20.9 21.8 22.7 233 0.88
TCEV 16.7 19.2 20.8 22.3 24.4 25.9 0.72
BTCEV 16.6 19.5 21.5 233 25.8 27.6 0.46
RTCEV 17.0 19.1 20.5 21.8 235 24.8 1.04
RGLM 16.8 18.7 20.0 21.2 22.8 23.9 1.12
RGEVLM 16.8 18.7 20.0 21.1 22.6 23.7 1.16
RGM2LM 17.1 18.9 19.9 20.7 21.7 22.3 1.15
RNLM 17.2 18.9 19.8 20.6 21.4 22.0 1.18
Index wind 19.0 21.4 23.0 24.5 26.5 27.9 1.07

A comparison between the empirical and fitted regional frequency curves for the EWS at K13

station is shown in Figure 3.

The SEF values obtained by univariate, bivariate and regional procedures along with the name
of the best distribution for each analyzed station are shown in Table IX. As it can be seen, best

results were obtained by fitting bivariate distributions.
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5. Conclusions

A bivariate extreme value distribution with TCEV marginals was used to model extreme wind
speeds. The maximum likelihood estimators of the parameters were obtained numerically by using
the multivariable constrained Rosenbrock optimization algorithm, which worked out very well in
all cases.

The quantiles of extreme value distributions can be estimated more accurately when using
the BTCEV distribution. Analysis of results suggests that the effect of the additional samples in
estimating the parameters and quantiles is more important when estimating the parameters of the
shorter series. In fact, as the sizes of the longer series increase, the gain in information of the shorter
series increases. On the contrary, this is not necessarily true when estimating the parameters of
the longer series.

Data-based results indicate that there is a reduction in the standard error of fit when estimating
the parameters of the marginal distribution, taking in to account the information from an additional
gauging station, instead of its univariate or regional counterpart, and differences between at-site
and regional at-site design events can be significant as return period increases.

None case was better fitted for the station-year, index wind or regional L-moments methods.
Best fits were obtained by using bivariate distributions.

Results suggest that it is very important to consider the BTCEV distribution as an additional

mathematical tool when analyzing extreme wind speeds. The final return levels were not observed
like unrealistic design events even for long return periods.
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