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RESUMEN

Se hace una descripcién de los patrones de O3 y su relacién con algunas variables meteoroldgicas (temperatura,
vientos superficiales y radiacién global). Las observaciones se expresan en términos de eigenvectores y sus coefi-
cientes asociados con el fin de determinar los rasgos generales de los patrones espaciales de ozono. Utilizando los
datos simultdneos de los vientos dominantes a una altura de 700 hPa fue posible dar una explicacién de algunas
distribuciones caracteristicas del Os; sobre la Ciudad de México. En el presente estudio se ha intentado proporcionar
un conocimiento adicional de la distribucién del ozono y su relacién con algunos parametros meteoroldgicos en la
zona metropolitana de la cuenca de México.

ABSTRACT

A description is made of ozone patterns as related to some meteorological variables (temperature, surface wind
direction, speed, and global radiation). The observations are expressed in terms of eigenvectors and their associated
coefficients in order to determine the gross features of the ozone city-wide patterns. By using concurrent 700 hPa
prevailing upper winds and the observed converging surface winds induced by local and regional currents it was
possible to provide a physical explanation for some characteristic ozone distributions observed in the MCMA. The
present study attempts to provide additional basis to the knowledge of relationships between ozone distributions
and meteorological parameters in the Mexico Basin.
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1. Introduction

Urban populations in large metropolitan areas suffer from the adverse long-term effects on their health from
air pollution. This is particularly true in cities of Eastern Europe, Southeast Asia, Africa and Latinamerica
(WHO, 1997). Mexico City is well known for its badly polluted atmosphere. Ozone, one of the most serious
offenders to health, was still above the WHO accepted standard on 300 days in 1999. Not withstanding
the above situation, some signs of improvement in air quality are beginning to appear. In 1990 to 1992
pollutants (mainly ozone) hit emergency levels on as many as 177 days per year. During 1999, even after a
stricter threshold had been introduced the year before, ozone triggered emergencies on just five days (Office
of the Environment Annual Report 1999). The achievement suggests, as noted by Smith (2000) that, even
Third World cities can begin to reduce air pollution if they seriously have the will to do so. Improvement
in air quality in 1999 resulted in a reduction of eye and bronchial illnesses placing less demand on medical
services and hospitals according to the city’s Ministry of the Environment report.

While population increase in Mexico City was high up to the 1980s {well above two percent, Ezcurra
and Mazari, 1996} it leveled off during the 1990s and is presently estimated to be composed of 8.5 million
living in the Federal District plus 10 million more inhabitants settled in the metropolitan area. The city is
located in the southwestern portion of a broad elevated basin 7500 km2 in extension, the urban area sprawls
over 1500 km2. Volcanic ranges surround the ancient lacustrine plains on the east, south and west. To the
north the basin is surrounded by discontinuous lower ranges. The encircling mountains restrict horizontal
ventilation and thus are a major cause for the confinement of air pollution. The prevailing weak winds and
frequent thermal inversions during the cool season favor the high levels of pollution during this period.

The accelerated rate of urbanization in this megacity has led to changes in the thermal, humidity and
health conditions in the basin (Oke et al., 1999; Jauregui and Tejeda, 1997). Emissions from 3000 industries,
and about 4.3 million vehicles burning some 44 million liters of fuel per day not infrequently produce above-
standard concentrations of nitrogen oxides, which are the main precursors for ozone. (Ceballos, 1998). A
contributing factor for the high Oz precursor emissions is the high elevation of the city and the resulting
reduction in oxygen promoting incomplete combustion of gasoline in old vehicles (Collins and Scott, 1993).

Processes leading to ozone generation and distribution in the Mexico basin have been profusely studied
in an effort to predict critical pollution scenarios with the purpose of protecting the population. By using
modeling techniques Bossert, 1997; Fast and Zhong, 1998a; Williams et al., 1995 have concluded that ozone
transport and dispersion is the result of the interaction between local, regional and synoptic circulations.

Dispersion and transport of ozone in the Mexico City Metropolitan Area MCMA have been the object
of considerable investigations (Bossert, 1997, Fast and Zhong, 1998h; Williams et al., 1995). Results from
model simulations show that both local and regional synoptic flows determine the observed temporal and
spatial ozone concentrations. Data from the MARI research programe to investigate the air quality problem
in the MCMA (see Nickerson et al, 1992) have been used to define local meteorological and air quality
conditions in order to gain insight in the interaction between synoptic, regional and local circulations as
well as in the dynamics and structure of the boundary layer (Fast and Zhong, 1998a; Whiteman et al.,
2000). Doran and Zhong (1999), were able to show that for example the so called gap winds were relevant
in relation to the spatial distribution of ozone in the MCMA.

The purpose of this study is in the light of the above new findings, to describe, classify and explain, the
temporal and spatial variations of ozone distributions in the Mexico Basin for the year 1995 in relation to
their dependence on some meteorological variables.

2. Method

The statistical technique used for this purpose in this study is the eigenvector analysis. This approach
allows to objectively determine the most significant ozone patterns in terms of the variance of the original
observations explained by each pattern. This method was applied in early studies by Blifford and Meeker
(1967) and Peterson (1970; 1972). One property of the eigenvector technique that makes it advantageous
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for describing the gross features of the pollutant patterns over an urban area, is that it smoothes or partially
filters the observations (Peterson, 1970). According to this author, the patterns de-emphasize very localized,
extreme values of a pollutant, which occurs frequently, whereas they emphasize the large-scale frequently
occurring distributions. In recent times quite a number of studies have attempted to elucidate ozone and
other pollutants dependence on meteorology using principal component analysis methodology (Harrison,
1997; Statheropoulos et al., 1998; Beceiro et al., 1998; Lam and Cheng, 1998).

3. The data

Air quality and meteorological data from a network of 15 stations were available for period February
to December, 1995. Figure 1 shows the location of monitoring stations operated by RAMA (Automatic
Atmospheric Monitoring Network) from the city’s Office of the Environment (D. G. P. C. C., 1995).

Hourly values of ozone (in ppm) for 15 stations and hourly temperature and wind for 12 sites were
analyzed. Data from stations Mineria and Texcoco were available from the Centro de Ciencias de la
Atmoésfera, UNAM, México. All data were tested for homogeneity. In those cases where values were
defective or missing they were substituted for new estimates using correlation methods.
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Fig. 1. Mexico City Metropolitan Area (MCMA) and location of stations.

4. Mean air circulation conditions in the MCMA

Figure 2a shows the mean hourly wind vectors for the dry season in 1995. The stations are ordered from

northwest (Tlalneplantla) to south (Pedregal) and then to the center-east (Estrella) ending in the northeast
corner of the urban area (Xalostoc).

In stations to the west from 0-8:00 and at night (from 21:00 to 0:00) light winds blow from the west
northwest shifting to north in the afternoon with increasing intensity. Maximum windspeeds occur around
18:00-19:00 hours. These winds illustrate the daily cycle of the thermally-driven mountain/valley wind
circulation that in the afternoon and early evening are modified by strong convection and transport from
upper level (700 hPa) wind impulse from the south or from the west.
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Fig. 2. Mean daily hourly variation of surface winds during the dry season (a) and rainy season (b) months for year 1995

and at stations Tlanepantla (TLA), ENEP Acatlan (EAC), Tacuba (TAC) Plateros (PLA), Pedregal (PED), Cerro Estrella
(CES), Hangares (HAN), Merced (MER), Texcoco (TEX), San Agustin (SAG) and Xalostoc (XAL).

Stations located in the center and on the eastern side, show a different wind pattern during the dry season.
At night the cool drainage winds show various directions with prevailing northwest winds. Central station
Merced shows weak southerly winds that are reinforced in the early evening by, cool-down-the-mountain
flow from the south.

During the day on the eastern portion of the plain, east component winds dominate until about mid
afternoon. After about 16:00 southerly winds begin to blow with increasing intensity reaching a peak
between 17:00-21:00 hours (Fig. 2a). The above described winds blowing from the west northwest on the
western side of the urban area and those flowing from the southern direction on the eastern side of the
basin result in a converging cyclonic flow in the late afternoon and early night which is reinforced by the
centripetal flow generated by the heat island of the urban area (Klaus et al., 1999).

During the morning hours (9:00 to 12:00) upper winds from the south are in 60% of the observations
related to strong northerly surface winds on the western side of the basin. The pollutant-laden air mass
moving from north to south in the lower levels flows upslope the mountains to the south and then turns
northwards by the upper level southerly wind current ending its trajectory on the lower levels by vertical
diffusion. Simultaneously the mixing layer grows from less than 0,5 km up to 2-4 ki depth in the afternoon
in connection with an intense vertical transport of momentum as evidenced by the velocity maximum of
the observed surface winds during the late afternoon.
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The surface northerly and southerly winds during the day-time hours of the dry season are the result
of the temperature contrast between the basin and the free atmosphere in an altitude of 2200 m reaching
1-2°C/km (Newell et al., 1972; Doran and Zhong, 1999). The opening of the basin to the north favors the
creation of a thermal-induced surface north current. Simultaneously occurring winds aloft from the south

have a frequency of 38% during the dry season. Between the south winds aloft and the frequent surface
thermally-driven winds from the north there is a shear layer that modifies the surface northerly current.
When both, overlying winds aloft and surface winds blow from the north the latter reach maximum intensity.

Upper level winds from the south favor the creation of thermal southerly surface winds by decelerating
the surface north winds. This deceleration of the surface northerly current is evident on the southcastern
corner of the basin around Amecameca. Only in the late afternoon hours do these weakened surface currents
invert their direction and pick up speed and peak (Fig. 2a). When east and north winds prevail aloft, the
surface southerly winds appear rarely (10-15%), whereas when west and south west winds dominate aloft
the frequency of low-level southerly winds increases to 55-75% on the eastern side of the basin.

As a result of the daily variations of the mixed layer depth the winds at the 700 hPa level undergo daily
variations too. During the dry season upper westerlies occur in 73% of all cases at 6:00 a.m. and in 27%
at the 18:00 hours sounding. It is only when both upper and lower circulations are uncoupled during the
night, when the undisturbed synoptic westerlies prevail. For the upper level east winds the frequencies are
reversed: 73% at 18:00 and 27% at 6:00 hours. Upper level south winds at both hours have a frequency of
50% while northerly winds aloft show a frequency of 60% at 18:00 hours and 40% in the morning sounding.

These changes in the wind direction at 700 hPa illustrate the influence the local and regional east and
north surface winds have on the currents aloft as a result of the vertical development of the mixed layer
(Fast and Zhong, 1998a; Whiteman et al., 2000; Klaus et al., 1999). During the night the developing surface
inversion decouples the surface wind field from the winds at 700-hPa level where the synoptic winds prevail.

Figure 2b shows the mean hourly wind vectors during the wet season months of May to October 1995.
Surface wind directions during the night show the cool air drainage flow. This pattern of weak winds from
the west on the western portion of the basin; is substituted by northwest winds during daytime hours and
on the eastern part of the plain by north, northwest winds. On the eastern side of the basin the dry-season
southerly winds occurring-during the late afternoon hours are substituted by a more homogeneous stream
from the northeast in the wet season.

From the above results a simple circulation scheme for the Mexico basin arises (Whiteman et al., 2000;
Klaus et al, 1999; Fast and Zhong, 1998a; Jauregui, 1997, Bossert, '1997): during the night and early
morning hours an intense heat island develops over the urban area. The converging centripetal circulation
(or rural winds) are reinforced by the drainage cool winds from the surrounding mountains. The boundary
layer is expanded during this time to about 100 m. In the course of the morning and early afternoon the
intense solar radiation, particularly during the dry season, generates a sudden increase of the mixed layer
to up to 2-4 km above ground level reaching maximum vertical expansion in the region of upslope flow.

Pollutants carried by the upslope winds into the south and west winds aloft, are moved to near-surface
levels by downward diffusion in the early afternoon hours. During this time the heating of the air mass
contained in the basin can generate a compensating surface flow from the north direction on the west side
of the basin and a south current on the eastern portion of the basin, especially when a flow from the south
prevails aloft.

The flow from the south reaches the basin in the afternoon hours along the Cuautla-Amecameca-Chalco
corridor. In late afternoon this south current sometimes flows toward the northern flanks of the Ajusco
range generating a converging circulation over the urban area of the MCMA. This converging air mass flow
intensifies the vertical extension of the mixed layer. In this way the polluted air is carried to higher levels
where it is transported away from the basin by the upper wind current.

The above described situation changes with the season. From May to October the upper level winds blow
from the north and east 60% of the time. During the rest of the year winds from the south and west prevail.
The winds from the east and north are mainly related to moisture laden air masses from the Gulf of Mexico,
leading to the formation of convective clouds which precipitate in the form of rain showers. From November
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to April the basin is under the influence of the upper-level westerly current from temperate latitudes. The
occasional front passages of cold air masses are seldom linked to convective clouds and light rain. Most of
the dry season is characterized by anticyclonic clear weather (Klaus et al., 1999).

5. Daily variations of ozone concentration

For both, rainy and dry season, the mean daily variation of ozone concentration peaks in the early afternoon
soon after maximum temperature and irradiation occur (Fig. 3a). Minimum ozone values are observed
during the night. Southern station Pedregal (PED) shows the highest ozone concentration, station Merced
(MER) in the city center shows an intermediate value whereas the lowest mean daily concentrations are
observed at the northern station Tlanepantla (TLA). Moreover, maximum ozone concentration occurs in
the southern basin (PED) one hour later than in the central (MER) and northern part (TLA). During the
night, the highest concentrations are observed in Tlanepantla (TLA), the lowest in Merced (MER). In the
morning hours until 11.00 the highest ozone concentration occurs in the central part of the city (MER), in
the afternoon and early night hours the lowest concentrations are observed here (Fig. 3a)
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Fig. 3. Mean hourly ozone concentration in ppm (parts per million) for stations Pedregal, Merced and Tlanepantla during
the period from February to December 1995 (a). Mean hourly ozone concentration from 8:00-20:00 hours for year 1995 (b).
Frequency of exceedances (%) of mean hourly ozone concentrations above the local standard (c) for Mexico City (0.11ppm).
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The spatial distribution of the mean ozone concentrations for the day time hours (8-20.00) of year 1995
are shown in Figure 3b. The highest ozone concentration can be observed in the vicinity of the southwestern
and western mountain slopes, the lowest in the northern and eastern part of the basin. The highest mean
concentrations in the south remain under 0.07ppm, quite below the hourly standard for ozone in Mexico
(0.11 ppm). Figure 3c shows that on the south western corner the standard is exceeded 24% of the hourly
observations but only 10% towards the northeast during the period 8:00-20:00 hours.

The mean circulation conditions during the dry season described in the preceding section favor a north-
south pollutant transport towards Pedregal station (PED) and beyond. In the dry season during the
afternoon surface winds from the north converge with surface winds from the south and southeast in the
southern and central part of the basin. During the rainy season there exists a convergence between the
northern surface winds in the western and the northeastern and eastern surface winds in the eastern part
of the basin. This air mass convergence explains the high ozone concentrations on the western and central
parts of the area and also the appearance of the ozone maximum at Pedregal (PED) around one hour later
as compared with stations further north. Moreover, during the morning before 11:00 hour ozone values are
higher in the city center (MER) than those observed in the south at Pedregal (Fig. 3a).

During the dry season pollutants that are carried by the upslope winds are infiltrated into the dry-season
upper southwest winds and can return by vertical diffusion down to near-surface levels in the western and
central parts of the basin. Due to the washout effect these processes play a minor role during the wet season.

6. Evaluation of typical space distributions of ozone

The increase of the north-south transport of the ozone-loaded air mass depends on the space distribution of
precursor emissions. In order to better evaluate this dependence there is a need to identify the typical space
ozone distribution and its variation with time. This may be accomplished by using the principal component
analysis PCA. This method is described by Skaggs (1975) and is also known as Empirical Orthogonal
Functions (EOF).

The PCA is based on the study of the hourly ozone values from February to December 1995 for 15
stations. Since the high ozone concentrations representing a high risk to health occur during the daytime
hours (Fig. 3a) the analysis is made only from 8:00 to 20:00. We obtained 4342 values (334 days x 13 hours)
for each of the 15 station.

Ozone distributions from similar space samples of a principal component are represented by an eigenvector
in such a way that the hourly ozone distributions correspond with the 4342 components from the extracted
eigenvector showing high positive or negative values. The partial variance explained by one eigenvector
explains the significance of the sample with respect to the other space samples.

Figures 4a-d show the distributions of the coefficients for the first four eigenvectors which explain 54.2%
of the total variance. The four series of the 4342 components of these eigenvectors correspond to the mean
daily cycles (Fig. 4e). The display of further eigenvectors shows that the portion of the explained variance
is relatively small and that the space distribution of the coefficients only determines small gradients.

The four space distributions of the eigenvectors coefficients are very clearly differentiated (Figs. 4a-d).
Each of the 4342 extracted components correspond to the real ozone distributions for a particular hour.
The bigger the value of the respective eigenvectors component at that hour, the more similar is the real
ozone distribution and the spatial pattern of the coefficients.

For the first eigenvector the components receive maximum values at 12:00 hours; for the second around
14 hours; for the third around 19:00 and for the fourth at 11:00 hours. The pattern of the coefficients
occurring on these hours explains only the relative spatial distributions of the real ozone concentrations.
Moreover, it is not possible to make a statement on the persistence of the samples.

These disadvantages may be removed by actually adding ozone concentration values at each station where
the components of the eigenvectors show high positive or negative values. In this study, only those hours in
which the eigenvectors component values are higher or smaller that + 1.5 sigma are considered. Sigma is
computed with respect to the 4342 components of the corresponding eigenvectors. The mean hourly ozone
concentration values are added station-wise to obtain a typical ozone space distribution for the identified
hours. For these identified hours, other meteorological parameters can be incorporated and their relation
to ozone distributions interpreted.
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(e) extracted from the hourly ozone values from February to December 1995 (334 days) for 15 stations and from 8:00 to 20:00
hours. The first eigenvector explains 18.9%, the second 14.9%, the third 11.0% and the fourth 9.4%. Taken all together
they explain 55.2% of the variance.
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7. Types of space-time dynamics of ozone concentration in the MCMA and their origin

The first four principal components explain 54.2% of the total variance of the space ozone distribution
between 8:00 and 20:00 hours in the area under study. The first one explains 18.9% already, the second
14.9%, the third 11.0% and the fourth 9.4%. That corresponding to the fifth eigenvector explains 7.0% and
the sixth 6.4% of the total variance. Each of the following eigenvectors explains less than 5% of the total
variance.

a) Space sample of the ozone concentration of the first eigenvector

Figures 5a and 5b show the mean distribution of those added ozone concentration hourly values for all
stations in which the components of the first eigenvector are greater (Fig. 5a) or smaller than + 1.5 sigma
(Fig. 5b). The ozone distributions shown in Figures 5a and 5b are inverse (Skaggs, 1975; Bortz, 1994) and
correspond very well to the space pattern of the first principal component coefficients illustrated in Figure
4a.

Figure 5a shows an ozone distribution with a marked north to south gradient. While the mean ozone
concentration is about 0.06 ppm to the north of the MCMA the corresponding values in the south are
around 0.11ppm. Only at station Plateros (PLA) to the southwest ozone concentration is rather moderate:
0.08ppm. The ozone values to the south exceed in more than 50% of the time the standard of 0.11ppm.
The mean ozone concentrations in the hours when the PC’s are smaller than 1.5 sigma, show maximum
values to the northwest of the MCMA (Fig. 5b) near stations TLA, AZC and TAC.
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Fig. 5. (a-b) Mean ozone concentrations for those hours in which the values of the components of the first eigenvector are
larger /smaller than 1,5 standard deviation (computed for the 4342 components of the first eigenvector). ¢) Number of hours
in relation to the hour of the day in which the components of the first eigenvector are smaller/greater than 1.5 standard
deviation. d) Number of hours according to the season in which the values of the components of the first eigenvector are
larger /smaller than 1,5 standard deviation.



180 D. KLAUS et al.

Figures 5c to 5d show the daily (5¢) and annual cycle (5d) of the hourly frequencies of the occurrence
of the spatial ozone distributions (types) shown in Figures 5a and 5b corresponding to component values
of the first eigenvector greater or smaller than 4 1.5 sigma. Maximum daily frequencies for type 5a appear
around 12.00-13.00 hours, for type 5b around 15:00-17:00 hours. The persistence of the types is described
by the number of successive hours in which a type remains significant. For type 5a the persistence is valid
for 32% of all hours in which this type is observed. For type 5b the persistence is smaller than 10%. The
differences in the seasonal frequencies of type 5a and 5b allow a daily change between them only during the
dry season since type 5a dominates from June to November and type 5b only during the dry season. Since
the first PC comprises almost 20% of the explained variance, both ozone distributions may be considered
very significant for the MCMA.

For the mean conditions it may be said with limitations that there is a close relationship between wind
direction and the distribution of ozone in the MCMA. A large number of studies have shown the dependence

of ozone distribution on direction of wind flow in the Mexico basin (Fast and Zhong, 1998a; Raga and
Lemoyne, 1996; Whiteman et al., 2000; Klaus et al/., 1988; Samson, 1978).

Type 5a shows high ozone concentrations at the south of the basin. The mean wind direction during the
occurreuce of type 5a is for all stations except Pedregal (PED) northerly (Fig. 5a). The winds from the
east prevailing at Pedregal station favor the accumulation of ozone near this site. In addition the prevailing
winds from the north favor high concentration of ozone and other pollutants at the southwest corner of
the basin. Moreover, the upslope winds are important in the transport of these pollutants to higher levels
where they are returned by the dominant upper-level south and southwest synoptic winds to the center of
the basin where they are brought down through vertical diffusion to lower levels (Fast and Zhong, 1998a;
Bossert, 1997). The northward spread of the area marked by high ozone concentrations in Figure 5a may
be an indicator of this vertical diffusion processes.

The prevailing wind corresponding to type 5b blows very strong at all stations from the south quadrant
(Fig. 5b). Therefore, the air pollutants are carried in a south to north direction favoring the accumulation
of ozone on the northern quarters of the city. The south wind current on the east of the basin is the result
of the thermally driven strong gap wind system dominating in late afternoon. These south winds overcome
in the case of the occurrence of type 5b the whole Ajusco range in such a way that the strong thermal winds
from the south dominate the whole basin. Consequently, a convergence zone results from this thermal south
current and the thermal north wind usually dominating north of the city. If the south winds are limited
to the eastern portion of the basin north winds can prevail on the western portion. Tne result from both
wind systems is a converging cyclonic circulation in the late afternoon hours above the MCMA (Klaus et
al., 1999).

In all hours after 10:00 temperatures at Mineria (MIN) and Texcoco (TEX) linked to type 5b remain 2-3°C
above those corresponding to type 5a. It may be concluded that the area of maximum ozone concentration
on the north (Fig. 5b), is related to a marked rise of the mean temperatures in particular during the late
afternoon hours in the Mexico basin. Also solar radiation is relevant to the formation of ozone, especially
during the wet season. The mixing of ozone with other pollutants reduces the intensity of solar radiation
in the central parts of the urban area to a maximum of 25-35% when weak winds and high noon relative
humidities prevail. (Jduregui and Luyando, 1997). An analysis of global radiation values related to types 5a,
b shows for stations Mineria (downtown) and Texcoco (rural) an attenuation of around 250 W/m?2. In the
late afternoon the irradiation values corresponding to type 5b are 100 W/m? at Texcoco and 70 W/m? at
Mineria higher than those observed in correspondence with type 5a. The possible cause for these contrasts
in global radiation is the increase in cloudiness during the rainy season when type 5a reaches its maximum
frequency.

b) Ozone distribution corresponding to the second eigenvector

The mean ozone distribution related to the second eigenvector estimated on the basis of the components
smaller or larger than + 1,5 sigma are shown in Figure 6a, 6b. Both distributions show a clear east/west
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gradient differing each other clearly from those of the first eigenvector (Fig. 5a, 5b). The mean ozone
concentration lies around 0.14 ppm (Fig. 6a) clearly surpassing the hourly standard.

Maximum values of ozone observed on the west and southwest of the city decrease toward the east reaching
at Xalostoc (XAL) to the northeast and to the southeast at Cerro de la Estrella (CES) ozone values that
are only half those observed at Pedregal (PED) station to the southwest (Fig. 6a). The inverse ozone
distribution (Fig. 6b) shows highest concentrations toward the eastern portion of the MCMA. The highest
mean values (around 0.05 ppm) remain clearly below the ozone standard while the lowest concentrations
on the west portion of the MCMA are of the order of 0.024 ppm.

Maximum frequency of type 6a occurs at 14:00 hours (Fig. 6¢), while the minimum are observed around
9:00 and 20:00 hours. In contrast with these daily behavior the frequency of type 6b shows a maximum
during the morning and evening and a minimum at around noontime. Season wise type 6a shows maximum

frequency in February and December. In this way type 6a is differentiated from that shown in Figure 5a
{where high ozone concentrations on the southwest of the basin are observed) with maximum frequency in
the wet period (Figs. 5d, 6d). Type 6b with maximum values on the east of the MCMA reaches maximum
frequency during the wet season, especially in September.

AN

Fig. 6. (a-b) Mean ozone concentrations for the hours in which the values of the second eigenvector components are
larger/smaller than 1,5 standard deviation (computed for the 4342 components of the second eigenvector). c) Number
of hours in relation to the season in which values of the second eigenvector component are larger/smaller than 1,5 standard
deviation. d) Number of hours according to the season in which the values of the components of the second eigenvector are
larger/smaller than 1,5 standard deviation.
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Type 6a persists 33 percent of all hours, type 6b only 13.5%. A change between these two types can only
be rarely expected during the dry season, but more possibly during the wet period (Fig. 6d). The mean
wind direction occurring in the hours of occurrence of type 6a shows that maximum ozone concentrations
on the southwest are linked to winds from the north and northeast (Fig. 6a). These surface northerly winds
are often linked to an upper south current. Air pollutants are carried by near-surface level winds from the
north toward the high slopes of the mountains to the south. Here they are transported upwards and back
by the upper south winds to the MCMA. This transport of pollutants from above through vertical diffusion
may be evidenced by the southwesterly surface winds observed at Pedregal (PED).

On the eastern side of the basin maximum ozone concentration occurs in connection with type 6b. This
pattern shows maximum frequencies during the night and morning hours of the wet season (Figs. 6c, 6d)
related to ozone values between 0.03 and 0.05 ppm. Rainfall arhounts in the Mexico basin increase from
the northeast to the southwest (Klaus et al, 1999; Jauregui, 1996). Precipitation from convective clouds
occurs in the MCMA during the afternoon and early night hours. The lower ozone concentration on the
west side of the basin as compared to the east side is probably due to the washout effect. This hypothesis
gets support in relation to pattern 6b and the daily course of temperature. Mean temperatures during the
afternoon hours are some 4°C higher when type 6a prevails with respect to those linked to type 6b. The
marked temperature difference may be explained by the cooling process linked to the higher cloudiness and
rainfall on the west side of the basin. Global radiation values at stations Mineria and Texcoco related to
patterns 6a and 6b also explain increasing cloudiness during the afternoon hours related to type 6b.

A change from type 6a to 6b and vice versa is rarely observed. On the other hand the transition of
type 5a to type 6a occurs in 8.4 percent of all hours. These transitions are concentrated in the rainy season
months. The transition of type 6a to type 5a occurs only in 6.2% of all hours mainly during the rainy season
months.

c¢) Ozone distribution corresponding to the third eigenvector

The third eigenvector explains 11% of the total variance. The ozone distribution corresponding to the
third eigenvector has a multiple structure (Figs. 7a, 7b). The mean ozone concentration remains smaller
by a factor of two to three than the mean concentration related to both first eigenvectors. Type 7a persists
in 32% of the hours, type 7b in only 13%.

Lowest concentrations occur in downtown at station Merced (MER). They increase toward the perimeter
of the city (Fig. 7a). When averaged over the hours in which the components of the third eigenvector are
smaller than 1,5 sigma the highest concentrations are observed in downtown and to the south of the basin,
whereas the smallest lies on the outskirts (Fig. 7b). The daily frequency distribution of type 7a is maximum
during the morning and night hours, while at around noon hours they reach minimum values. The inverse
type 7b shows a maximum frequency at around noon hours and two secondary maxima in the morning and
night hours (Fig. 7¢).

Type 7a displays a large seasonal variation (Fig. 7d). Maximum values occur in May, October, November
and December. Type 7a seems to be representative of transition months between the rainy season and the
dry season e.g. May and October. The inverse type 7b reaches only a small frequency maximum during the
rainy season. Frequency values remain so small that this pattern is scarcely relevant.

Wind directions related to type 7a show in the mean on the west side of the basin strong northwest to
west directions, while those stations on the east of the basin show strong winds from the east quadrant. The
relatively strong winds may explain the low ozone concentrations observed in the basin. The high frequency
of type 7a during night hours may be explained by the convergence between the east winds and the west
north west winds. This convergence in the center of the urban area is reinforced by the nocturnal heat island
(Klaus et al., 1999; Jauregui, 1997). The converging air masses carry pollutants toward downtown where
they are lifted to higher levels. Of particular importance is the accumulation of nitrogen oxides downtown
leading to a quick decrease of the ozone concentration (Hohlein et al, 1996). On the outskirts of the city
this destruction process takes place at a slower rate due to lower NO concentrations. As a result of this
processes ozone concentrations remain low in downtown and high toward the perimeter until early morning.
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b)

Fig. 7. (a-b) Mean ozone concentration for hours in which values of the components of the third eigenvector are greater/smaller
than 1,5 standard deviation. (Computed for the 4342 components of the third eigenvector). ¢) Number of hours in relation
to the time of the day in which values of the components of the third eigenvector are larger/smaller than 1,5 standard
deviation. d) Number of hours in relation to the season in which values of the components of the third eigenvector were
greater/smaller than 1,5 standard deviation.

Pattern 7b is rather infrequent. Frequency maximums are observed day and night (Fig. 7c). Extreme
ozone concentrations in downtown with values of up to 0.18 ppm are observed between 12:00-13:00 hours.
When averaged over the whole hours in which type 7b appears then these peaks disappear. Until 14:00 hours
winds from the northern quadrant prevail in all stations that are at the origin of pollutant accumulation in
the city center and on the south. Characteristic of type 7b is that the high pollution levels in downtown
are isolated and not related to high ozone concentrations in the southwest portion of the basin like in the
case of types 5a and 6a. A reason for this singularity seems to be the strong east to northeast wind related

to type 7b at Merced. Simultaneously with type 5a light north winds prevail at Merced, with type 6a all
winds in the MCMA are light (Figs. 5a, 6a).

Very high morning and noon temperatures and radiation values are related to type 7b resulting in extreme
ozone values in the central parts of the MCMA. Type 7a occurs in connection with relatively low noon and
afternoon temperatures and radiation values. As a result of the low available radiation energy the ozone
production in the central quarters remains low.
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d) Ozone distribution corresponding to the fourth eigenvector

The space distribution of ozone related to the fourth eigenvector (Fig. 8a) shows maximum ozone values to
the west of downtown at station Tacuba (TAC) and minimum at Plateros (PLA). Type 8a shows maximum
frequency around 11:00 and 16:00 hours (Fig. 8c). Maximum frequencies occur during the wet season. (Fig.
8d).

Figure 8e shows hourly wind directions and velocities linked to type 8a. Winds from the northwest are
dominant on the west side of the basin during all day while northeasterlies prevail on the east side. Only at
Pedregal and Merced winds are variable while on the rest of the network they show a marked persistence.
Wind direction changes cannot therefore explain pattern 8a. Since type 8a reaches a maximum frequency
during the wet season, it is likely that the higher cloudiness and rainfall on the west prevents ozone formation
there shifting the maximum ozone concentration further to the east.

The inverse ozone distribution (type 8b in Fig. 8b) shows the highest concentration at Plateros (PLA)
and minimum at Tlanepantla (TLA) and Xalostoc (XAL). Type 8b is very frequent in the morning and
night hours, with a secondary maximum at around 13:00 hours. Type 8b is almost exclusive of the dry
season with maximum frequency in March (Fig. 8d). Figure 8f illustrates the connection of type 8b with
the mean wind vectors as well as with the mean hourly ozone concentrations which are > 0.15 ppm during
12:00-16:00 hours at Plateros (PLA) and Pedregal. At stations Cerro Estrella (CES) and Hangares (HAN)
concentrations above 0.11 ppm occur at 12:00 and 16:00 hours and at Merced (MER) from 12:00 to 16:00
hours. Extreme ozone concentration may occur in almost all other monitoring stations at about noontime
with pattern 8b.
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Fig. 8. (a-b) Mean ozone concentration for hours in which values of the components of the fourth eigenvector were
greater /smaller than 1,5 standard deviation (computed for 4342 components of the fourth eigenvector). c) Number of
hours in relation to the time of day in which values of components of the fourth eigenvector were greater/smaller than
1,5 standard deviation. d) Number of hours in relation to time of day in which values of the components of the fourth
eigenvector were greater/smaller than 1,5 standard deviation. (e-f) Mean wind direction, wind velocity and mean ozone
concentration for the hours in which the value of the fourth eigenvector is greater/smaller than 1,5 standard deviation.

At around 15:00 hours (except stations Merced and Xalostoc) strong winds from the north to northwest
are observed. (Fig. 8f). Southeast winds prevail at Merced and from the southwest at Xalostoc until 16:00
hours. From 16:00 hours on the eastern portion of the basin the thermal southerly winds prevail while
on the west the dominant winds blow from the northwest and west reaching up to 4m/s. The north wind
current may explain the high ozone concentrations observed on the southwest portion of the basin. Since
the strong north winds are the most frequent in the Mexico basin they may clearly explain by themselves
the not infrequent high ozone concentrations observed at many stations in this part of the basin.

From the daily temperature course it may be inferred that the highest temperatures occur at about
16:00 hours with type 8b simultaneous with the establishment of the thermal southerly winds. Maximum
irradiation occurs in relation to type 8b at 13:00 hours. The highest mean hourly values of global radiation
observed in 1995 occur in connection with type 8b and reach at Texcoco 920 W/m? and at Mineria 700
W/m?. This means that the high ozone concentrations observed from 12:00 to 16:00 hours in the large area
of the central and southwestern sectors of the basin may be the result of high irradiation levels. Moreover
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the extreme ozone concentrations related to type 8b at noon hours seem to be completely unrelated to
conditions observed on the previous day. Global radiation maximum values of 790 W /m? and 540 W/m?

at Texcoco and Mineria respectively, are related to type 8a. As mentioned before, light cloud cover may
explain the limited extent of high ozone concentration at Tacubaya (TAC) in connection with the occurrence
of type 8a.

8. Discussion and outlook

Patterns of ozone concentration are examined by means of the first four eigenvectors. Using this approach
almost half (54,2%) of the total variance of the space-time variations of ozone concentrations may be
explained. This has been accomplished by using a simple model of circulation and stability conditions in the
Mexico basin. The dominant winds favour pollutant accumulation on the windward side of the surrounding
mountains. As a consequence the highest ozone concentrations are observed there. Ozone accumulation is
evident not only at the mountain slopes but also on the transport track. This can be documented by the
coincidence of maximum ozone concentrations with areas of strong confluence or with areas of convergence
resulting from changes in wind speed. These areas are found in the central parts of the city and where the
northwest winds on the west side of the basin converge with the easterly, southeasterly and southerly winds
on the east portion of the basin. This converging zone is frequently related to a cyclonic circulation. The
precise location of the vortex depends on the intensity of the interaction between the local and regional wind
systems. A significant relationship between the extracted space patterns and the time/space variations of
wind velocity could not be shown from the 1995 data.

During the dry season some of the spatial pattern of the ozone concentration may be explained by the
downward diffusion of upper highly polluted air. Fast and Zhong (1998 a, b) have developed a mesoscale
circulation and stability model for the Mexico basin in which the strong upslope winds feed the heavily
polluted air into the upper air stream. Especially when west and southwesterly upper winds are prevailing
the highly polluted air mass is returned over the basin and from thereon through vertical diffusion processes
carried downward to lower levels. The present study with data from 1995 gives support to the Fast and
Zhong model (1998a, b).

The extracted patterns of the typical ozone distribution can in connection with proposed circulation
structures, contribute to the knowledge of pollution prognosis. Results presented in this study are valid
only for year 1995; a further extension of analysis is required. However, the main results from the present
study will remain valid. Relationships between the upper level wind directions and intensities should be
more marked than those obtained in this work.

Findings from Whiteman et al. (2000) and from Fast and Zhong (1998 a, b) as well as those derived
from the present study give an insight into the relationship between meteorological parameters and ozone
distributions. Work in the modelling and analysis of the data will allow further knowledge in the dynamics
and relevant processes taking place in the MCMA.
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