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Articulo de revision

Cerebral ischemia: some secondary alterations
and animal models

Maria Estela Lépez-Hernandez, Hugo Solis

Isquemia cerebral: algunas alteraciones
secundarias y modelos animales

RESUMEN

El ataque isquémico cerebral es una de las principales
causas de morbilidad y mortalidad en los paises indus-
trializados, y genera una enorme carga econémica en
las familias de los enfermos y en la sociedad. El
proposito de esta comunicacion es revisar los diferentes
modelos animales utilizados para estudiar algunas de
las lesiones encefalicas causadas por la isquemia
cerebral, y hacer énfasis en la importancia que tiene
toda esta informacion que contribuye a entender los
mecanismos de lesién neuronal. Algunos de estos
procesos involucrados en el dano neuronal adn no estan
bien entendidos en la actualidad son motivo de
detalladas investigaciones con el objetivo de obtener
conocimiento mas especifico. De esta manera se tendra
una mejor herramienta para prevenir y predecir el valor
y el efecto terapéutico de las estrategias utilizadas para
el tratamiento en el ser humano.

Palabras clave: flujo sanguineo cerebral, modelos ani-
males, ataque isquémico, infarto.

ABSTRACT

Stroke is a leading cause of morbidity and mortality in
industrialized countries. It imposes an enormous
economic burden on the families of patients and on
society. The purpose of this review is to give an overview
about diverse animal models used to study some brain
injury by cerebral ischemia with the aim to stress that
this information has contributed to understand the
mechanism of the neuronal lesion. Some of these injury
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processes are not yet completely understood and are
now the subject of a more detailed investigation in order
to obtain more specific knowledge to prevent and to
predict the value and effect of therapeutic approaches
inhuman subjects.

Key words: cerebral blood flow, animal models, stroke,
ischemic penumbra.

he metabolism of the brain depends exclusively

on oxygen and glucose '-5 Commonly the

cerebral blood flow (CBF) is carefully auto-
regulated so that the normal human brain receives
approximately 55 mL/100 g/min (this is approximately
100 mL/100 g/min in rats). This ensures continuous
delivery of oxygen and glucose to energize the brain
so that it can maintain cell membrane potentials,
synthesize, pack and release neurotransmitters, and
support cellular architecture 8:7. Ischemia is defined as
a state of insufficient blood flow . Interruption of CBF
results in loss of consciousness within the first 10
seconds and cessation of spontaneous and evoked
electrical activity within the next 10 seconds®. In ischemia
CBEF falls and, at approximately30 to 35 mL/l 00 g/min,
there is an increase in the extracellular ion concentration
(H+). When CBF falls to around 20 mL/100 g/min,
intracellular migration of water from extracellular fluid
leads to swelling of astrocytes, evoked potentials
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cannot be elicited and the electroencephalogram (EEG)
recording becomes isoelectric. Failure of electrical
activity is probably associated with the cessation of
orderly synthesis and the release of neurotransmitters.
Electrical silence, however, is not synonymous with
loss of viability. If a net increase in cerebral water content
occurs, this constitutes cytotoxic edema, initially
distributed in ischemic areas of gray matter. This may
reduce regional blood flow by raising local tissue
pressure or by distorting blood vessels and increasing
resistance to flow. All flows below 15 mL/ 1 00 g/min,
ionic fluxes increase, extracellular potassium (K+) rises
extracellular calcium (Ca2T) falls, and the cell membrane
depolarizes 67910, Complete arrest of the cerebral
circulation leads within seconds to cessation of neuronal
electrical activity and within a few minutes to
deterioration of the energy state and ion homeostasis
. Increases in intracellular Ca2+ is a pivotal event in
cellular dysfunction during hypoxia. Cellular dysfunction
occurs when anaerobic sources of energy fail to
maintain energy production at the level required by the
various metabolic processes. Irreversible cellular
damage occurs when the depletion of energy affects
the reactions responsible for maintaining cellular
integrity. Such is the inevitable sequence of events when
the blood flow to the brain is arrested?3679 (figure 1).
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Figure 1. Cerebral Blood Flow (CBF) diagram that depict the
criticallevels in which the ischemic penumbra occurs.

Some evidence indicates that in immediate failure of
basic functions such as synaptic transmission, ion
pumping and energy metabolism in the ischemic brain
is critically dependent on residual blood flow, and that
these functions tail at certain critical flow thresholds.
The condition of the ischemic brain with flow between
the two thresholds -the upper threshold of electrical
failure and the lower threshold of energy failure and ion
pump failure- can be described by electrical silence
with normal or only slightly elevated extracellular K+

concentration. The residual perfusion supplies sufficient
oxygen to maintain a close to normal tissue
concentration of adenosin triphosphate (ATP). Since
the concentrations of phosphorcreatine and lactate are
greatly reduced and increased, respectively, and since
the concentrations of adenosin dephosphate (ADP) and
adenosin monophosphate (AMP) are moderately
increased, some degree of energy failure exists. It
appears, further, that the development of infarction is
critically correlated to residual perfusion, and there is a
lethal threshold of residual blood flow below which tissue
infarction develops after a certain time '. Results
obtained in hypoxia suggest that such moderate energy
imbalance does no lead to neuronal damage. In focal
ischemia the tissue in this condition forms a ring around
the more densely ischemic center, in which energy failure
and ion pump failure have developed. In analogy to
the half-shaded zone around the center of a complete
solar eclipse this part of the ischemic brain has been
termed as the «penumbra». This term is descriptive only,
and may equally well be applied in global ischemia.
Although rather labile in the epileptic rat brain, the state
of the «penumbra» seems stable for hours in focal
ischemia and its identification may be valuable in
experimental and even clinical conditions 5913, Brain
ischemia can result from a wide range of disturbances
including cardiovascular and respiratory disorders, brain
trauma'¥, and any condition leading to prolonged
arterial hypotension or intracranial hypertension. Even
in the absence of disease, cerebral ischemia remains a
potential hazard of general anaesthesia”®.

Classification of cerebral ischemia:

The magnitude of ischemic cerebral damage re-
lates the duration to the severity of ischemia. One way
to classify this alteration is: Primary brain ischemia, that
occurs because of regional cerebral ischemia (embolic
or focal stroke) or global hypoxia/ischemia (resuscita-
tion from cardiac arrest, near drowning, carbon
monoxide poisoning or massive hemorrhage). Secon-
dary brain ichemia, occurs in tandem with the brain
injury caused by trauma, tumor or infection or with
vasospasm following subarachnoid hemorrhage and is
often the mayor cause of morbidity and mortality in
these conditions™®. The pattern of ischemic cerebral
damage depends on whether ischemic is global or
focal complete or incomplete. The ischemic insults and
animal models are traditionally divided into two types:
global and focal (table 1). Global ischaemia may be
incomplete —for example, in oligoemic hypoxia arising
during induced or posttraumatic arterial hypotension,
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Global

Focal

Complete

Incomplete

Incomplete

Permanent

Transient

Permanent Transient

Permanent

Transient

Circulatoryarrest***
Hanging**
Drowning*
Brachiocephalic arterial
ligation*

4-vessel occlusion*
Circulatory anest with
resuscitation®**
Cardiac failure**
N ear -drowning**
Massive hacmonhage**
Cervical compression**

Subarachnoid

hemorrhage with
infarction**

Arterial"
hypotension**
Carbon monoxide
poisoning**

MCA occlusion*
Internal carotid arterial
ligation®
Intracarotid perfusion with
wax or polyvinyl acetate*
Single clip*+*
Multiple cJips***
Electrocautery**
Hemispheral stroke

Trauma**
Tumor**
Inflamatory disease**
Infection**
Vasospasm following
subarachnoid
hemonhage**
Single clip™**
Multiple clips***

(thrombotic or embolic
occlusion)**

Fogarty” catheter***
Athreroma**
Embolism**

Embolism with

Microspheres *
Autologous blood clot**
Stroke with spontancous

recanalization or
thrombolytic therapy**

Transient ischemic
attack**

Table 1. Classification of ischemia and animal models>7-!'5:2028.35,

or in carbon monoxide poisoning (an instance of anae-
mic hypoxia)- or complete after cardiac arrest (stagnant
anoxia). Incomplete global ischemia implies
maintenance of some flow, and ischemic damage is
typically distributed along the boundary zones of flow
between the main cerebral arteries. Complete global
anoxia induces damage predominantly in the most
recently evolved areas of the brain-neocortex, basal
ganglia, hippocampus and cerebellum. While complete
functional recovery cannot be expected after more than
7 minutes of normothermic global anoxia some
neurons survive 1 hour of circulatory arrest®®'®. As a
general rule, under normothermic conditions, 10 min.
of global ischemia are lethal in man®®. Focal ischemia
that follows transient or permanent flow reduction in the
territory of a cerebral artery is invariably incomplete,
and arises when blood flow in a supplying artery is
reduced or stopped by atheroma, embolism,
inflammatory disease or trauma (oligaemic hypoxia).
The amount of damage depends on the state of the
systemic or collateral circulation, and will be increased
by seizure activity, hypoxaemia and systemic
hypotension. Focal ischemia may also develop during
episodes of raised intracranial pressure after severe
head injury and it is characterized by the formation of
an ischemic penumbra®”®'.15_[f the ischemia is
incomplete the outcome is more difficult to predict and
is largely dependent on residual perfusion and oxygen
availability. It is in large measure the outcome of
incomplete cerebral ischemia, which is of particular
interest in cerebral vascular disease®”91"1°,

Animal Models
Ischemic stroke is one of the major causes of

long-term neurological disability. This condition can be
reproduced in rodents and larger animals using well-
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established procedures, many of which were originally
developed in rats'®'8. The use of animal model systems
forms a fundamental part of neuroscience research
efforts to improve the prevention, diagnosis,
understanding and treatment of neurological
conditions. Without such models it would be
impossible to investigate such topics as the underlying
mechanisms of neuronal cell damage and death or to
screen compounds for possible anticonvulsant
propellies'-22. Many of the experimental approaches
have been provoked by the results of investigations
that used dissociated cell culture, neuronal cell lines or
hyppocampal slices to study hypoxia or hypoxia/
aglycemia in vitro, but these «test tube» lacks many
features relevant to cerebral ischemia in vivo. In vivo
methods that have been adopted for modeling stroke
have been subject to much criticism, but consistency
can be achieved, particularly in rat models, with
minimal variation from laboratory to laboratory.
Rodent models can be used to mimic changes in re-
gional CBF and cerebral metabolism in a way that
simulates what we have learned from human stroke by
means of positron emission tomography and magnetic
resonance spectroscopy. Similarity in the appearance,
topography and temporal evolution of the radiologic
and histopathologic injury lends further credence to the
appropriateness of rodent models and suggests that
agents which prevent brain injury in rats are worth
testing in humans®”

Although stroke has been studied in many
species (gerbil, cats, rabbits, dogs, baboons) rats and
mice are the most widely investigated 2. Rats are the
most commonly used species for the modeling of
neurological disease. In addition to providing an indis-
pensable tool for basic research, rat models of human
disorders allow us to investigate therapeutic strategies
as a prerequisite to their testing in patients >'82°. Mice
are specially useful because of the availability of unique
strains that can be generically engineered to over or
under express targeted gene %2427,

Several well established models are available
to study ischemia. In relation to the etiology or
mechanism of ischemia two major approaches are
available for disruption of the circulation of healthy
blood to the brain: extravascular arterial compression
by extrinsic ligation, and manipulation of the
intravascular hemodynamics by embolism or
hypotension. Extravascular occlusions occur in humans
during surgical treatment; in experimental animals
extravascular compression produces acute ischemia in
the vascular distribution distal to the clip or ligature.
Small spring clips may be applied under direct visual
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control so that the precise site of vascular occlusion is
known. Furthermore, clips may be removed after
known time intervals and therefore may be used in
modeling temporary or transient ischemia. However,
intracranial arterial occlusion requires craniectomy, and
the direct disruption of the autonomic nerve supply
to the vascular bed seems unavoidable and may intro-
duce physiological and biochemical artifacts.
Intravascular methods spare the arterial nerve supply,
do not require craniectomy, and while usually irrever-
sible, may be used for pathophysiological studies
spanning acute and chronic phases. Nonetheless, the
site of vascular occlusion is controlled only by the size
and physical characteristics of the embolic substance
used. Embolic material must pass through a rete
mirabile in all laboratory species other than dogs and
primates in order to occlude intracranial vessels >%. In
vivo global models are created by cardiac arrests with
resuscitation 2234 and by transiently occluding both
common carotid arteries (CCA) in association with
either hypotension or prior bilateral vertebral artery
occlusion. In the so called four vessel occlusion
model, flow in both CCA and vertebral arteries are
blocked for a specified time period®?%. Three vessel
occlusion model may be performed by ligation of one
middle cerebral artery (MCA) and both CCA in
succession or by occlusion of the basilar artery with a
miniature clip followed by bilateral CCA?"%, In the two
vessel occlusion model, which is also referred as
severe forebrain ischemia, only the CCA are temporarily
occluded®#, sometimes along with mild hypoten-
sion®. In all of these models injury develops selectively
in cells most vulnerable to ischemic damage such as
in the CAIl sector in hippocampus, medium sized
neurons in the striatum, and Purkinje cells in cerebe-
llum. The variations differ relation to time and type of
ischemia*' in CBF, neuronal excitability, in number, and
in qualitative changes in the neurons of hippocampus
differ. Experimental focal ischemia is most commonly
studied during permanent or transient occlusion of the
MCA#4, Proximal MCA occlusion can be induced by
an intraluminal suture (so-called, filament model)*+" or
with a vascular clip and it causes injury to cortex and
deep structures (striatum). Distal MCA occlusion (the
so-called Brint model ) is usually produced by placing
a vascular clip on a pial vessel or by cautery®. The
occlusion typically spares stratium and primarily
involves the neocortex. Pannecrosis develops in the
territory supplied by the respective artery with glial and
endothelial cell death. If recirculation is established
early (2 hours or less) the outcome is better (transient
MCA occlusion)®. In some ways, the reperfused brain

imitates restoration of blood flow after spontaneous
lysis of a thrombo-embolic clot in humans, even
though reperfusion after clot lysis is certainly more
complex than an on/off phenomenon as modeled by
placement and retraction of an intravascular fila-
ment>284-47_ In vitro models allow to study the effects
of cerebral ischemia in post mitotic neurons and the so-
called oxygen glucose deprivation (OGD) is the model
commonly used. Primary cultures of post mitotic
neurons from different regions of the brain (such as
cortex, striatum, septum, hippocampus, etc) can be
established from rat or mouse embryos (day 16 to 18).
After several days invitro (1stto 14t day) these post
mitotic cells can be exposed to a combined depriva-
tion of oxygen and glucose. Depending on the length
and severity of the insult, cell death develops and can
be quantified on a morphological, biochemical or
molecular basis®®%'. Other possibilities to study
ischemic damage in vitro include the studies of brain
slices, particularly the hippocampal slice%?%. Usually,
the bathing solution is changed from a mixture of
oxygen/carbon dioxide to nitrogen/carbon dioxide in
the absence (hence ischemia) or presence (hence
anoxia) of glucose. Generally, 5-7 min of ischemia can
lead to profound cell loss in the CA1 region. Shorter
insults lead to a more slowly evolving damage,
requiring approximately 12 h to be manifested. This
type of cell death, resembles in many ways, the
delayed neuronal death seen in vivoS.

Secondary alterations by cerebral ischemia

The typical histological picture following global
ischemic insults is described by delayed neuronal
death sparing glial cells (sometimes even associated
with astrogliosis)®. Factors responsible for cell death in
brain ischemia are believed to involve aberrations in
cellular metabolic pathways, specifically calcium,
arachidonic acid, oxygen metabolism and acid-base
regulation’. Global ischemia is followed by selective
ischemic necrosis of neurons (SINN). SINN is profound
for certain populations of neurons, such as the hippo-
campus CA1 pyramidal cells, cortical neurons in layers
3, 5, and 6, cerebellar Purkinje cells, and the small and
medium sized striatal neurons®. MCA occlusion produ-
ces a relative reduction of regional CBF, which has to
be maintained for at least 1 to 2 hours followed by a
period of reperfusion (temporary focal ischemia) or for
3 to 6 hours or longer (permanent focal ischemia)’. If
ischemia is prolonged, the ischemic brain is rendered
inordinately acidotic or hyperthermic and the failure of
adequate reperfusion injury is more likely to result in
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infarction, defined as a volume of brain tissue in which
there is pannecrosis, i.e. the death of neurons, glia and
endothelial cells®*®, The process of SINN differs from
infarction not only because it results from a very brief
(5-15 min) but severe global ischemic insult as oppo-
sed to a more prolonged, regional and less severe
ischemic insult, but also because it requires a prolon-
ged interval of reperfusion (1-7 days) for the full
maturation of injury to occur, particularly for cells in the
hippocampus. The final common pathway appears to
be mediated by an Icthal intracellular Ca2+ current. It
might be conjectured that ischemic brain injury is a
continuum with SINN at one extreme, with slow
degeneration of individual strokesensitive neurons in
particular regions, and liquefying pannecrosis at the
other extreme. An explanation for the conundrum of
SINN would help rationalize attempts to develop an
effective pharmacotherapy for acute stroke?:36:3857.59.60,
Transient forebrain ischemia results in an initial energy
failure, followed by a homogeneous restoration of
blood flow which results in recovery of energy charge,
electrophysiologic function, and membrane and
neurotransmitter function, but subsequently leads to
the death of certain cells in a delayed fashion’. After
longer times of ischemia, reperfusion is incomplete
due to microvascular occlusion which was termed as
the no-reflow phenomenon some thrirty years ago®'.
Following significant ischemic insults, progressive brain
hypoperfusion ensues, beginning 15 —120 min after
reperfusion. Hypoperfusion results from elated cerebral
vascular resistance, as has been shown to occur at the
precapillary and capillary level'®45-47.6263 Following
ischemia, endothelin may be produced by damaged
indothelial cells, causing powerful vasoconstriction, and
this may be mediated, in part, by an endothelium
derived platelet activating factor (PAF), which can also
be derived from platelets”®'. Furthermore, although
increased blood viscosity may contribute to impaired
microvascular perfusion, clotting does not appear
contributory and heparin has no beneficial effect's6'64,
Ischemic insults lead to a heterogeneous distribution of
injury's. Selective vulnerability to cerebral hypoxia
exists not only between different cellular elements in the
brain, neurons being most sensitive and microglia and
blood vessel cells least sensitive, but also between
different neurons®. Neurons are more susceptible than
glial cells, and die over hours to days after the insult®.
Selective vulnerability most likely results primarily from
differences at the cellular level. Secondary vascular
compromise probably occurs during the reperfusion
period, presumably from cellular changes associated
with ischemia and reperfusion’. In gerbils subjected to
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5 mil of forebrain ischemia CA 1 neurons disintegrate
after a delay of 2-3 days (delayed neuronal death)&,
Similarly, in rats submitted to forebrain ischemia of 10-
30 min, neuronal death appears after delayed of 1-3
days%®67-70,

Regional idiosyncrasies of postischemic CBF
and metabolism are two factors that might explain the
greater sensitivity of certain neurons to ischemic
damage and also the progressive nature of neuronal
damage in some brain regions®.

Cellular damage during reperfusion following
either global or focal ischemia may be influenced by
substances that accumulate during the early reperfusion
period. During reperfusion, free radical production and
nitric oxide (NO) generation are especially pronounced
and contribute to reperfusion injury 5762637172 The
production of oxy radicals and the products of lipid
peroxidation suggests a role for lipid peroxidation
inhibitors as a therapy for reducing brain injury
following ischemia. Lipid peroxidaton products are
increased following transient ischemia but remain
unchanged in regions of the brain exposed to
permanent focal occlusion suggesting that lipid
peroxidation inhibitors are more efficacious following
transient rather than permanent ischemia”®,

The hippocampus exhibits the highest sensitivity
of ischemia throughout the central nervous system,
and within the hippocampus the hilus and the CAI sec-
tor are much more sensitive than the CA3 sector or the
dentate gyrus®. Delayed neuronal death in hippo-
campus has also been observed in patients who
survived cardiac arrest for more than 24 h374. Several
molecular factors have been proposed to contribute to
hippocampal injury™, such as glutamate mediated
excitation®®, calcium toxity®'# down-regulation of
adenosin receptors®, inhibition of protein synthesis®,
or disturbances of polyamine metabolism®. However,
hemodynamic mechanisms cannot be excluded?’
and it has not been established which of these factors
is the limiting pathophysiological event and how they
relate to the duration of ischemia. In fact, selective
injury of the different sectors of hippocampus is usually
documented after relatively short periods of cerebral
ischemia or with an interval (7 days) of reperfusion®'578
%, whereas other neuronal populations are only
involved when ischemia is prolonged or complicated
by hyperglycemia®7%, Because oxygen free radicals
and NO promote apoptotic cell death*®, transient
ischemia models have become especially useful to
investigate cell death in vivo®-° which may particularly
apply for models of mild ischemia®'®, In these models
apoptosis is prominent after 30 min MCA occlusion
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followed by longer reperfusion times (several days)'021%,
The pattern of cell death is reminiscent of global
ischemia in that it is both selective for neurons and
delayed. Mild ischemia models may be similar to
transient ischemic attacks in man. In fact, changes in
T1/T2 weighted magnetic resonance imaging 7 days
after 15min MCA occlusion in rats resemble those 7 to
10 days after transient ischemic attacks TIAs in patients
with known cardiogenic embolism. However, selective
neuronal death has not yet been convincingly
documented following TIAs in humans®.

CONCLUSIONS

Global and focal cerebral ischemia represents
diseases that are common in the human population.
Animal models have contributed to our understanding
about the diverse factors of neuronal cell damage and
death for cerebral ischemia in the human. We have
come to infer that not only the type and duration of
ischemia is the event of major significance, but also that
once reperfused, reoxygenation causes further injury.
Free radical generation and other biochemical
compounds following reperfusion liberate different
metabolic processes and contribute on diverse ways to
cell membrane injury that we can see on dissimilar
manners like electrophysiological failure. These
observations have led to rational theoretic approaches
for the prevention, diagnosis and treatment of cerebral
ischemic brain injury.
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