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RESUMEN

El monitoreo y pronóstico de sequías es importante para eva-
luar riesgos, tomar decisiones, acciones efectivas y oportunas 
para evitar y reducir sus efectos negativos. Por lo tanto, el 
objetivo de este estudio fue realizar el pronóstico de los ín-
dices de sequía SPI (Standard Precipitation Index) y SPEI 
(Standard Precipitation Evapotranspiration Index) para 14 
estaciones meteorológicas de la cuenca del río Fuerte en el 
Noroeste de México. La hipótesis fue que es posible lograr tal 
objetivo mediante la implementación del algoritmo del filtro 
de Kalman discreto (DKF). La cuenca del río Fuerte, Sinaloa, 
México, es importante por su producción agrícola y por su 
generación de energía hidroeléctrica. El pronóstico de los ín-
dices de sequía SPI y SPEI se realizó para escalas temporales 
(duraciones de sequías) de 3, 6, 12 y 24 meses, durante el pe-
riodo 1961-2011, y con 1, 2, 3 y 4 meses de anticipación. Dos 
modelos se implementaron utilizando el filtro de Kalman 
Discreto: un autorregresivo de segundo orden (DKF-AR2), 
y un autorregresivo de segundo orden con entrada exógena 
(DKF-ARX). Las variables climáticas probadas como exóge-
nas fueron la precipitación (Pt), las temperaturas máximas y 
mínimas (Tmax y Tmin) y la evapotranspiración de referencia 
(ET0); la variable exógena precipitación, Pt, presentó mejo-
res resultados. La metodología DKF-AR2 presentó el mejor 
resultado en el pronóstico de los índices para seis estaciones 
localizadas en la parte alta de la cuenca, con predominancia 
de climas templados y semifríos. La metodología DKF-ARX-
Pt fue mejor en las ocho estaciones restantes de la parte media 
y baja, ubicadas en climas cálidos. Los mejores pronósticos se 
obtuvieron para escalas (duraciones de sequías) de 12 y 24 
meses, y el pronóstico de SPEI fue mejor que el de SPI. Los 
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ABSTRACT

The monitoring and forecasting of droughts are important to 
evaluate risks, take decisions, as well as undertake effective 
and timely actions to avoid and reduce their negative effects. 
Therefore, the objective of this study was to forecast the 
SPI (Standard Precipitation Index) and SPEI (Standard 
Precipitation Evapotranspiration Index) drought indices for 
14 meteorological stations in the Fuerte River watershed in 
northwest Mexico. Our hypothesis was that it is possible to 
achieve such objective through the implementation of the 
Discrete Kalman filter algorithm (DKF). The Fuerte River 
watershed, Sinaloa, Mexico, is important for its agricultural 
production and generation of hydroelectric power. We did 
the forecast of the SPI and SPEI drought indices for time 
scales (drought durations) of 3, 6, 12 and 24 months, during 
the period 1961-2011, and with 1, 2, 3 and 4 months in 
advance. Two models were implemented using the Discrete 
Kalman filter: a second-order autoregressive (DKF-AR2), 
and a second-order autoregressive with exogenous input 
(DKF-ARX). The climatic variables tested as exogenous were 
precipitation (Pt), maximum and minimum temperatures 
(Tmax and Tmin) and reference evapotranspiration (ET0); the 
exogenous variable precipitation, Pt, recorded better results. 
The DKF-AR2 methodology presented the best result in the 
forecast of the indices for six stations located in the upper 
part of the watershed, with predominance of temperate and 
semi-cold climates. The DKF-ARX-Pt methodology proved 
better in the remaining eight stations of the middle and 
lower parts, located in warm climates. The best forecasts 
were obtained for scales (drought durations) of 12 and 24 
months, and the SPEI forecast was better than that of SPI. 
The Nash-Sutcliffe indices (E) for 12 and 24 months reached 
up to 0.92 and 0.96; in the case of 3 and 6 months, the Nash-
Sutcliffe indices were approximately 0.5. The anticipation of 
the prognosis was better for 1 and 2 months.
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índices de Nash-Sutcliffe (E) para 12 y 24 meses llegaron a ser 
hasta de 0.92 y 0.96; en el caso de 3 y 6 meses, los índices de 
Nash-Sutcliffe fueron aproximadamente 0.5. La anticipación 
del pronóstico fue mejor para 1 y 2 meses.

Palabras clave: filtro de Kalman Discreto, modelos autorregresi-
vos, índices de sequía.

INTRODUCCIÓN

Las sequías son un desastre ambiental y atraen 
la atención de ambientalistas, hidrólogos, me-
teorólogos, geólogos y científicos agrícolas. 

Las sequías ocurren en todas las zonas climáticas, 
tanto de mucha como de poca lluvia y están relacio-
nadas con la reducción de lluvia sobre un periodo 
largo de tiempo, como una estación del año o un año 
entero (Mishra y Singh, 2010) o hasta 2 o 3 años. En 
años recientes hay una frecuencia mayor de valores 
extremos que causan sequías o inundaciones. La po-
blación ha crecido, la frontera agrícola ha aumenta-
do o necesita crecer para producir los alimentos que 
demanda esa mayor población, se requiere una ma-
yor producción de energía hidroeléctrica y el sector 
industrial demanda más agua, y el cambio climático 
también ha contribuido a la escasez de agua (Mishra 
y Singh, 2011). 

El monitoreo y predicción de sequías es importan-
te para evaluar riesgos, y tomar decisiones, acciones 
efectivas y oportunas para evitar y reducir sus efectos 
negativos. Una alerta anticipada de una sequía y con 
información sobre su intensidad, duración y exten-
sión espacial es importante para establecer estrategias 
anticipadas de cómo enfrentar las sequías.

Dada la tendencia del incremento en la ocurren-
cia, intensidad y duración de los periodos secos en el 
mundo, es importante generar herramientas de pro-
nóstico para estimar con anticipación el estado futu-
ro de las condiciones hídricas. Las investigaciones del 
comportamiento de las sequías pueden ayudar en los 
planes de alerta a través de herramientas indirectas de 
pronóstico mediante los índices de sequía  (Mishra 
and Singh, 2010; Al-Qinna et al., 2011; Beguería et 
al., 2014). Las sequías pueden ser de cuatro tipos: 
meteorológica, hidrológica, agrícola o socioeconómi-
ca (Mishra and Singh, 2010) y existen varios índices 
de sequía para cada una de ellas. Nuestro estudio se 
centra en las sequías meteorológicas, definida como 
una ausencia de precipitación sobre una región y la 

Keywords: Discrete Kalman filter, autoregressive models, 
drought indices.

INTRODUCTION

Droughts are an environmental disaster and 
attract the attention of environmentalists, 
hydrologists, meteorologists, geologists and 

agricultural scientists. Droughts occur in all climatic 
zones, both of high and low rainfall and are related to 
the reduction of rainfall over a long period, such as a 
season of the year or a whole year (Mishra and Singh, 
2010) or up to 2 or 3 years.

In recent years, there is a higher frequency of 
extreme circumstances, which cause droughts or 
floods. The population has grown, the agricultural 
frontier has increased or needs to expand to produce 
the food that this larger population demands; more 
hydroelectric energy production is required and the 
industrial sector demands more water, and climate 
change has also contributed to the shortage of 
water (Mishra and Singh, 2011). The monitoring 
and prediction of droughts is important to evaluate 
risks, and take decisions, effective and timely actions 
to avoid and reduce their negative effects. An early 
warning of a drought and with information on its 
intensity, duration and spatial extent is important to 
establish anticipated strategies to deal with droughts.

Given the tendency of greater occurrence, 
intensity and duration of dry periods in the world, it 
is important to generate forecasting tools to estimate 
in advance the future state of water conditions. 
Research on drought behavior can help in developing 
warning plans through indirect forecast tools based 
on drought indices (Mishra and Singh, 2010, Al-
Qinna et al., 2011, Beguería et al., 2014).

Droughts can be of four types: meteorological, 
hydrological, agricultural or socioeconomic (Mishra 
and Singh, 2010) and there are several drought 
indices for each of them. Our study focuses on 
meteorological droughts, defined as an absence of 
precipitation over a region, and the watershed under 
study is that of the Fuerte River, in northwest Mexico.

The study of droughts should at least have a 
phase of analysis of droughts through drought 
indices (Castillo et al., 2017) and a forecast phase 
through several models. According to Mishra and 
Singh (2011), the main forecast models are: 1) linear 
regression, 2) time series, 3) probabilistic models, 
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cuenca de estudio es la cuenca del río Fuerte, en el No-
roeste de México. El estudio de las sequías, al menos 
debería tener una fase de análisis de sequías a través 
de los índices de sequía (Castillo et al., 2017) y una 
fase de pronóstico a través de varios modelos. Según 
Mishra and Singh (2011), los principales modelos de 
pronóstico son: 1) regresión lineal, 2) series de tiem-
po, 3) modelos probabilísticos, 4) redes neuronales 
artificiales, 5) modelos híbridos, y algunas técnicas 
novedosas como “minería de datos”. La sequía más 
estudiada es la meteorológica, quizá por la amplia 
disponibilidad de datos de precipitación en el mun-
do y entre los índices de sequía meteorológica más 
estudiados está el SPI (Standard Precipitation Index) 
y el SPEI (Standard Precipitation Evapotranspiration 
Index). Los siguientes estudios sobre pronóstico de 
sequías meteorológicas e hidrológicas con diversas 
técnicas son destacables: 1) Rhee e Im (2017), pro-
nóstico de SPI y SPEI con “machine learning”; 2) 
Mossad y Alazba (2015), pronóstico de SPEI con se-
ries de tiempo AR y ARIMA; 3) Eicker et al. (2014) 
con el filtro de Kalman tipo “ensemble” para pronos-
ticar balance hidrológico a grandes escalas territoria-
les; 4) Dehghani et al. (2014) realizando pronóstico 
de caudales con redes neuronales y simulación Mon-
te Carlo; y, 5) Madadgar and Moradkhani (2013),  
pronostico estacional de sequías hidrológicas, índice 
de caudal, con enfoque probabilístico.     

En México hay pocos estudios sobre el pronóstico 
de sequías. Ravelo et al. (2014) estudiaron detección, 
evaluación y pronóstico de sequías en la región Or-
ganismo de Cuenca Pacífico Norte mediante redes 
neuronales, y concluyeron que en 2011 y 2012 se 
presentaron las sequías más severas. También hay 
estudios de pronóstico de caudales con el filtro de 
Kalman discreto en cuencas mexicanas (Morales et 
al., 2014; González et al., 2015). Además, Kim et al. 
(2002) analizaron sequías en la cuenca del río Con-
chos, pero no abordaron el pronóstico de sequías.

El objetivo del presente estudio fue realizar el pro-
nóstico de los índices de sequía SPI  y SPEI  con 
1, 2, 3 y 4 meses de anticipación para 14 estacio-
nes meteorológicas de la cuenca del río Fuerte en el 
Noroeste de México. La hipótesis fue que es posible 

4) artificial neural networks, 5) hybrid models, and 
some novel techniques such as “data mining”.

The most studied drought is meteorological, 
perhaps due to the wide availability of precipitation 
data in the world, and among the most studied 
meteorological drought indices are the SPI (Standard 
Precipitation Index) and the SPEI (Standard 
Precipitation Evapotranspiration Index). The 
following studies on forecasting of meteorological 
and hydrological droughts with diverse techniques 
are worth noting:

1) Rhee and Im (2017), forecast of SPI and SPEI 
with “machine learning”; 2) Mossad and Alazba 
(2015), SPEI forecast with time series AR and 
ARIMA; 3) Eicker et al. (2014) with the Kalman 
filter “ensemble” type to forecast hydrological 
balance at large territorial scales; 4) Dehghani et 
al. (2014) in making forecast of flows with neural 
networks and Monte Carlo simulation; and, 5) 
Madadgar and Moradkhani (2013), seasonal forecast 
of hydrological droughts, flow rate index, with 
probabilistic approach.    

In Mexico there are few studies abut the forecast 
of droughts. Ravelo et al. (2014) studied drought 
detection, evaluation and forecasting in the North 
Pacific Basin Agency region through neural networks 
and concluded that the most severe droughts 
occurred in 2011 and 2012. There are also flow 
forecast studies with the Discrete Kalman filter in 
Mexican watersheds (Morales et al., 2014, González 
et al., 2015). In addition, Kim et al. (2002) analyzed 
droughts in the Conchos river watershed but did not 
address the forecast of droughts.

The objective of the present study was to forecast 
the SPI and SPEI drought indices with 1, 2, 3 and 
4 months in advance for 14 meteorological stations 
in the Fuerte River basin in northwest Mexico. The 
hypothesis was that it is possible to achieve this goal 
by implementing the algorithm of the Kalman filter 
in its discrete variant (DKF) together with a model of 
time series of the autoregressive type of second order 
and one with exogenous input, testing four climatic 
variables (precipitation, maximum and minimum 
temperatures, and reference evapotranspiration).
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lograr tal objetivo mediante la implementación del 
algoritmo del filtro de Kalman en su variante Discre-
ta (DKF) junto con un modelo de series de tiempo 
del tipo autorregresivo de segundo orden y uno con 
entrada exógena, probando cuatro variables climáti-
cas (precipitación, temperaturas máximas y mínimas, 
y evapotranspiración de referencia).

MATERIALES Y MÉTODOS

Descripción de la cuenca

La cuenca del río Fuerte se localiza en el Noroeste de México, 
en los estados de Sinaloa, Sonora, Durango y Chihuahua (Figura 
1), como parte de la región hidrológica No. 10 Sinaloa, entre 
25.68° y 28.24° N, y 106.12° a 109.43° O, con un área de 
36 456 km2. Nace en la Sierra Madre Occidental y desemboca al 
norte de Sinaloa en el Golfo de California; en la parte alta de la 
cuenca está la etnia indígena Rarámuri y es una zona de alta mar-
ginación que en la última década tuvo graves problemas debido a 
la sequía, y en la parte media y baja está el Valle del Fuerte que es 
una importante zona agrícola de producción de granos y horta-
lizas para el mercado nacional e internacional. Las altitudes en la 
cuenca van de 3168 a -9 msnm (INEGI, 2014); su precipitación 

Figura 1. Ubicación de la cuenca del río Fuerte.
Figure 1. Location of the Fuerte river watershed.
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MATERIALS AND METHODS

Description of the basin

The Fuerte river watershed is located in the northwest of 
Mexico, in the states of Sinaloa, Sonora, Durango and Chihuahua 
(Figure 1), as part of the hydrological region Number 10, Sinaloa, 
between 25.68° and 28.24 ° N, and 106.12 ° to 109.43 ° W, with 
an area of 36 456 km2. Altitudes in the watershed range from 
3168 to -9 masl (INEGI, 2014); its average annual precipitation 
is 691 mL and average temperature of 19.4 °C, according to the 
climatological normal values of 14 stations within the watershed, 
from 1961 to 2011 (SMN, 2014). 

The watershed is born in the Sierra Madre Occidental and 
flows into the north of Sinaloa in the Gulf of California. The 
Rarámuri indigenous ethnic group inhabits the upper part of 
the watershed; it is a zone of high marginalization that in the 
last decade had serious drought problems; the Valle del Fuerte 
is located in the middle and lower part, which is an important 
agricultural area of production of grains and vegetables for the 
national and international market. The Fuerte river watershed 
is important due to its surface extension, the volume of its 
runoff and the dams Miguel Hidalgo and Costilla, Luis 
Donaldo Colosio and Josefa Ortiz de Dominguez, which are 
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media  anual es de 691 mm y temperatura media  de 19.4 °C, de 
acuerdo con las normales climatológicas de 14 estaciones dentro 
de la cuenca de 1961 a 2011 (SMN, 2014). La  cuenca del río  
Fuerte es importante por su extensión superficial, el volumen de 
sus escurrimientos y las presas Miguel Hidalgo y Costilla,  Luis 
Donaldo Colosio y Josefa Ortiz de Domínguez, que se usan para 
la generar energía eléctrica y son la principal fuente de agua para 
uso agrícola, urbano e industrial.

Información climatológica

La información climatológica usada para el cálculo de los ín-
dices de sequía SPI y SPEI se obtuvo de  la base de datos del servi-
cio meteorológico nacional disponible en línea (SMN, 2014), se 
emplearon los datos mensuales de precipitación (Pt), temperatu-
ra mínima (Tmin) y máxima (Tmax) de 14 estaciones meteoroló-
gicas durante el periodo 1961-2011, el cual fue el más completo 
y actualizado durante este estudio. Las estaciones seleccionadas 
están distribuidas por toda la cuenca; la información más incom-
pleta fue la de precipitación y en promedio, se generó el 8 % de 
datos faltantes de lluvia (Cuadro 1). En uno de los casos más 
extremos, en Batopilas, Chihuahua, se generó 29 % de los datos 
de lluvia. Para generar los datos de lluvia se usó el método del 
inverso del cuadrado de la distancia, y los detalles están en un 
artículo en el cual se generaron los índices (Castillo et al., 2017).

Metodología

La sequía meteorológica, hidrológica y agrícola están repre-
sentadas por índice de sequía que es una variable para evaluar el 
efecto de una sequía e incluye intensidad, duración severidad y 

Cuadro 1. Estaciones meteorológicas seleccionadas de la cuenca.
Table 1. Selected meteorological stations of the watershed.

Clave Estación Altitud 
(msnm)

Pt. media 
(mm)

T. Mín. 
(°C)

T. Máx.
(°C) Periodo % Datos 

generados

8038 Creel, Chihuahua 2348   648.7   1.7 20.2 1961 – 2011 10.8
8106 Norogachic, Chihuahua 2088   578.8   2.7 21.6 1961 – 2011 20.7
8161 Batopilas, Chihuahua 678   603.4 16.7 31.3 1961 – 2011 29.4
8167 Chinipas, Chihuahua 440   838.2 16.0 31.0 1961 – 2011 2.6
8172 Guadalupe, Chihuahua 2279 1083.2   4.0 22.3 1961 – 2011 2.9
8182 Moris, Chihuahua 754    627.8 11.0 29.4 1961 – 2011 3.1
8267 El Vergel, Chihuahua 2740    629.7   0.6 17.6 1961 – 2012 24.8
25009 Bocatoma, Sinaloa 31   456.6 17.0 33.0 1961 – 2012 2.6
25019 Choix II, Sinaloa 239   707.0 14.2 34.2 1961 – 2012 1.9
25025 P. Miguel H., Sinaloa 144   619.8 16.6 33.8 1961 – 2012 1.3
25042 Higuera, Sinaloa 10   307.1 17.3 31.5 1961 – 2012 7.9
25044 Huites, Sinaloa 269   812.7 16.4 34.8 1961 – 2012 2.4
25100 Yecorato, Sinaloa 400   796.1 13.5 34.9 1961 – 2012 6.1
26053 Minas N., Sonora 480   672.4 15.0 31.2 1961 – 2011 5.7

used to generate electricity and are the main source of water for 
agricultural, urban and industrial use.

Climatological information

The climatological information used for the calculation of 
the SPI and SPEI drought indices was obtained from the national 
meteorological service database available online (SMN, 2014). 
Besides, we used the monthly precipitation data (Pt), minimum 
temperature (Tmin) and maximum temperature (Tmax) of 14 
weather stations during the period 1961-2011, which was the 
most complete and updated during this study.

The stations selected are distributed throughout the 
watershed; the most incomplete information was that of 
precipitation and on average 8 % of the rainfall missing data 
was generated (Table 1). In Batopilas, Chihuahua, one of the 
most extreme cases, 29 % of the rainfall data were generated. 
To generate the rain data, we used the inverse square distance 
method, and the details appear in an article for which the indices 
were generated (Castillo et al., 2017).

Methodology

The meteorological, hydrological and agricultural droughts 
are represented by the drought index, which is a variable to 
assess the effect of a drought and includes intensity, duration, 
severity and spatial extension (Mishra and Singh, 2010). The SPI 
(McKee et al., 1993) is one of the most used for the detection 
and monitoring of droughts and is based on the probability 
of precipitation at any time scale to quantify the precipitation 
deficit (Velasco et al., 2004).
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extensión espacial (Mishra and Singh, 2010). El SPI (McKee et 
al., 1993) es uno de los más usados para la detección y monitoreo 
de sequías, y se bas en la probabilidad de precipitación a cual-
quier escala de tiempo para cuantificar el déficit de precipitación 
(Velasco et al., 2004). El SPEI (Vicente et al., 2010), además de 
la precipitación que usa el SPI, considera la evapotranspiración 
de referencia (ET0) y se basa en el balance hídrico (Pt-ET0) men-
sual, combinando características de la sensibilidad del Palmer 
Drought Severity Index (PDSI) y de la simplicidad de cálculo y 
la naturaleza multitemporal del SPI. Es muy adecuado para de-
tectar, monitorear y explorar las consecuencias del calentamiento 
global en condiciones de sequía (Vicente et al. 2010). 

Los índices SPI y SPEI se desarrollaron para las 14 estaciones 
seleccionadas, a escalas de 3, 6, 12 y 24 meses. Las series del 
SPI se generaron con el programa spi_sl_6.exe desarrollado por 
el National Drought Mitigation Center (NDMC, 2014), y el 
SPEI se obtuvo con SPEI.R desarrollado por Beguería y Vicente 
(2014) para el programa R/RStudio. En el cálculo del SPEI se 
consideró el método de evapotranspiración de referencia de Har-
greaves-Samani (Beguería et al., 2014). Para mayor información 
de la obtención de SPI y SPEI, y su interpretación como indica-
dores de sequía, consultar a Castillo et al. (2017), quienes deta-
llan el proceso de SPI y SPEI en la cuenca para nuestro estudio.

En nuestro estudio el pronóstico de sequías meteorológicas 
se realizó mezclando modelos de series de tiempo autorregresi-
vos con el filtro de Kalman discreto (Kalman, 1960), que es un 
conjunto de ecuaciones matemáticas para estimar el estado de un 
proceso minimizando la media del error cuadrático. El filtro de 
Kalman opera por medio de un mecanismo de predicción y co-
rrección, el algoritmo pronostica el nuevo estado a partir de una 
estimación previa, añadiendo un término de corrección propor-
cional al error de predicción, minimizándolo estadísticamente 
(Welch y Bishop, 2006).

Los modelos autorregresivos se usan en la hidrología y me-
teorología porque tienen dependencia del tiempo y son fáciles 
de usar (World Meteorological Organization, 2011). En nuestro 
estudio se propuso la creación de dos modelos autorregresivos, 
uno de segundo orden (AR2) y otro de segundo orden con entra-
da exógena (ARX) para pronosticar  los estados mensuales futu-
ros de los índices de sequía SPI y SPEI con base en los registros 
anteriores de la serie; la elección de modelos autorregresivos se 
demostrará en el Cuadro 2 de Resultados y Discusión. Los mo-
delos AR2 y ARX (ecuaciones 1 y 2, respectivamente) relacionan 
la entrada del sistema con su salida mediante una ecuación lineal 
en diferencias con coeficientes constantes:

1 1
0

na

t i t i t
i

y y eα+ − +
=

= +∑ 	 (1)

The SPEI (Vicente et al., 2010), in addition to the precipitation 
used by the SPI, considers the reference evapotranspiration 
(ET0) based on the monthly water balance (Pt-ET0), combining 
characteristics of the Palmer Drought Severity Index (PDSI) 
sensitivity and the simplicity of calculation, and the multi-
temporal nature of SPI. It is very suitable to detect, monitor 
and explore the consequences of global warming in drought 
conditions (Vicente et al., 2010).

The SPI and SPEI indices were developed for the 14 selected 
stations, at scales of 3, 6, 12 and 24 months. The SPI series 
were generated with the spi_sl_6.exe program developed by 
the National Drought Mitigation Center (NDMC, 2014), and 
the SPEI was obtained with SPEI.R developed by Beguería and 
Vicente (2014) for the R/RStudio program.

In the SPEI calculation, the reference evapotranspiration 
method of Hargreaves-Samani was contemplated (Beguería et al., 
2014). For more information on obtaining SPI and SPEI, and 
their interpretation as indicators of drought, consult Castillo et 
al. (2017), who detail the SPI and SPEI process in the watershed 
for our study.

In our study, the forecast of meteorological droughts was made 
by mixing autoregressive time series models with the Discrete 
Kalman filter (Kalman, 1960), which is a set of mathematical 
equations to estimate the state of a process minimizing the mean 
of the quadratic error.  The Kalman filter operates by means of 
a prediction and correction mechanism, the algorithm predicts 
the new state from a previous estimate, adding a correction term 
proportional to the prediction error, minimizing it statistically 
(Welch and Bishop, 2006).

Autoregressive models are used in hydrology and meteorology 
because they are time dependent and easy to use (World 
Meteorological Organization, 2011). In our study, we proposed 
the creation of two autoregressive models, one of second order 
(AR2) and the other of second order with exogenous input 
(ARX) to forecast the future monthly states of the SPI and SPEI 
drought indices based on the previous records of the series. The 
choice of autoregressive models will be shown in Table 2 of 
Results and Discussion.

The AR2 and ARX models (equations 1 and 2, respectively) 
relate the input of the system to its output by means of a linear 
equation in differences with constant coefficients:

1 1
0

na

t i t i t
i

y y eα+ − +
=

= +∑ 	 (1)

1 1
0 0

na nb

t i t i j t j t
i j

y y r eα β+ − − +
= =

= + +∑ ∑ 	 (2)
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1 1
0 0

na nb

t i t i j t j t
i j

y y r eα β+ − − +
= =

= + +∑ ∑ 	 (2)

donde yt es el valor observado del índice en el tiempo t, el cual 
representa un mes; rt es el valor de la variable exógena (Pt, Tmin, 
Tmax, ET0) en el tiempo t; et+1 es el término de error en la esti-
mación del índice; ai y bi son parámetros; los índices na y nb 
especifican el número de observaciones previas del índice y de 
las variables exógenas, respectivamente. A partir de la estructu-
ra general de ambos modelos autorregresivos, la formulación en 
espacio de estados permite utilizarlos dentro del algoritmo del 
filtro de Kalman Discreto así:

xk+1 = Axk + Buk + Wk	 (3)

zk = Hxk + vk	 (4)

donde xk+1 es el valor del índice (no observado) de tamaño (n x 1); 
A es la matriz de parámetros ai de tamaño (n x n); xk es el índice 
en el tiempo k de tamaño (n x 1);  B es la matriz de parámetros 
exógenos bj de tamaño (n x m); vk es el vector que contiene la 
variable exógena registrada para el tiempo k; zk es el índice en 
el tiempo k de tamaño (m x 1); H  es la matriz de transforma-
ción que mapea el vector de estados al dominio de la medición  
con dimensiones (m x n); Wk y vk son vectores que representan 
el ruido gaussiano en el proceso y el ruido en la medición para 
cada observación con tamaños (m x 1), y lo esperado es que tales 
ruidos gaussianos se distribuyan de manera normal con media 0 
y varianzas Q y R, respectivamente:

where yt is the observed value of the index at time t, which 
represents one month; rt is the value of the exogenous variable 
(Pt, Tmin, Tmax, ET0) at time t; et+1 is the error term in the 
index estimate; ai and bi are parameters; the indices na and nb 
specify the number of previous observations of the index and 
exogenous variables, respectively. From the general structure 
of both autoregressive models, the formulation in a state space 
allows to use them within the algorithm of the Discrete Kalman 
filter as follows:

xk+1 = Axk + Buk + Wk	 (3)

zk = Hxk + vk	 (4)

where xk+1 is the value of the index (not observed) of size (n x 
1); A is the matrix of ai size parameters (n x n); xk is the index 
in time k of size (n x 1); B is the matrix of bj exogenous size 
parameters (n x m); vk is the vector that contains the exogenous 
variable registered for time k; zk is the index in time k of size (m 
x 1); H is the transformation matrix that maps the state vector 
to the domain of the measurement with dimensions (m x n);Wk 
and vk are vectors representing Gaussian noise in the process and 
noise in the measurement for each observation with sizes (m x 1), 
and it is expected that such Gaussian noises are distributed in a 
normal way with mean 0 and Q and R variances, respectively :

Wk ~ N(0, Q)	 (5)

vk ~ N(0, R)	 (6)

Cuadro 2. Resultados en el pronóstico del SPI para valores de na y nb.
Table 2. Results in the SPI forecast for values of na and nb.

Modelo Índice na Nb MSE RMSE E R PBE

DKF – AR (2)

SPI 12 meses

2 -- 0.15 0.38 0.848 0.92 -7.4 %

DKF – ARX 
(Pt)

2 1 0.15 0.38 0.849 0.92 -7.4 %
2 2 0.10 0.32 0.888 0.94 26 %
2 3 0.10 0.32 0.887 0.94 35 %
1 2 0.11 0.32 0.884 0.94 35 %
3 1 0.10 0.32 0.889 0.94 23 %
3 2 0.10 0.32 0.889 0.94 30 %
3 3 0.10 0.32 0.888 0.94 40 %
4 1 0.10 0.32 0.889 0.94 20 %
4 2 0.10 0.32 0.889 0.94 26 %
4 3 0.10 0.32 0.887 0.94 30 %
4 4 0.10 0.32 0.887 0.94 31 %
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Wk ~ N(0, Q)	 (5)

vk ~ N(0, R)	 (6)

De acuerdo con Simon (2001), se asume que no existe corre-
lación entre Q y R, es decir, son variables aleatorias independien-
tes y pueden variar en el tiempo, pero se suponen constantes por 
simplicidad, y se pueden definir como:

T
k kQ E w w =   	 (7)

T
k kR E v v =   	 (8)

donde Q es la matriz de covarianza de la perturbación del siste-
ma; R es la matriz de covarianza de la perturbación de la medi-
ción; wT

k y vT
k indican la transpuesta de wk y vk, respectivamente, 

y E[.]significa el valor esperado. La matriz Q es de dimensión 
(na x na) y contiene el valor ajustado del MSE (Media Cuadrada 
del Error) estimado por el modelo autorregresivo en la etapa de 
calibración. 

La matriz R es de (1 x 1) y contiene el error esperado de las 
mediciones, definido como una proporción (a) de la medición 
anterior, entonces R=a*(xk-1), en este caso específico a=0.001, 
valores mayores generan datos extremos que se ubican fuera del 
rango en que normalmente se presentan los valores de los índices 
de sequía, reduciendo el poder de predicción del modelo. Con 
respecto al tamaño de las matrices, el valor de n es igual a na, 
y el valor de m igual a nb; donde na y nb indican el número 
de observaciones previas del índice y de las variables exógenas, 
respectivamente. El algoritmo del filtro de Kalman Discreto se 
describe en la Figura 2.

Para crear los modelos AR y ARX se programaron rutinas 
en Matlab® (Math Works 2015), para obtener los valores de las 
matrices de parámetros en función del orden del proceso auto-
rregresivo de acuerdo a las ecuaciones 1 y 2. El ARX también 
quedó como modelo autorregresivo de segundo orden pero con 
variable exógena.

Debido a que el comportamiento de la sequía en la cuenca 
varía en función de la ocurrencia de la temporada de lluvias y 
de fenómenos como El Niño o la Niña, entre  otros fenómenos 
climáticos globales, los parámetros estimados para los modelos 
AR y ARX se recalcularon cada cierto periodo (P) para obtener 
pronósticos más representativos de las condiciones previas de hu-
medad en cada estación, el pronóstico se inició en el periodo 
(t0 + P) hasta el tiempo (t0 + 2P), en este punto se recalcularon 
los parámetros de los modelos en función de periodo [P : 2P], 

According to Simon (2001), there is no correlation between 
Q and R, that is, they are independent random variables and can 
vary over time, but they are assumed constant for simplicity, and 
it is defined as:

T
k kQ E w w =   	 (7)

T
k kR E v v =   	 (8)

where Q is the covariance matrix of the system disturbance; R 
is the covariance matrix of the measurement perturbation; wT

k 
and vT

k indicate the transpose of wk and vk, respectively, and E[.]  
means the expected value. The Q matrix is of dimension (na x 
na) and contains the adjusted value of the MSE (Square Mean 
Error) estimated by the autoregressive model in the calibration 
stage.

The matrix R is (1 x 1) and contains the expected error of 
the measurements, defined as a proportion (a) of the previous 
measurement, so R=a*(xk-1), in this specific case a=0.001; 
higher values generate extreme data that are located outside 
the range in which values of drought indices normally present, 
reducing the prediction power of the model. With respect to 
the size of the matrices, the value of n is equal to na, and the 
value of m equal to nb; where na and nb indicate the number of 
previous observations of the index and the exogenous variables, 
respectively. The algorithm of the Discrete Kalman filter is 
described in Figure 2.

To create the AR and ARX models, we programmed routines 
in Matlab® (Math Works 2015), to obtain the values of the 
parameter matrices in line with the order of the autoregressive 
process according to equations 1 and 2. The ARX was also an 
autoregressive model of second order, but with exogenous 
variable.

Since the behavior of the drought in the watershed 
varies depending on the occurrence of the rainy season and 
phenomena such as El Niño or La Niña, among other global 
climatic phenomena, the parameters estimated for the AR and 
ARX models were recalculated after a certain time period (P) to 
obtain more representative forecasts of the previous conditions 
of humidity in each station. The forecast began in the period (t0 
+ P) until the time (t0 + 2P), in this point we recalculated the 
parameters of the models according to period [P: 2P], and so on 
until ending with the last data group. Thus, the implementation of 
DKF - AR2 and DKF - ARX became dynamic and incorporated 
the climatic changes that occurred in the watershed during the 
study period of each season or certain period.



919CASTILLO-CASTILLO et al.

PRONÓSTICO DE SEQUÍAS METEOROLÓGICAS CON FILTRO DE KALMAN DISCRETO EN LA CUENCA DEL RÍO FUERTE, MÉXICO

así sucesivamente hasta terminar con el último grupo de datos. 
De esta forma la implementación del DKF – AR2 y del DKF - 
ARX se hizo dinámica e incorporó los cambios climáticos que 
se produjeron en la cuenca durante el periodo de estudio cada 
temporada o cierta época.

El pronóstico de los índices SPI y SPEI se realizó a cuatro 
escalas temporales para cada estación, y se implementaron los 
modelos AR2 y ARX (Pt, Tmin, Tmax y ET0 como variables exó-
genas) con el filtro de Kalman Discreto. Para conocer la efectivi-
dad de los modelos en el pronóstico para L pasos hacia adelante, 
es decir, con 1, 2, 3 y 4 meses de adelanto, se creó una rutina en 
Matlab® para realizar el pronóstico considerando la información 
en el tiempo k y avanzar L pasos en el pronóstico sin actualizar 
la información (Figura 3), este proceso se realizó considerando el 
periodo P de calibración de los modelos AR2 y ARX.

Para evaluar los resultados del pronóstico se calcularon las 
principales estadísticas de acuerdo con Gupta et al. (2009), el 
RMSE (la raíz del error cuadrático medio) y E (la eficiencia de 
Nash-Sutcliffe) fueron los criterios a considerar por ser los más 
usados para la calibración y evaluación de modelos hidrológicos 
(Moriasi et al., 2007). Además, se incluyó un intervalo de con-
fianza al 95 % que sigue el recorrido de cada estado de la serie 
con el objetivo de establecer el grado de incertidumbre asociado 
al pronóstico en cada paso del tiempo(L) con respecto a los va-
lores observados.

El intervalo de predicción (I.P.) se obtuvo de acuerdo con los 
criterios establecidos por Chatfield (2004), el I.P. se calculó con 
base en la siguiente forma general: Un 100(1-a)% I.P.  para xt+L 
está dado por:

[ ]/ 2ˆ ( ) ( )t tx L z Var e Lα± 	 (9)

donde ˆ( ) ( )t t L te L x x L+= −  denota el error del pronóstico al 
tiempo t cuando se pronostica con L periodos de adelanto; z

a/2  
denota el punto porcentual de una distribución normal estándar 
con una proporción de a/2 por sobre de él.

RESULTADOS Y DISCUSIÓN

En su proceso el filtro de Kalman genera dos ti-
pos de resultados: los estados pronosticados y actua-
lizados, los resultados comprenderán sólo la parte 
de pronóstico ya que con base en esta se evaluará el 
desempeño de los modelos para predecir los estados 
futuros de los índices de sequía.

Los resultados se presentan en el pronóstico de 
los índices de sequía SPI y SPEI en la cuenca del río 
Fuerte, implementando los modelos DKF – AR2 y 
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Figura 2.	 Algoritmo del filtro de Kalman Discreto (Kim, 
2011).

Figure 2.	 Algorithm of the Discrete Kalman filter (Kim, 
2011).

We did the forecast of the SPI and SPEI indices at four-
time scales for each station, and implemented the AR2 and 
ARX models (Pt, Tmin, Tmax and ET0 as exogenous variables) 
with the Discrete Kalman filter. To know the effectiveness of the 
models in the forecast for L steps forward, that is, with 1, 2, 3 
and 4 months in advance, we created a routine in Matlab® to 
perform the forecast considering the information in time k and 
advance L steps in the forecast without updating the information 
(Figure 3); we conducted this process considering the P period of 
calibration of the AR2 and ARX models.

To evaluate the results of the forecast, we calculated the main 
statistics according to Gupta et al. (2009); the RMSE (the root of 
the mean square error) and E (the Nash-Sutcliffe efficiency) were 
the criteria to be considered as they are the most used for the 
calibration and evaluation of hydrological models (Moriasi et al., 
2007). In addition, a 95% confidence interval was included that 
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DKF – ARX con información de 14 estaciones me-
teorológicas en el periodo de 1961 a 2011.

A los índices na y nb, se les asignaron los valores 
de na = 2 y nb = 2, por generar los mejores resultados 
en términos de RMSE y E con la menor cantidad de 
observaciones posible (Cuadro 2). La Figura 4 mues-
tra que el periodo de calibración para ambos modelos 

	 Parámetros		  Parámetros
	 A, B, Q, P, H		  A, B, Q, P, H

	 SPI (1:96)		  SPI (192:288)
		  Pronóstico SPI		  Pronóstico SPI
	 Pt (1:96)	 (96:192)	 Pt (192:288)	 (288:n)

t=1	 t=96	 t=192	 t=288	 t=n meses

		  SPI (96:192)

		  Pt (96:192)	 Pronóstico SPI
			   (192:288)

		  Parámetros
		  A, B, Q, P, H

Figura 4. Estimación de parámetros del modelo por periodos del ARX.
Figure 4. Estimation of model parameters by ARX periods.

follows the route of each state of the series with the objective of 
establishing the degree of uncertainty associated with the forecast 
at each time step (L) with respect to the values observed.

The prediction interval (I.P.) was obtained according to the 
criteria established by Chatfield (2004), the I.P. was calculated 
based on the following general form: 100(1-a)% I.P. for xt+L is 
given by:

Línea de tiempo

t	 t+1	 t+2	 t+3	 ...	 t+L

SPI(t)	 SPI(t+1|t)

SPI(t)		  SPI(t+2|t)

SPI(t)			   SPI(t+3|t)

SPI(t)					     SPI(t+L|t)

	 SPI(t+1|t+1)	 SPI(t+2|t+1)

	 SPI(t+1|t+1)		  SPI(t+3|t+1)

	 SPI(t+1|t+1)				    SPI(t+L|t+1)

	 SPI(t+1|t+1)					     SPI(t+2L|t+1)

Figura 3. Descripción del pronóstico del SPI y SPEI para L pasos hacia adelante.
Figure 3.  Description of the SPI and SPEI forecast for L steps forward.
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fue 96 meses. El periodo de calibración se estableció 
para estimar y re-estimar los parámetros del mode-
lo durante el estudio, ya que las características de la 
sequía pueden variar en el tiempo y tener un com-
portamiento cíclico o estacional. Se probaron dife-
rentes periodos entre 60 y 108 meses (menos de 10 
años), rango dentro del cual se puede apreciar algún 
comportamiento recurrente de los índices de sequía 
y, además, hay suficiente información para estimar 
los parámetros del modelo sin reducir considerable-
mente la serie disponible para realizar el pronóstico. 
En el Cuadro 3 se muestran los resultados para cada 
periodo de calibración en términos de RMSE y E, 
donde se consideró que el periodo más adecuado es 
de 96 meses.

Los estadísticos seleccionados para describir los 
resultados de este estudio son el RMSE  el cual se 
expresa en las unidades de los índices y se consideró 
debido a que el error que se comete en el pronóstico 
define la efectividad del modelo para predecir y, con 
ello, si es una herramienta adecuada o si se opta por 
otros métodos de pronóstico. El segundo parámetro 
es E, coeficiente de eficiencia de Nash, que según 
Moriasi et al. (2007), dependiendo de los valores de 
E, sería la calidad de la predicción del modelo (E<0.5 
el modelo es insatisfactorio y al acercarse a 1 es un 
buen modelo). Estos valores surgen de una relación 
entre los datos observados del índice y los que arroja 
el pronóstico con el algoritmo del filtro de Kalman 
Discreto, en esta relación el valor de E nos indica el 
grado en que los modelos DKF – AR2 y DKF – ARX 
son mejores predictores que la media de los datos ob-
servados (dado que E > 0.5), es por ello que se con-
sidera como uno de los parámetros de evaluación del 
pronóstico de los índices de sequía.

Los Cuadros 4 y 5 muestran los valores medios de 
los estadísticos RMSE y E obtenidos en el pronóstico 
de los índices SPI y SPEI para las 14 estaciones ana-

Cuadro 3.	 Prueba de diferentes periodos de calibración para 
la estación 25025 P. Miguel Hidalgo, Sinaloa.

Table 3.	Test of different calibration periods for station 25025 
P. Miguel Hidalgo, Sinaloa.

Modelo Periodo de calibración (meses)

DKF – ARX-Pt 60 72 84 96 108
RMSE 0.37 0.37 0.37 0.36 0.37

E 0.855 0.860 0.857 0.868 0.869

[ ]/ 2ˆ ( ) ( )t tx L z Var e Lα± 	 (9)

where ˆ( ) ( )t t L te L x x L+= −  denotes the forecast error at time 
t when forecasting with L advance periods; z

a/2 denotes the 
percentage point of a standard normal distribution with a 
proportion of a/2 over it.

RESULTS AND DISCUSSION

In its process the Kalman filter generates two 
types of results: the predicted and updated states, 
the results will only include the forecast part since 
based on this the performance of the models will be 
evaluated to predict the future states of the drought 
indices.

The results are presented in the forecast of the 
SPI and SPEI drought indices in the Fuerte river 
watershed, implementing the DKF - AR2 and 
DKF - ARX models with information from 14 
meteorological stations in the period from 1961 to 
2011.

The na and nb indices were assigned the values 
of na = 2 and nb = 2, to generate the best results 
in terms of RMSE and E with the lowest possible 
number of observations (Table 2). Figure 4 shows 
that the calibration period for both models was 96 
months. The calibration period was established 
to estimate and re-estimate the parameters of the 
model during the study, since the characteristics of 
the drought can vary over time and have a cyclical or 
seasonal behavior. Different periods between 60 and 
108 months (less than 10 years) were tested, a range 
within which we can see some recurrent behavior 
of the drought indices and, besides, there is enough 
information to estimate the parameters of the model 
without considerably reducing the series available to 
make the forecast. Table 3 shows the results for each 
calibration period in terms of RMSE and E, where 
we deduced that the most appropriate period is 96 
months.

The statistics selected to describe the results of this 
study is the RMSE which is expressed in the units of 
the indices and was taken into account because the 
error made in the forecast defines the effectiveness of 
the model to make predictions and thus whether it is 
a suitable tool, otherwise other forecasting methods 
may be chosen. The second parameter is E, the Nash 
efficiency coefficient, which according to Moriasi et 
al. (2007), depending on the values of E, it would 
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lizadas, estos resultados se presentan por escala tem-
poral de los índices y por modelo utilizado, modelos 
DKF – AR2 y DKF – ARX- (Pt, ET0, Tmin, Tmax).

Las escalas temporales de 3 y 6 meses en ambos 
índices obtuvieron RMSE medios de entre 0.40 y 
0.70, el SPI y SPEI cambian de categoría cada 0.50 
unidades por lo que errores de esa magnitud signifi-
can un amplio margen de error en la predicción de 
los índices que puede llevarnos a subestimar la in-
tensidad de las condiciones de sequía o de humedad. 
En cambio, las escalas temporales de 12 y 24 meses 
obtuvieron valores promedio de RMSE entre 0.19 y 
0.34, lo que genera una mejor aproximación de las 
condiciones reales en la cuenca.

El coeficiente E, en el pronóstico del SPI de 3 
meses presenta valores medios menores e iguales a 
0.5, clasificando los modelos como insatisfactorios 
para estas condiciones; mientras que el SPEI para la 
misma escala temporal presenta valores medios de 
E clasificados como satisfactorios. El pronóstico del 
SPI y SPEI a escalas temporales de 6, 12 y 24 meses 
obtuvo valores promedio de E mayores a 0.70 clasi-
ficando los cinco modelos probados como buenos y 

Cuadro 5. Media de los resultados en el pronóstico del SPEI en la cuenca.
Table 5. Mean of the results in the SPEI forecast in the watershed.

Duración de la sequía en meses

Modelo 3 6 12 24
RMSE E RMSE E RMSE E RMSE E

AR-2 0.65 0.58 0.48 0.76 0.30 0.90 0.21 0.96
ARX-Pt 0.63 0.61 0.43 0.81 0.27 0.92 0.19 0.96

ARX-ET0 0.64 0.59 0.44 0.81 0.27 0.92 0.19 0.96
ARX-TMIN 0.64 0.60 0.44 0.81 0.27 0.92 0.19 0.96
ARX-TMAX 0.65 0.58 0.44 0.81 0.27 0.92 0.19 0.96

be the quality of the prediction of the model (E<0.5 
the model is unsatisfactory and when approaching 
1 it is a good model). These values arise from a 
relation between the data observed of the index and 
those that the forecast throws with the algorithm of 
the Discrete Kalman filter; in this relation the value 
of E indicates the degree in which the DKF - AR2 
and DKF - ARX models are better predictors than 
the mean of the observed data (given that E>0.5). 
Therefore, it is considered one of the parameters for 
evaluating the forecast given by drought indices.

Tables 4 and 5 show the mean values of the 
RMSE and E statistics obtained in the forecast of the 
SPI and SPEI indices for the 14 stations analyzed. 
These results are presented by the time scale of the 
indices and by the models used, models DKF - AR2 
and DKF - ARX- (Pt, ET0, Tmin, Tmax).

The 3- and 6-month time scales in both indices 
obtained RMSE means between 0.40 and 0.70; the 
SPI and SPEI change category every 0.50 units, so 
errors of this magnitude mean a wide margin of 
error in the prediction of the indices that can lead 
us to underestimate the intensity of drought or 

Cuadro 4. Media de los resultados en el pronóstico del SPI en la cuenca.
Table 4. Mean of the results in the SPI forecast in the watershed.

Duración de la sequía en meses

Modelo 3 6 12 24
RMSE E RMSE E RMSE E RMSE E

AR-2 0.67 0.50 0.53 0.70 0.34 0.88 0.24 0.94
ARX-Pt 0.68 0.51 0.46 0.78 0.32 0.89 0.21 0.95

ARX-ET0 0.70 0.48 0.46 0.78 0.32 0.89 0.21 0.95
ARX-TMIN 0.70 0.49 0.46 0.78 0.32 0.89 0.21 0.95
ARX-TMAX 0.70 0.48 0.47 0.78 0.32 0.89 0.21 0.95
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muy buenos, por lo tanto, a pesar de la magnitud de 
los errores que se cometen a escala de 6 meses, los 
modelos son mejores predictores que la media de los 
datos observados.

En términos generales de RMSE y E, el pronósti-
co del SPEI es mejor que el pronóstico del SPI para 
los modelos probados y en todas las escalas tempora-
les, esto puede deberse a que el SPEI involucra dos 
variables en su cálculo: la precipitación, que es una 
variable de carácter más aleatorio (espacial y tempo-
ralmente) que la temperatura, por lo que la variable 
temperatura da mayor estabilidad a las series del SPEI 
mejorando el pronóstico; en cambio el SPI utiliza 
para su cálculo únicamente a la precipitación, lo que 
genera alta variabilidad a la serie de datos y aumenta 
el error cometido en el pronóstico del índice como se 
observa en los Cuadros 4 y 5.

De los Cuadros 4 y 5 se concluye que el pronósti-
co del SPEI para las escalas de 12 y 24 meses genera 
mejores resultados que las escalas de 3 y 6 meses, en 
términos del RMSE y de E para los modelos autorre-
gresivos probados.

El Cuadro 6 muestra el modelo que generó mejo-
res resultados en el pronóstico con el filtro de Kalman 
Discreto del SPEI de 12 y 24 meses, se observa que 
en 6 de las 7 estaciones ubicadas en el estado de Chi-
huahua, en la parte alta de la cuenca, el mejor mo-
delo es el autorregresivo de segundo orden, AR2, el 
cual emplea solo la serie de datos mensuales del SPEI; 

Cuadro 6. Mejores modelos de pronóstico del SPEI con el DKF para cada estación.
Table 6. Best forecast models of the SPEI with the DKF for each station.

Clave Estación Mejor modelo 
de pronóstico

Duración de la sequía
12 24

RMSE E RMSE E

8038 Creel AR-2 0.27 0.92 0.19 0.97
8106 Norogachic AR-2 0.27 0.92 0.19 0.97
8161 Batopilas AR-2 0.28 0.91 0.16 0.97
8167 Chinipas ARX-Pt 0.27 0.92 0.19 0.96
8172 Guadalupe AR-2 0.26 0.94 0.16 0.98
8182 Moris AR-2 0.17 0.97 0.10 0.99
8267 El Vergel AR-2 0.27 0.91 0.17 0.96
25009 Bocatoma ARX-Pt 0.27 0.92 0.19 0.96
25019 Choix ARX-Pt 0.27 0.92 0.19 0.96
25025 P. Miguel H. ARX-Pt 0.27 0.92 0.19 0.96
25042 Higuera ARX-Pt 0.27 0.92 0.19 0.96
25044 Huites ARX-Pt 0.27 0.92 0.19 0.96
25100 Yecorato ARX-Pt 0.27 0.92 0.19 0.96
26053 Minas Nuevas ARX-Pt 0.27 0.92 0.19 0.96

humidity conditions. In contrast, the time scales 
of 12 and 24 months obtained average values of 
RMSE between 0.19 and 0.34, which generates a 
better approximation to the real conditions in the 
watershed.

The coefficient E, in the 3-month SPI forecast, 
presents mean values less than and equal to 0.5, 
classifying the models as unsatisfactory for these 
conditions; while the SPEI for the same time scale 
presents mean values of E assessed as satisfactory. The 
SPI and SPEI forecast at time scales of 6, 12 and 24 
months obtained mean values of E greater than 0.70, 
classifying the five models tested as good and very 
good, therefore, despite the magnitude of the errors 
committed at the 6-month scale, the models are 
better predictors than the mean of the data observed.

In general terms of RMSE and E, the SPEI 
forecast is better than the SPI forecast for the tested 
models and at all time scales. This may be due to 
the fact that the SPEI involves two variables in its 
calculation: precipitation, which is a variable of a 
more random character (spatially and temporally) 
than temperature, so that the temperature variable 
gives greater stability to the SPEI series, improving 
the prognosis; on the other hand, the SPI uses only 
precipitation for its calculation, which generates high 
variability in the data series and increases the error 
made in the forecast of the index, as shown in Tables 
4 and 5.
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las 8 estaciones restantes, la mayoría ubicadas en el 
norte de Sinaloa, presentaron mejores resultados con 
el modelo autorregresivo con entrada exógena de pre-
cipitación ARX-Pt. De entre las variables exógenas 
analizadas (precipitación, evapotranspiración de refe-
rencia y temperaturas máxima y mínima), la precipi-
tación presentó menor RMSE y mayor valor de E en 
todas las estaciones.

En el pronóstico del SPEI a duraciones de 12 y 
24 meses, se observó que un solo modelo no puede 
generar los mejores resultados para todas las estacio-
nes de la cuenca, sino que ambos modelos pueden 
ser buenas herramientas de pronóstico en función de 
características específicas de las series de datos de las 
estaciones. 

En la Figura 5 se muestra el modelo que resultó 
mejor predictor en cada estación y su probable aso-
ciación con las unidades climáticas que predominan 
en cada zona, es notable como las estaciones en las 
cuales la inclusión de una variable exógena no me-
joró el pronóstico se localizan en climas semifríos y 
templados; en cambio, las estaciones en las cuales el 
modelo ARX-Pt fue el mejor modelo de pronóstico 
se ubican en climas secos y cálidos, y en estas esta-
ciones la inclusión de la precipitación como variable 
exógena mejora el pronóstico de SPEI, y da mayor 
información al algoritmo.

Estación meteorológica
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Figura 5. Mejor modelo predictor del SPEI y unidades climáticas en la cuenca.
Figure 5. Best predictor model of the SPEI and climatic units in the watershed.

From Tables 4 and 5, we concluded that the SPEI 
forecast for the 12 and 24-month scales generates 
better results than the 3 and 6-month scales, in terms 
of the RMSE and E for the autoregressive models 
tested.

Table 6 shows the model that generated the best 
results in the forecast with the Discrete Kalman filter 
of the SPEI of 12 and 24 months. We observed that 
in 6 of the 7 stations that are located in the state of 
Chihuahua, in the upper part of the watershed, the 
best model is the second-order autoregressive AR2, 
which uses only the monthly data series of the SPEI. 
The remaining 8 stations, most of them located in 
the north of Sinaloa, presented better results with 
the autoregressive model with exogenous input of 
precipitation ARX-Pt. Among the exogenous variables 
analyzed (precipitation, reference evapotranspiration 
and maximum and minimum temperatures), 
precipitation was the one with the lowest RMSE and 
the highest value of E in all stations.

In the SPEI forecast at 12- and 24-month 
durations, we observed that a single model cannot 
generate the best results for all the stations in the 
watershed, but both models can be good forecasting 
tools based on specific characteristics of the data 
series of the stations.
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Esta diferencia en el mejor modelo de pronóstico 
para las estaciones de clima templado y cálido está 
dada por las características de las series del SPEI de 
cada estación. En la Figura 6 se muestran dos series 
del SPEI de 12 meses, la primera de la estación 8172 
Guadalupe ubicada en un clima templado, y la se-
gunda de la estación 25100 Yecorato, que se encuen-
tra en un clima cálido. En la figura se señalan algunas 
partes de las series donde se observa claramente que 
el número de oscilaciones del SPEI en Guadalupe es 
mucho menor que en Yecorato. Recordar que a partir 
de índices de sequía de -1.0 inicia la clasificación de 
sequía moderada (Castillo et al., 2017), y que entre 
más negativo es el índice, mayor es la sequía.

De manera similar, la Figura 7 muestra dos series 
del SPEI de 12 meses observado (línea) y el valor pro-
nosticado (asterisco). La serie superior corresponde a 
la estación 8106 Norogachic, de clima templado, su 
valor pronosticado se obtuvo con el modelo AR2 y se 
aprecia como la predicción se ajusta a la serie obser-
vada especialmente en los valores extremos. La serie 
inferior corresponde a la estación 25025 Presa Mi-
guel Hidalgo, ubicada en clima cálido, el mejor pro-
nóstico se obtuvo con el modelo ARX-Pt, y a diferen-
cia de la estación de clima templado la predicción no 
tiene un ajuste adecuado a los valores extremos.

Pronóstico con DKF – ARX-Pt

En las estaciones 8167, 25009, 25019, 25025, 
25042, 25044, 25100 y 26053 (6 de ellas están en 
Sinaloa), se obtuvieron mejores resultados en el pro-
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Figura 6. Comparación entre las series del SPEI de 12 meses de una estación de clima templado (Guadalupe, Chihuahua) y una 
estación de clima cálido (Yecorato, Sinaloa).

Table 6.	Comparison between the SPEI series of 12 months of a temperate climate station (Guadalupe, Chihuahua) and a warm 
climate station (Yecorato, Sinaloa).

Figure 5 shows the model that was the best 
predictor in each meteorological station and its 
probable association with the climatic units that 
predominate in each zone. It is worth noting that 
the stations in which the inclusion of an exogenous 
variable did not improve the forecast are located 
in semi-cold and temperate climates; whereas the 
stations in which the ARX-Pt model was the best 
forecast model are located in dry and warm climates. 
In these stations the inclusion of precipitation as an 
exogenous variable improved the SPEI forecast and 
gave more information to the algorithm.

This difference in the best forecast model for 
temperate and warm weather stations is due to the 
characteristics of the SPEI series of each station. 
Figure 6 shows two series of the 12-month SPEI, the 
first series of station 8172 Guadalupe located in a 
temperate climate, and the second of station 25100 
Yecorato, which is in a warm climate. The figure 
shows some parts of the series where it is clear that 
the number of oscillations of SPEI in Guadalupe is 
much lower than in Yecorato. Remember that from 
drought indices of -1.0 the classification of moderate 
drought begins (Castillo et al., 2017), and that the 
more negative the index, the greater the drought.

Similarly, Figure 7 shows two series of the 
12-month observed SPEI (line) and the predicted 
value (asterisk). The upper series corresponds to 
station 8106 Norogachic, of temperate climate; its 
predicted value was obtained with the model AR2, 
and it is possible to appreciate how the prediction fits 
the series observed, especially in the extreme values.
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nóstico del SPEI con el modelo DKF – ARX-Pt. Los 
resultados mostraron que el empleo de la precipita-
ción como variable exógena mejora el pronóstico en 
comparación con el realizado con el modelo DKF-
AR2 para estas estaciones. Con el modelo ARX se 
probaron como variables exógenas la precipitación, 
la evapotranspiración de referencia, la temperatura 
máxima y la mínima; sin embargo, en la mayoría de 
los casos la precipitación aportó mayor información 
al algoritmo y generó mejores resultados en términos 
de E y R que las variables restantes (Cuadro 6).

La asociación de los resultados con las unidades 
climáticas de la cuenca ubica estas estaciones en cli-
mas cálidos y secos. Como ya se mostró, las estaciones 
de clima cálido presentan series con mayor oscilación 
entre valores negativos y positivos del SPEI que las 
series de estaciones en climas templados y semifríos. 
Al tener series menos suavizadas el pronóstico se hace 

The lower series corresponds to the station 25025 
Presa Miguel Hidalgo, located in warm weather; 
the best forecast was obtained with the ARX-Pt 
model, and unlike the temperate climate station, the 
prediction does not have an adequate adjustment to 
the extreme values.

Forecast with DKF - ARX-Pt

In stations 8167, 25009, 25019, 25025, 25042, 
25044, 25100 and 26053 (6 of them are in Sinaloa), 
we obtained better results in the SPEI forecast with 
the DKF-ARX-Pt model. The results showed that 
the use of precipitation as an exogenous variable 
improves the forecast compared to the one made 
with the DKF-AR2 model for these stations.

With the ARX model, precipitation, reference 
evapotranspiration, maximum and minimum 

Figura 7.	 Serie del SPEI de 12 meses observado y pronosticado de una estación ubicada en clima frío (8106, Norogachic) y otra 
en un clima cálido (25025, P. Miguel Hidalgo).

Figure 7.	 SPEI series of 12 months observed and predicted from a station located in cold weather (8106, Norogachic) and 
another in a warm climate (25025, P. Miguel Hidalgo).
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menos preciso, por lo que la inclusión de una variable 
exógena (precipitación) aporta la información nece-
saria al modelo para mejorar su desempeño.

Las Figuras 8 y 9 presentan los diagramas de dis-
persión del SPEI de 12 y 24 meses, respectivamente, 
para las estaciones donde el modelo ARX-Pt resultó 
mejor. Estos muestran los valores de MSE, RMSE, 
E, R y PBE.

Figura 8.	 Diagramas de dispersión de valores observados y pronosticados del SPEI de 12 meses para algunas estaciones donde el 
ARX-Pt fue el mejor modelo.

Figure 8.	 Dispersion diagrams of observed and predicted values of 12-month SPEI for some stations where ARX-Pt was the best 
model.
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temperature were tested as exogenous variables; 
however, in most cases precipitation contributed 
more information to the algorithm and generated 
better results in terms of E and R than the remaining 
variables (Table 6).

The association of the results with the climatic 
units of the watershed locates these stations in hot 
and dry climates. As already shown, the hot weather 
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Pronóstico con DKF – AR2

Las estaciones 8038, 8106, 8161, 8172, 8182 y 
8267, toda ubicadas en el estado de Chihuahua sobre 
la Sierra Madre Oriental, obtuvieron mejores resul-
tados en el pronóstico del SPEI con el modelo DKF 
– AR2 (Cuadro 6). Los resultados mostraron que en 

Figura 9.	 Diagramas de dispersión de valores observados y pronosticados del SPEI de 24 meses para algunas estaciones donde 
el ARX-Pt fue el mejor modelo.

Figure 9.	 Dispersion diagrams of observed and predicted values of the SPEI of 24 months for some stations where the ARX-Pt 
was the best model.
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stations show series with greater oscillation between 
positive and negative values of the SPEI than the 
series of stations in temperate and semi-cold climates. 
By having less smoothed series the forecast becomes 
less precise, so the inclusion of an exogenous variable 
(precipitation) provides the necessary information to 
the model to improve its performance.
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estas estaciones la inclusión de una variable exógena 
como la precipitación, la evapotranspiración de refe-
rencia, la temperatura máxima y la mínima no aporta 
la suficiente información al algoritmo para mejorar 
los resultados obtenidos con el modelo AR2, en el 
mejor caso los iguala. La asociación de los resultados 
con el tipo de clima de la estación ubica estas estacio-
nes en climas semifríos y templados semihúmedos.

El valor del estadístico PBE (Percentage Bias 
Error, Porcentaje de Error de Sesgo) presenta valor 
negativo en la mayoría de las estaciones, lo que indica 
que el modelo DKF-AR2 subestima el valor del índi-
ce SPEI (Cuadro 6).

En ambos modelos de pronóstico del SPEI,  
DKF-AR y DKF-ARX,  las series de 12 meses pre-
sentan mayor error y menor valor del coeficiente de 
Nash que las de 24 meses, esto se debe a que a una es-
cala mayor la serie temporal asimila más lentamente 
los cambios dados en el balance Pt-ET0 a lo largo del 
tiempo, y, por lo tanto, presenta mayor suavidad en 
su recorrido mejorando el pronóstico. Sin embargo, 
ambos pronósticos de sequías de duraciones de 12 y 
24 meses son útiles. Pero dadas las características de 
los índices de sequía (SPI y SPEI) a una determinada 
escala (duración de sequía), en términos de operati-
vidad, la escala temporal de 12 meses se considera la 
más adecuada para el pronóstico de las sequías. Esto 
último, es especialmente apropiado en la parte media 
y baja de la cuenca, por su vocación agrícola y ener-
gética, donde al operar las presas se revisan políticas 
anuales de operación. Aunque el análisis de periodos 
de sequía de 24 meses es muy útil también.

Además del pronóstico del índice de sequía para 
el tiempo t+1|t, se pronosticaron los índices con 2, 3 
y 4 meses de adelanto, es decir, dado un valor obser-
vado del índice en el tiempo t se pronosticaron los 
valores del índice para el tiempo t+1, t+2, t+3 y t+4, 
sin actualizar la información, esto con el propósito de 
conocer el poder de predicción de los modelos para 
diferentes pasos de adelanto en el tiempo. 

Sin embargo, a manera de muestra, aquí se pre-
sentan solo los resultados del pronóstico para el SPEI 
de 12 meses. La Figura 10 muestra el pronóstico en la 
estación de la Presa Miguel Hidalgo en Sinaloa, con 
el SPEI de 12 meses con el modelo DKF – ARX-Pt  
con 1, 2, 3 y 4 meses de anticipación.

El pronóstico se concentra en la estimación pun-
tual de un valor del SPEI de 12 meses para algún 
mes futuro, pero de acuerdo con Chatfield (2004): 

Figures 8 and 9 show the dispersion diagrams 
of SPEI of 12 and 24 months, respectively, for the 
stations where the ARX-Pt model was better. These 
Figures show the values of MSE, RMSE, E, R and 
PBE.

Forecast with DKF – AR2

The stations 8038, 8106, 8161, 8172, 8182 and 
8267, all located in the state of Chihuahua on the 
Sierra Madre Oriental, obtained better results in the 
SPEI forecast with the DKF-AR2 model (Table 6). In 
these stations the inclusion of an exogenous variable 
such as precipitation, reference evapotranspiration, 
maximum and minimum temperature did not 
provide enough information to the algorithm to 
improve the results obtained with the AR2 model; if 
anything, it matched them.

The association of the results with the type of 
climate of the station locates these stations in semi-
cold and temperate semi-humid climates.

The value of the PBE (Percentage Bias Error) 
statistic is negative in most stations, which indicates 
that the model DKF-AR2 underestimates the value 
of the SPEI index (Table 6).

In both forecast models of the SPEI, DKF-AR 
and DKF-ARX, the 12-month series show higher 
error and lower value of the Nash coefficient than 
the 24-month series; this is due to the fact that on 
a larger scale the time series assimilates more slowly 
the changes given in the balance Pt-ET0 over time, 
and therefore presents more smoothness in its route, 
improving the forecast.

However, both forecasts of droughts of 12 
and 24-month duration are useful. But given the 
characteristics of the drought indices (SPI and SPEI) 
at a certain scale (duration of drought), in terms of 
operability, the 12-month time scale is considered 
the most appropriate for the forecast of droughts. 
The latter is particularly suitable in the middle and 
lower parts of the watershed due to its agricultural 
and energy values, where annual policies of operation 
are analyzed when operating the dams, although the 
analysis of drought periods of 24 months is very 
useful as well.

In addition to the forecast of the drought index 
for the time t+1|t, we predicted the indices with 2, 3 
and 4 months in advance; that is, given an observed 
value of the index in time t, we predicted the index 
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“el pronóstico puntual es adecuado para muchos pro-
pósitos, pero un intervalo de predicción es frecuen-
temente de gran ayuda para dar un mejor indicador 
de la incertidumbre futura”. Por lo tanto, se calculó 
el intervalo de confianza del pronóstico al 95 % para 
los pasos de adelanto (L) como se indica en la ecua-
ción (9).

En la Figura 10, además de los valores observados 
y pronosticados, hay una franja que sigue el recorrido 
del pronóstico (entre más negativo el índice, mayor es 
la sequía), y este es el intervalo de confianza del pro-
nóstico al 95 %. Conforme se avanza en el pronósti-
co el intervalo se hace más ancho, esto es, por ejem-
plo, que en el tiempo t hay menor incertidumbre de 
donde puede localizarse el valor observado del SPEI 
en el tiempo t+1 que del valor en el tiempo t+4 en el 
cual la incertidumbre es mucho mayor. También es 

values for the time t+1, t+2, t+3 and t+4 without 
updating the information, with the purpose of 
knowing the power of prediction of the models for 
different steps of advancement in time. However, as 
a sample, we present here only the forecast results for 
the 12-month SPEI. Figure 10 shows the forecast at 
the Miguel Hidalgo Dam station in Sinaloa, with the 
12-month SPEI using the DKF-ARX-Pt model with 
1, 2, 3 and 4 months in advance.

The forecast focuses on the point estimate of a 
12-month SPEI value for some future month, but 
according to Chatfield (2004): “the point forecast 
is adequate for many purposes, but a prediction 
interval is often very helpful to give a better indicator 
of future uncertainty”.  Therefore, we calculated the 
confidence interval of the forecast at 95 % for the 
advance steps (L), as indicated in equation (9).
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SPEI Observado vs Pronosticado a 3 meses Estación 25025 P. Miguel H.
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Figura 10.	 SPEI de 12 meses pronosticado con el modelo DKF – ARX-Pt con 1, 2, 3 y 4 meses de anticipación e intervalo de 
confianza al 95 %, estación Presa Miguel H., Sinaloa.

Figure 10.	 The 12-month SPEI predicted with the DKF-ARX-Pt model with 1, 2, 3 and 4 months of anticipation and 95% 
confidence interval, Presa Miguel H. station, Sinaloa.
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importante agregar que al final se observó como los 
errores totales de la predicción (del proceso + de me-
dición) se ajustaron a una distribución t-Student de 
media 0, la cual se acerca a una distribución Normal.

Es importante enfatizar que el filtro de Kalman 
es importante para el pronóstico de variables hidro-
meteorológicas porque se pueden predecir cauda-
les medios diarios (Gonzalez et al, 2015), caudales 
subhorarios (Morales et al., 2014), y predecir indica-
dores de sequías con algunos meses de anticipación. 
La predicción de sequías permite preparar planes de 
contingencia para reducir su impacto negativo.

CONCLUSIONES

El pronóstico de los índices de sequía SPI y SPEI 
mediante el filtro de Kalman discreto y dos mode-
los autorregresivos, AR2 y ARX, fue implementado 
satisfactoriamente para 14 estaciones meteorológicas 
en la cuenca del río Fuerte en el periodo 1961-2011. 
El modelo AR2 presentó mejores ajustes para la parte 
alta de la cuenca y el ARX, para la parte media y baja 
de la cuenca. Como variables externas en el modelo 
ARX se probaron las siguientes variables: precipita-
ción, evapotranspiración de referencia, temperatura 
máxima y temperatura mínima.  La variable externa 
en el modelo ARX que mejoró la predicción fue la 
precipitación. En otros estudios se recomienda in-
cluir como variable externa la humedad antecedente 
en la cuenca.

Resulta importante no solo monitorear sequías 
con índices mejorados como el SPEI, sino también 
pronosticarlas con anticipación para realizar planes 
de contingencia para las demandas de agua potable, 
agrícolas y ganaderas. El filtro de Kalman discreto re-
sultó una buena herramienta para el pronóstico de 
sequías. Ese es el aporte principal de esta investiga-
ción.
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