
1031

* Autor responsable v Author for correspondence.
Recibido: julio, 2017. Aprobado: enero, 2018.
Publicado como ARTÍCULO en Agrociencia 52: 1031-1042. 2018.

FUNCIONES DE DENSIDAD: UNA APLICACIÓN PARA 
DELIMITAR INTERVALOS ÓPTIMOS DE CLIMA 

Y FISIOGRAFÍA PARA ESPECIES FORESTALES

DENSITY FUNCIONS: AN APPLICATION FOR DELIMITING OPTIMAL INTERVALS OF 
CLIMATE AND PHYSIOGRAPHY FOR FOREST SPECIES

Pablo Antúnez1, Carmen Z. Quiñones-Pérez2, Wenceslao Santiago-García1, Mario E. Suárez-Mota1*

1División de Estudios de Postgrado-Instituto de Estudios Ambientales, Universidad de la 
Sierra Juárez, Avenida Universidad S/N, Ixtlán de Juárez, 68725, Oaxaca, México (suarezmota.
mario@gmail.com). 2Instituto Tecnológico del Valle del Guadiana. Carretera Durango-México 
Km 22.5 Villa Montemorelos, 34371, Durango, México.

RESUMEN

El espacio que ocupa una especie en el sistema natural puede 
delimitarse por el medio físico-geográfico o por las condicio-
nes ambientales que lo definen. El objetivo de este estudio fue 
delimitar intervalos climáticos en los que ocurre la tasa de 
presencia máxima de tres especies arbóreas (Pinus pseudos-
trobus Lindl (var. Apulcensis), Pinus patula Schl. et Cham 
y Quercus macdougallii Martínez) nativas de la Sierra Norte 
de Oaxaca, México, en función de nueve variables ambienta-
les usando la función de densidad de Weibull y el modelo de 
Gauss de mezclas finitas. Para lo anterior, se usaron datos de 
634 parcelas de 1000 m2 las cuales se establecieron sistemáti-
camente en el área de estudio. Los resultados mostraron que 
la alta dispersión de dos de las especies estudiadas (ambas de 
pino) está relacionada con la precipitación media de abril a 
septiembre; en contraste, la escasa presencia de Quercus mag-
dougalli (especie endémica) parece estar relacionada con los 
intervalos reducidos de la precipitación en el invierno y la 
altitud. Las dos funciones de densidad probadas permitieron 
definir los intervalos ambientales óptimos para cada especie. 
El modelo de mezclas finitas fue más flexible que la función 
de Weibull al identificar distribuciones bimodales, en parti-
cular para las dos especies de pino cuyo patrón de dispersión 
observado fue más heterogéneo que el de Quercus. Los resul-
tados obtenidos podrían servir para priorizar áreas con fines 
de conservación y comercialización.

Palabras clave: Modelo de Gauss de mezclas finitas, función de 
Weibull, Quercus magdougalli, Sierra Norte de Oaxaca, bosque 
templado.

ABSTRACT

The space a species occupies in a natural system can be 
delimited by the physical-geographic medium or by the 
environmental conditions that define it. The objective of this 
study was to delimit climate intervals in which the maximum 
presence rate occurs of three tree species native to the Sierra 
Norte of Oaxaca, Mexico (Pinus pseudostrobus Lindl (var. 
Apulcensis), Pinus patula Schl. et Cham, and Quercus 
macdougallii Martínez), in function of nine environmental 
variables using the Weibull density function and the finite 
Gaussian mixture model. To this end, we used data from 
634 plots measuring 1000 m2, which were established 
systematically in the study area. The results showed that 
high dispersion of the two pines species is related to mean 
precipitation from April to September. In contrast, the scarce 
presence of Quercus magdougalli, an endemic species, seems 
to be related to the reduced intervals of winter precipitation 
and to altitude. The two density functions tested allowed 
definition of optimal environmental intervals for each 
species. The finite mixture model was more flexible than the 
Weibull function when identifying bimodal distributions, 
particularly for the two pines species, whose observed 
dispersion pattern was more heterogeneous than that of 
Quercus. The results obtained will serve to prioritize areas for 
purposes of conservation or commercialization. 

Key words: Gaussian mixture model, Weibull function, Quercus 
magdougalli, Sierra Norte of Oaxaca, temperate forest.

INTRODUCTION

Several analytical tools were explored for 
studying distribution and abundance of live 
organisms, mainly statistical models or these in 
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INTRODUCCIÓN

En el estudio de la distribución y abundancia 
de los organismos vivos se han explorado va-
rias herramientas de análisis, principalmente 

modelos estadísticos, o estos en combinación con 
sistemas de información geográfica para caracterizar 
el hábitat de las especies (Austin, 1987; Segurado y 
Araujo, 2004; Elith et al., 2006) o para evaluar la 
respuesta de una especie de interés en función del 
cambio de las variables ambientales que definen el ni-
cho climático de las especies (Antúnez et al., 2017a). 
También se usan modelos basados en algoritmos de 
máxima entropía para predecir la distribución poten-
cial de los organismos (Brotons et al., 2004; Phillips 
et al., 2009; Franklin, 2010).
	 El espacio que ocupa una especie puede delimi-
tarse por el medio físico-geográfico o por las con-
diciones ambientales (Pearman et al., 2008; Elith y 
Leathwick, 2009). Los mapas son una herramienta 
valiosa para ilustrar el espacio físico-geográfico donde 
las especies encuentran las condiciones idóneas, pero 
delimitar y representar sólo el espacio medioambien-
tal no es fácil debido a que el efecto de cada varia-
ble del sistema natural es variable en magnitud y en 
intensidad (Martínez-Antúnez 2013; Antúnez et al., 
2017a). Esta tarea podría facilitarse si se conocen los 
intervalos óptimos de aquellas variables cuyos efectos 
puedan limitar o potenciar la abundancia de una es-
pecie en una localidad; es decir, es más fácil delimitar 
el espacio óptimo de una especie en función de las va-
riables más relevantes que delimitar el espacio defini-
do por todas las variables (espacio multidimensional) 
(Hutchinson, 1957; Austin y Smith, 1990).
	 Las funciones estadísticas de probabilidad se usan 
para describir la relación entre los organismos vivos y 
el ambiente a partir de patrones observados, para ex-
plicar la relación entre las especies y su área de mayor 
abundancia, o para conocer el patrón espacial e iden-
tificar valores climáticos óptimos (Borda-de-Água et 
al., 2002; Magurran, 2004; Gowda, 2011; Verberk, 
2012; Martínez-Antúnez, 2015).
	 Dado que es posible modelar la mayor concen-
tración de datos en un espacio probabilístico, tam-
bién puede usarse el mismo principio para definir 
un intervalo de cualquier variable ambiental basado 
en la probabilidad máxima de una función de den-
sidad (Antúnez et al., 2017a). En este sentido, una 
función de densidad de probabilidad puede ser una 

combination with geographic information systems, 
to characterize species’ habitats (Austin, 1987; 
Segurado and Araujo, 2004; Elith et al., 2006) or to 
evaluate the response of a specific species in function 
of change in environmental variables that define the 
bioclimate niche (Antúnez et al., 2017a). Models 
based on maximum entropy algorithms are also used 
to predict the potential distribution of organisms 
(Brotons et al., 2004; Phillips et al., 2009; Franklin, 
2010).
	 The space a species occupies can be delimited by 
the physical-geographic medium or by environmental 
conditions (Pearman et al., 2008; Elith y Leathwick, 
2009). Maps are a valuable tool for illustrating the 
physical-geographic space where a species can find 
ideal conditions. But delimiting and representing 
only the environmental space is not easy because 
each variable of the natural system is a variable in 
magnitude and intensity (Martínez-Antúnez 2013; 
Antúnez et al., 2017a). This task could be facilitated 
if we knew the optimal intervals of those variables 
whose effect can limit or potentiate the abundance of 
a species in a location. That is, it is easier to delimit 
the optimal space of a species in function of the most 
relevant variables that delimit the space defined by all 
the variables (multi-dimensional space) (Hutchinson, 
1957; Austin and Smith, 1990).
	 Statistical likelihood functions are used to 
describe the relationship between living organisms 
and the environment parting from observed patterns, 
to explain the relationship between the species and 
their area of greatest abundance, or to determine the 
spatial pattern and identify optimal climate values 
(Borda-de-Água et al., 2002; Magurran, 2004; 
Gowda, 2011; Verberk, 2012; Martínez-Antúnez, 
2015).
	 Given that it is possible to model the largest 
concentration of data in a probabilistic space, it 
is also possible to use the same principle to define 
an interval of any environmental variable based on 
maximum likelihood of a density function (Antúnez 
et al., 2017a). In this sense, a probability density 
function can be a useful tool in defining climate 
values in which the maximum probability that an 
abundance of a species would occur. 
	 The objective of this study was to determine 
the environmental intervals where the maximum 
abundance of individuals of three forest species 
native to the Sierra Norte of Oaxaca, Mexico, would 
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herramienta útil para definir valores climáticos en los 
cuáles ocurre la probabilidad máxima de la abundan-
cia de una especie.
	 El objetivo de este estudio fue determinar los 
intervalos ambientales donde ocurre la abundancia 
máxima de individuos de tres especies forestales na-
tivas de la Sierra Norte de Oaxaca, México, usando 
la función de densidad de Weibull y el modelo de 
Gauss de mezclas finitas. La hipótesis fue que estas 
funciones permiten definir la amplitud del nicho 
parcial con cada una de las variables climáticas, cuyos 
efectos son significativos para la distribución y abun-
dancia de las especies forestales.

MATERIALES Y MÉTODOS

Área de estudio

	 Santiago Comaltepec se localiza en la región Sierra Norte 
de Oaxaca, al sureste de México (17°33’35” N y -99°26’32” 
O), con una superficie aproximada de 26.5 km2 (Figura 1). La 
altitud fluctúa entre 1700 y 3000 msnm. La temperatura media 
máxima anual es 13.4 °C, la media mínima anual es 4.7 °C y la 
precipitación en verano varía de 600 a 1200 mm (CNA, 2017; 
INEGI, 2015).
	 De acuerdo con las observaciones realizadas durante la toma 
de datos y la información de inventarios forestales, la zona de 
estudio presenta una vegetación variada debido a los cambios 
fisiográficos en escasos kilómetros. En altitudes superiores a 2000 
m predominan los bosques de pino, pino-encino y bosque de 
encino en forma de franjas y manchones; entre 1700 y 1900 m 
hacia la vertiente del Pacífico, hay una mezcla de pino-encino 
con especies de selva mediana; en contraste, hacia la vertiente del 
golfo de México predomina el bosque mesófilo de montaña y las 
selvas alta y mediana (PCRM, 1992).

Muestreo y variables estudiadas
 
	 En el estudio de los organismos vivos los indicadores de 
abundancia más convencionales son la dominancia, la frecuen-
cia y la densidad (Schweik, 2017). En nuestro estudio se usó la 
densidad relativa de cada parcela como indicador de abundancia, 
que se define como la relación entre el número de individuos de 
cada especie registrada en cada parcela y el total de individuos de 
la misma especie de todas las parcelas. El muestreo sistemático 
se usó para establecer las parcelas de muestreo y cada unidad de 
muestreo tuvo una superficie de 1000 m2, en la cual se contaron 
individuos con diámetro mayor o igual a 7.5 cm y a 1.3 m del ni-
vel del suelo. En el área de estudio se establecieron 634 parcelas.

Figura 1. Mapa del área de estudio.
Figure 1. Map of the study area.

occur using the Weibull density function and the 
finite Gaussian mixture model. The hypothesis was 
that these functions permit defining the width of 
the partial niche with each of the climate variables 
whose effects are significant to the distribution and 
abundance of forest species.

MATERIALS AND METHODS

Study area

	 Santiago Comaltepec is located in the Sierra Norte region of 
Oaxaca (17°33’35” N and -99°26’32” W) southeast of Mexico 
City and has an area of approximately 26.5 km2 (Figure 1). 
Altitude varies between 1700 and 3000 m. Mean annual high 
temperature is 13.4 ºC, the mean annual low temperature is 
4.7 ºC and summer rainfall is 600 to 1200 mm (CNA, 2017; 
INEGI, 2015).

Sampling and studied variables

	 In the study of live organisms, the most conventional 
abundance indicators are dominance, frequency and density 
(Schweik, 2017). In our study, relative density of each plot 
was used as the indicator of abundance, which is defined as the 
relationship between the number of individuals of each species 
registered in each plot and the total of individuals of the same 

Santiago
Comaltepec

Oaxaca

km
0 0.10.2 0.4 0.6 0.8

-96°45’ -96°30’ -96°15’ -96° -96°45’ -96°30’ -96°15’

16
°4

5
17

°
17

°1
5’

17
°3

0’
17

°4
5’

18
°

-96°45’ -96°30’ -96°15’ -96° -96°45’ -96°30’ -96°15’

16
°4

5
17

°
17

°1
5’

17
°3

0’
17

°4
5’

18
°



AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018

VOLUMEN 52, NÚMERO 71034

	 Las tres especies arbóreas estudiadas fueron Pinus pseudostro-
bus Lindl (var. Apulcensis), Pinus patula Schl. et Cham y Quercus 
macdougallii Martínez. La primera especie a menudo se usa para 
reforestar áreas con suelos degradados o sitios sin vegetación, 
por ser una especie de rápido crecimiento; la segunda tiene alta 
demanda en los aserraderos, fábricas de muebles e industrias de 
celulosa y papel (Muñoz et al., 2011); y Q. macdougallii es una 
especie endémica de la Sierra Juárez y sólo se registró en 33 de las 
634 parcelas; no tiene uso comercial y está en la lista roja de es-
pecies amenazadas en la categoría “vulnerable” de la Unión Inter-
nacional para la Conservación de la Naturaleza (IUCN, 2017).
	 Las variables seleccionadas para el estudio fueron: la alti-
tud sobre el nivel del mar de cada sitio (ALT, m), la pendiente 
predominante de cada parcela (PEN, %), exposición geográfica 
(EXP: zenital (1), norte (2), noreste(3), este (4), sureste (5), sur 
(6), suroeste(7), oeste (8) y noroeste (9), precipitación media en 
invierno (nov+dic+ene+feb) (WINP, mm), día del año en que es 
probable que ocurra la última helada en primavera (SDAY, día), 
balance de precipitación verano/primavera (jul+ago)/(abr+may) 
(SMRSPRPB), precipitación de abril a septiembre (GSP, mm), 
índice de aridez anual (BHH) cuyo valor se estimó usando la 
raíz cuadrada de la sumatoria de la temperatura diaria  mayor a 
5 ºC (es decir, grados día > 5 ºC), dividido por  la precipitación 
media anual (Rehfeldt et al., 2006; Sáenz-Romero et al., 2012), 
y la precipitación media en verano (jul+ago) (SMRP, mm). Estas 
variables se seleccionaron usando un análisis de correlación mul-
tivariada por permutaciones (Yoder et al., 2004), eligiendo las 
variables que mostraron los coeficientes más elevados (< 0.8 con 
al menos una especie), de un total de 22 variables disponibles que 
incluye mediciones de temperatura (máximos, mínimos, prome-
dios), precipitaciones en periodos específicos y heladas (Rehfeldt 
et al., 2006). Las variables fisiográficas se registraron en campo 
con un Sistema de Posicionamiento Global (GPS) para la altitud, 
y un clinómetro Suunto® para la exposición y la pendiente. Las 
otras variables se obtuvieron con el modelador ANUSPLIN® del 
Servicio Forestal del Departamento de Agricultura de EUA (Re-
hfeldt et al., 2006; Crookston et al., 2008; Sáenz-Romero et al., 
2010), cuyos algoritmos se basan en el historial de información 
climática de más de 4,000 estaciones climatológicas de México, 
sur de EUA, Guatemala, Belice y Cuba, de 1961 a 1990. Estas 
variables se usaron en estudios similares por ser importantes para 
las especies forestales (Tchebakova et al., 2005; Martínez-Antú-
nez et al., 2015; Rehfeldt et al., 2015).

Análisis de datos

	 Para estimar el valor de una variable ambiental en el cual 
ocurre la tasa de abundancia máxima de una especie, se probaron 

species in all the plots. Systematic sampling was used to establish 
the sampling plots, and each sampling unit had an area of 1000 
m2, where individuals with a diameter at breast height larger than 
or equal to 7.5 cm were counted. In the study area, 634 plots 
were established. 
	 The tree species studied were Pinus pseudostrobus Lindl (var. 
Apulcensis), Pinus patula Schl. et Cham and Quercus macdougallii 
Martínez. The first species is often used (in the study region) 
to reforest areas with degraded soils or sites without vegetation 
because it is a fast-growing species. The second is of high demand 
in sawmills, furniture factories, and cellulose and paper industries 
(Muñoz et al., 2011). Quercus macdougallii is a species endemic 
to the Sierra Juárez and was registered in 33 of the 634 plots; it 
has no commercial use and is in the red list of endangered species 
in the category of “vulnerable” of the International Union for 
Conservation of Nature (IUCN, 2017). 
	 The variables selected for the study were altitude above sea 
level of each site (ALT, m), dominant slope of each plot (PEN, 
%), geographic exposure (EXP: zenithal (1), north (2), northeast 
(3), east (4), southeast (5), south (6), southwest (7), west (8), and 
northwest (9), mean winter precipitation (Nov+Dec+Jan+Feb) 
(WINP, mm), Julian date of the last freezing date of spring 
(SDAY, day), balance of precipitation summer/spring (Jul+Aug)/
Apr/May) (SMRSPRPB), precipitation from April to September 
(GSP, mm), annual aridity index (BHH) whose value was 
estimated using the square root of the sum of degree-days above 
5 ºC divided by mean annual precipitation (Rehfeldt et al., 2006; 
Sáenz-Romero et al., 2012), and mean summer precipitation 
(Jul+Aug) (SMRP, mm). These variables were selected by 
a multivariate correlation analysis using the bootstrapping 
method (Yoder et al., 2004), selecting the variables that had the 
highest coefficients (< 0.8 with at least one species) of a total 
of 22 available variables that include temperature measurements 
(high, low, average), precipitations in specific periods and frosts 
(Rehfeldt et al., 2006). Physiographic variables were recorded 
in the field with a GPS receiver (global positioning system) for 
altitude and a Suunto® clinometer for exposure and slope. The 
other variables were obtained with the ANUSPLIN® modeler of 
the Forest Service of the US Department of Agriculture (Rehfeldt 
et al., 2006; Crookston et al., 2008; Sáenz-Romero et al., 2010), 
whose algorithms are based on historical climate information 
from more than 4,000 weather stations in Mexico, southern US, 
Guatemala, Belize and Cuba, from 1961 to 1990. These variables 
were used in similar studies because of their importance for forest 
species (Tchebakova et al., 2005; Martínez-Antúnez et al., 2015; 
Rehfeldt et al., 2015).
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dos funciones de densidad de probabilidades: 1) la función 
de Weibull de dos parámetros (W2p), y 2) el modelo de Gauss 
de mezclas finitas, al usar como variable de interés la densidad 
de cada especie expresada en términos relativos. La función de 
Weibull y el modelo de Gauss de mezclas finitas generan modelos 
robustos y flexibles; la función de Weibull permite expresar de 
manera analítica el valor de la integral mediante las funciones 
de distribución acumulada (Torres, 2005), y el modelo de Gauss 
ofrece resultados satisfactorios debido a las aportaciones de cada 
mezcla gaussiana en términos de probabilidad (e.g. Bilmes, 1998; 
Yang y Ahuja, 1998; Paalanen et al., 2006).
La función de densidad de probabilidad (FDP) de Weibull de 
dos parámetros se expresa así:

   /1,
cx bc

c

c
f x c b x e

b
-- 	 (1)

y su función acumulada es:

   /, 1 x bf x c b e
- - 	 (2)

donde c>0, es el parámetro de forma, y b>0 el parámetro de 
escala. 

	 La bondad de ajuste del modelo de Weibull se verificó con la 
prueba de Kolmogorov-Smirnov (K-S) a un nivel de significancia 
de 0.2. Esta técnica se basa en la diferencia máxima absoluta en-
tre las distribuciones acumuladas de los valores observados y de 
los valores esperados (teóricos) (Marsaglia et al., 2003). Además, 
para conseguir estimadores consistentes y asintóticamente efici-
entes, la estimación final de los parámetros de Weibull se hizo 
por el método de máxima verosimilitud (MLE) (Zarnoch y Dell, 
1985; Borders et al., 1987; Seguro y Lambert, 2000).
	 El modelo de Gauss de mezclas finitas se expresa así:

 
1

,
M

ik ik ik
k

p x Ci W p xt 


      	 (3)

donde Wik son las aportaciones de cada mezcla gaussiana en tér-
minos de probabilidad desde la k-ésima mezcla hasta M total 
de distribuciones gaussianas, cuya sumatoria 

1

M

k
  es igual 

a 1 (Bilmes, 1998); y la función de densidad de probabilidad 
,ik ik

p xt  
  , corresponde a la distribución normal mul-

tivariada no singular de una variable aleatoria D-dimensional 
(Paalanen et al., 2006). Las expresiones iniciales de la distribu-
ción normal multivariada no singular de una variable aleatoria 
con D-dimensiones, su expresión para describir la función de 
densidad de probabilidad de un vector aleatorio, así como sus 
derivaciones de la expresión original a partir de la distribución 
normal, pueden consultarse en Bilmes (1998), Xuan et al. (2001) 
y Paalanen et al. (2006).

Data analysis

	 To estimate the value of an environmental variable in which 
the maximum abundance rate of a species occurs, two probability 
density functions were tested: 1) the two-parameter Weibull 
function (W2p), and 2) the finite Gaussian mixture model, 
using the density of each species expressed in relative terms as the 
variable of interest. The Weibull function and the finite Gaussian 
mixture model generate robust, flexible models. The Weibull 
function allows analytical expression of the value of the integral 
using the functions of accumulated distribution (Torres, 2005). 
The Gaussian model offers satisfactory results because of the 
contributions of each Gaussian mixture in terms of likelihood 
(e.g. Bilmes, 1998; Yang and Ahuja, 1998; Paalanen et al., 2006).
The two-parameter Weibull likelihood density function is 
expressed as follows:

   /1,
cx bc

c

c
f x c b x e

b
-- 	 (1)

And its accumulated function is:

   /1,
cx bc

c

c
f x c b x e

b
-- 	 (2)

where c>0 is the form parameter and b>0 is the scale parameter. 
Goodness of fit of the Weibull model was verified with the 
Kolmogorov-Smirnov (K-S) test at a 0.2 significance level. This 
technique is based on the absolute maximum difference between 
the accumulated distributions of the observed values and of the 
expected (theoretical) values (Marsaglia et al., 2003). Moreover, 
to obtain consistent, asymptotically efficient estimators, the 
final estimation of the Weibull parameters was done with the 
maximum likelihood method (MLE) (Zarnoch and Dell, 1985; 
Borders et al., 1987; Seguro and Lambert, 2000).
	 The finite Gaussian mixture model is expressed as follows:

 
1

,
M

ik ik ik
k

p x Ci W p xt 


      	 (3)

where Wik are the contributions of each Gaussian mixture in 
terms of probability from the kth mixture to M total Gaussian 
distributions, whose sum 

1

M

k
  is equal to 1 (Biolmes, 

1998), and the probability density function ,ik ik
p xt  
    

corresponds to the non-singular multivariate normal distribution 
of a random D-dimensional variable (Paalanen et al., 2006). 
The initial expressions of the non-singular multivariate normal 
distribution of a random variable with D-dimensions and 
its expression to describe the probability density function of 
a random vector, as well as their derivations of the original 
expression using the normal distribution can be consulted in 
Bilmes (1998), Xuan et al. (2001) and Paalanen et al. (2006).
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	 La estimación de las densidades de probabilidad del modelo 
de mezclas finitas p(x|Ci) se hizo por el método de máxima verosi-
militud, con el algoritmo de entrenamiento de máxima esperanza 
dada su alta sensibilidad (Dempster et al., 1977), según la meto-
dología de Fraley et al. (2012) con el paquete “mclust” de R (R 
Core Team, 2017).
	 El intervalo óptimo de abundancia para cada especie se de-
limitó usando un clúster probabilístico definido por la densidad 
del modelo de mezclas finitas cuyo espacio puede clasificarse en 
tau-ésimas probabilidades (Chen et al., 2006; Fraley et al., 2012; 
Fraley et al., 2017). En nuestro estudio, tau es una medida de 
probabilidad estandarizada y toma cualquier valor posible (suce-
sos elementales) del espacio probabilístico (entre 0 y 100), siendo 
la zona cercana al centroide del clúster la que presenta mayor 
probabilidad. Un tau de 0.35 se usó porque el 98 % de las proba-
bilidades máximas definidas por ambos modelos se distribuyeron 
entre los límites de esta región probabilística (del centro hacia 
afuera). Para las dos especies de pino se usaron modelos de Gauss 
de dos componentes mixtos (Chen et al., 2006) con el propósito 
de identificar distribuciones con tendencias multimodales, y para 
Q. macdougallii se ajustó un modelo de un componente al regis-
trarse una menor cantidad de individuos en el área de estudio.

RESULTADOS Y DISCUSIÓN

	 Las curvas de densidad proyectadas por las dos 
funciones usadas revelaron los valores ambientales en 
los cuales ocurrió la probabilidad máxima de abun-
dancia de cada especie. Por ejemplo, la tasa de abun-
dancia óptima de P. pseudostrobus ocurre cuando el 
balance de precipitación verano/primavera (SMRS-
PRPB) toma un valor cercano a 5.5 (Figura 2A) y la 
tasa de abundancia óptima de Q. macdougallii ocurre 
cerca de 2,775 m de altitud (Figura 2B).
	 La anchura entre el límite superior e inferior, re-
ferido en nuestro estudio como intervalo óptimo de 
abundancia (IOA), varió para cada especie aunque 
crecen en la misma región ecográfica (Cuadro 1). 
Por ejemplo, P. patula mostró un IOA en sitios cuyas 
pendientes fluctúan entre 8 y 80 %, con una anchura 
más amplia en relación con la pendiente, seguida por 
Q. macdougallii (50) y P. pseudostrobus (34). Respec-
to a la altitud, Q. macdougallii mostró un IOA más 
estrecho comparado con los de otras dos especies con 
una anchura de solo 550 m; en contraste, P. patula 
mostró un IOA más amplio, con límites de 2200 a 
2900 m (700 m de anchura) (Cuadro 1).
	 Observaciones similares pueden hacerse con res-
pecto a otras variables como la precipitación registrada 

	 Probability densities of the finite mixture model p(x|Ci)  
were estimated with the maximum likelihood method, with the 
training algorithm of maximum expectancy given it is highly 
sensitive (Dempster et al., 1977), according to the methodology 
of Fraley et al. (2012) with the mclust package in R (R Core 
Team, 2017).
	 The optimal abundance interval for each species was 
delimited using a probabilistic cluster defined by the density 
of the finite mixture model whose space can be classified into 
tauth probabilities (Chen et al., 2006; Fraley et al., 2012; Fraley 
et al., 2017). In our study, tau is a standardized measure of 
probability and takes any possible value (elementary successions) 
of the probabilistic space (between 1 and 100), the zone near 
the centroid of the cluster being that of greatest probability. A 
tau of 0.35 is used because 98 % of the maximum probabilities 
defined by both models were distributed between the limits of 
this probabilistic region (from the center outward). For the two 
pines species, the Gaussian models with two mixed components 
were used (Chen et al., 2006) in order to identify distributions 
with multi-modal tendencies, and for Q. macdougallii a Gaussian 
model with a single component was adjusted because a smaller 
number of individuals was recorded in the study area.

RESULTS AND DISCUSSION

	 The density curves projected by the two functions 
used revealed the environmental values in which the 
maximum likelihood of abundance of each species 
occurred. For example, the optimal abundance 
rate of P. pseudostrobus occurred when the balance 
of summer/spring precipitation (SMRSPRPB) 
has a value near 6.6 (Figure 2A), and the optimal 
abundance rate of Q. macdougallii occurs near 2,775 
m altitude (Figure 2B).
	 The distance between the upper and lower limits, 
referred to in our study as the optimal abundance 
interval (IOA), varied for each species, although they 
grow in the same eco-graphic region (Table 1). For 
example, P. patula had an IOA at sites whose slopes 
fluctuated between 8 and 80%, with a broader interval 
in relation to slope, followed by Q. macdougallii 
(50) and P. pseudostrobus (34). Regarding altitude, 
Q. macdougallii had a narrower IOA than the other 
two species with a width of only 550 m. In contrast, 
P. patula had a broader IOA with limits at 2200 to 
2900 m (a width of 700 m) (Table 1).
	 Similar observations can be made regarding other 
variables such as precipitation recorded in specific 
periods, annual aridity index and day of the last 
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en periodos específicos, el índice de aridez anual y el 
día de la última helada en primavera. Por ejemplo, 
la cantidad óptima de precipitación para P. patula de 
abril a septiembre (GSP) fue de 1,100 a 2,200 mm, 
la óptima en verano fue de 450 a 1,000 mm y en in-
vierno de 150 a 447 mm; pero Q. macdougallii mos-
tró IOA más estrechos en los mismos periodos: 1,150 
a 2,100 mm de abril a septiembre, (una anchura de 
950 mm), de 500 a 950 mm en verano y de 165 a 
425 en invierno. El IOA más estrecho del índice de 
aridez se observó en P. pseudostrobus y fue de 0.017 a 
0.034, seguido por los intervalos óptimos de Q. ma-
cdougallii y de P. patula cuyos límites fueron de 0.01 
a 0.035 y de 0.02 a 0.046, respectivamente (Cuadro 
1).
	 Durante la toma de datos se observaron variacio-
nes en la densidad de individuos según las variables 
fisiográficas predominantes, en particular con las ex-
posiciones de cada unidad de muestreo. Así, la tasa de 
abundancia máxima de P. patula se observó en sitios 
con exposiciones oeste y noroeste, P. pseudostrobus en 
exposiciones noreste y noroeste, y Q. macdougalli con 
mayor presencia en exposiciones suroeste, noroeste y 
noreste (Cuadro 1).
	 Las dos funciones de densidad de probabilida-
des usadas modelaron con robustez la abundancia 
máxima de las tres especies estudiadas, con una ma-

Figura 2. Curvas de densidad de (A) Pinus pseudostrobus en función del balance de precipitación verano/primavera; (B) curvas 
de densidad de Quercus macdougallii en función de la altitud.

Figure 2. Density curves of (A) Pinus pseudostrobus as a function of the summer/spring precipitation balance; (B) density curves 
of Quercus macdougallii as a function of altitude.

frost in spring. For example, the optimal amount of 
precipitation for P. patula from April to September 
(GSP) was 1,100 to 2,200 mm, the optimal in 
summer was 450 to 1,000 mm, and in winter 150 to 
447 mm, but Q. macdougallii had narrower IOA in 
the same periods: 1,150 to 2,100 mm from April to 
September (a width of 950 mm), 500 to 950 mm in 
summer and 165 to 425 in winter. The narrowest IOA 
of the aridity index was observed in P. pseudostrobus, 
0.017 to 0.034, followed by optimal intervals of Q. 
macdougallii and P. patula whose limits were 0.01 to 
0.035 and 0.02 to 0.046, respectively (Table 1).
	 During data collection we observed variations 
in density of individuals that depended on the 
predominating physiographic variables, particularly 
the exposures of each unit of sampling. Thus, the 
maximum abundance rate of P. patula was observed 
in sites with west and northwest exposures, for P. 
pseudostrobus in northeast and northwest exposures, 
and Q. macdougalli with greater presence in 
southwest, northwest and northeast exposures (Table 
1).
	 The two probability density functions used robustly 
modeled maximum abundance of the three species 
studied, with greater sensitivity in the projections 
generated with the finite Gaussian mixture models. 
This model detected bimodal trends of several species 
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yor sensibilidad en las proyecciones generadas con el 
modelo de Gauss de mezclas finitas. Este modelo de-
tectó tendencias bimodales de varias especies ante la 
variación de una variable ambiental, como el caso de 
P. pseudostrobus en función de la precipitación en el 
verano cuyos valores de probabilidad máxima se ob-
servaron cuando la precipitación es de 615.1 (Cua-
dro 1) y 872.8 mm (Figura 3A y 3B) , así mismo, 
Q. macdougalli mostró un comportamiento similar 
frente a la altitud sobre el nivel del mar (Figura 2B) 
al observarse un segundo vértice en menor escala de 
la curva de densidad hacia los 2200 msnm, como 
respuesta a la concentración de datos muestrales en-
tre 2000 y 2500 m de altitud (Figura 2B). La mayor 
plasticidad del modelo de Gauss de mezclas finitas 
podría corresponder al mayor número de parámetros 
en su estructura y, sobre todo, al aporte individual 
de cada mezcla gaussiana (Bilmes, 1998; Xuan et al., 
2001; Paalanen et al., 2006). Sin embargo, a pesar 
del número reducido de parámetros de la función 

Cuadro 1. Valores de variables climáticas y fisiográficas en los cuales ocurre la probabilidad máxima y límites del intervalo óptimo 
para cada especie estudiada.

Table 1. Values of climate and physiographic variables in which the maximum probability occurs and limits of the optimal 
interval for each species studied. 

Especies
WINP (mm)   PEND (%)   SDAY (días)

LI MAX LS AI LI MAX LS AI LI MAX LS IOA

Pinus patula 150 185.4 447 297 18 50.6 70 52 8 12.9 80 72
Pinus pseudostrobus 180 252.1 447 267 28 52.5 62 34 18 56.0 68 50
Quercus 
macdougallii 165 336.4 425 260 10 15.5 60 50 10 55.6 79 69

  BHH AI SMRSPRPB AI ALT(msnm) AI
Pinus patula 0.020 0.032 0.046 0.026 5.3 5.4 5.8 0.5 2200 2263 2900 700
Pinus pseudostrobus 0.017 0.026 0.034 0.017 5.4 5.5 5.8 0.4 2300 2613 2890 590
Quercus 
macdougallii 0.010 0.019 0.035 0.025 5.3 5.6 5.8 0.5 2350 2775 2900 550

  GSP(mm) AI SMRP (mm) AI EXP  
Pinus patula 1100 1118.7 2200 1100 450 489.6 1000 550 oeste y noroeste
Pinus pseudostrobus 1150 1385.3 2100 950 500 615.1 980 480 noreste, noroeste

Quercus 
macdougallii 1150 1782.2 2100 950 500 807.5 950 450  

suroeste, noroeste, 
noreste (predomina 
suroeste)

WINP: precipitación en invierno; PEN: pendiente predominante; SDAY: día del año de la última helada en primavera; BHH: índice 
de aridez anual; SMRSPRPB: balance de precipitación verano/primavera (jul+ago)/(abr+may); ALT: altitud sobre el nivel del mar; GSP: 
precipitación de abril a septiembre; SMRP: precipitación en verano; EXP: exposición geográfica;  LI: límite inferior del intervalo óptimo 
de abundancia; LS: límite superior del intervalo óptimo de abundancia; MAX: valor de la variable respectiva donde ocurre la tasa de 
abundancia máxima e IOA: intervalo óptimo de abundancia. v WINP: Winter precipitation; PEN: dominant slope; SDAY: Julian date 
of the last freezing date of spring; BHH: annual aridity index; SMRSPRPB: summer/spring precipitation balance (Jul+Aug)/(Abr+May); 
ALT: altitude over sea level; GSP: precipitation from April to September; SMRP: summer precipitation; EXP: geographic exposure; LI: 
lower limit of the optimal abundance interval; LS: upper limit of the optimal abundance interval; MAX: value of the respective variable 
where the maximum abundance rate occurs; and IOA: optimal abundance interval.

in the face of variation in an environmental variable, 
such as the case of P. pseudostrobus in function of 
summer precipitation whose values of maximum 
probability were observed when precipitation was 
615.1 mm (Table 1) and 872.8 mm (Figure 3A and 
3B). Likewise, Q. macdougalli behaved in a similar 
way with altitude above sea level (Figure 2B) when 
a second smaller scale vertex of the density curve 
was observed around 2200 masl, as a response to 
the concentration of sample data between 2000 and 
2500 m altitude (Figure 2B). The greatest plasticity of 
the finite Gaussian mixture model could correspond 
to the larger number of parameters in its structure 
and, above all, to the individual contribution of each 
Gaussian mixture (Bilmes, 1998; Xuan et al., 2001; 
Paalanen et al., 2006). However, despite the reduced 
number of parameters of the Weibull function 
(Equations 1 and 2), this function also projected 
a maximum abundance probability similar to the 
mixed model (Figures 2A and 2B). 
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de Weibull (Ecuaciones 1 y 2), esta función también 
proyectó una probabilidad máxima de abundancia 
similar al modelo mixto (Figuras 2A y 2B). 
	 El valor de una variable en el cual ocurre la pro-
babilidad de abundancia máxima de una especie no 
siempre quedó en la parte central de la distribución, 
dado que en la mayoría de los casos no siguen dis-
tribuciones normales (Figuras 2B y 3A). Además, la 
abundancia no sigue un patrón único de distribución 
ante al cambio de las variables ambientales y al aña-
dirse más variables ambientales, el espacio resultante 
no tendría una forma geométrica ni podría modelar-
se con la función normal estándar de Gauss (Antúnez 
et al., 2017b).
	 Los resultados de nuestro estudio sugieren que la 
escasa distribución de Q. macdougallii en el área de 
estudio, podría estar relacionada con la estrechez de 
los intervalos óptimos (IOAs) de las precipitaciones 
en el verano e invierno y la altitud, cuyos intervalos 
fueron pequeños comparados con los de Pinus patula 
y P. pseudostrobus (Cuadro 1). La amplia distribución 
de estas últimas parece corresponder al IOA amplio 
de la cantidad del fenómeno de heladas y la lluvia de 
abril a septiembre, variable cuyo efecto es significativo 

Figura 3. Representación (A) bidimensional y (B) en perspectiva del intervalo óptimo de abundancia para Pinus pseudostrobus en 
función de la precipitación en verano y la pendiente del terreno a un tau de 0.35. Los dos triángulos en la figura bidi-
mensional representan los puntos en los cuales ocurren las probabilidades máximas de un modelo de Gauss de mezclas 
finitas de dos componentes.

Figure 3. Bidimensional (A) representation and in perspective of the optimal abundance Interval (B) for Pinus pseudostrobus as a 
function of summer rainfall and land slope at a tau of 0.35. The two triangles in the bidimensional figure represent the 
points at which the maximum probabilities of a two-component finite Gaussian mixture model occur.

	 The value of a variable at which the probability 
of maximum abundance of a species occurs does 
not always remain in the center of the distribution, 
given that in most cases they do not follow normal 
distributions (Figures 2B and 3A). Moreover, 
abundance does not follow a unique pattern of 
distribution because of changing environmental 
variables and, when more environmental variables are 
added, the resulting space will not have a geometric 
form, nor could it be modeled with the Gaussian 
standard normal function (Antúnez et al., 2017b).
	 The results of our study suggest that the scarce 
distribution of Q. macdougallii in the study area 
could be related to narrow optimal intervals (IOAs) 
of summer and winter precipitation and altitude, 
whose intervals were small compared with those 
of Pinus patula and P. pseudostrobus (Table 1). The 
broad distribution of the latter seems to correspond 
to broad IOA of the number of frost and rainfall 
events from April to September, variable whose effect 
is significant on several conifers and latifoliate species 
in northwestern Mexico such as Abies durangensis, 
Pinus maximinoi, Quercus resinosa, Q. acutifolia and 
Q. urbanii (Martínez-Antúnez et al., 2013).  
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sobre varias especies de coníferas y latifoliadas en el 
noroeste de México como Abies durangensis, Pinus 
maximinoi, Quercus resinosa, Q. acutifolia  y Q. urba-
nii  (Martínez-Antúnez et al., 2013).  

En nuestro estudio no se identificaron con cla-
ridad los intervalos óptimos de las especies en fun-
ción del índice de aridez anual, debido a los valores 
pequeños que asume esta variable. Pero este índice 
tiene un efecto significativo en la diversidad de las 
especies forestales (Silva-Flores et al., 2014), y en la 
distribución y abundancia de las mismas al igual que 
la precipitación de abril a septiembre y la temperatu-
ra mayor a 5 °C, según Sáenz-Romero et al. (2010) y 
Sáenz-Romero et al. (2012).
	 Al momento de tomar los datos en campo se ob-
servaron indicios de un incendio forestal en los fustes 
de los árboles adultos y, en particular, en las zonas 
mayor presencia de Q. macdougallii. El incendio 
pudo alterar la densidad de esta especie; además, la 
abundancia de las plantas es afectada por otros facto-
res que no se consideraron en nuestro estudio, como 
las características edafológicas o las actividades hu-
manas (Clark et al., 1998; Rajakaruna, 2004). Tam-
bién debe tomarse en cuenta que la ausencia de una 
especie en una localidad dada, no necesariamente se 
debe a la escasez de recursos o la ausencia de condi-
ciones ambientales óptimas, sino que la especie no 
ha explorado dicha localidad (Soberón y Peterson, 
2005; Soberón y Miller, 2009).
	 En virtud de que los intervalos óptimos de abun-
dancia delimitados con las funciones de densidad no 
se asemejan a ninguna figura geométrica (Figura 3A), 
en particular, al incluirse dos o más componentes 
mixtos. Nuestro estudio podría complementarse con 
otras herramientas de análisis que permitan estudiar 
las formas indefinidas que asumen los IOA de las es-
pecies, por ejemplo, empleando herramientas de geo-
metría diferencial.

CONCLUSIONES

	 Las funciones de densidad probados en nuestro 
estudio permiten definir el intervalo óptimo de una 
variable medioambiental relevante para una especie. 
En este intervalo ocurre la mayor probabilidad de 
abundancia de todo el espectro de valores de cual-
quier variable. Los resultados generados podrían ser 
útiles para implementar estrategias de conservación; 
por ejemplo, para realizar plantaciones de estas especies 

	 In our study, optimal intervals of the species were 
not identified in function of the annual aridity index, 
due to the small values of this variable. However, like 
precipitation from April to September and degree-
days above 5 °C, this index has a significant effect 
on forest species diversity (Silva-Flores et al., 2014) 
and on their distribution and abundance, according 
to Sáenz-Romero et al. (2010) and Sáenz-Romero et 
al. (2012).
	 When field data were being collected, evidence 
of forest fire was observed on adult tree trunks and, 
particularly, in areas where more Q. macdougallii 
were present. The fire could have altered the density 
of this species, and abundance of plants is affected 
by other factors not considered in our study, such 
as edaphological characteristics or human activity 
(Clark et al., 1998; Rajakaruna, 2004). It should also 
be taken into account that the absence of a species 
in a given location is not necessarily due to scarcity 
of resources or absence of optimal environmental 
conditions, but that the species has not explored that 
location (Soberón and Peterson, 2005; Soberón and 
Miller, 2009).
	 Because the optimal intervals of abundance 
delimited with density functions are not similar to 
any geometric figure (Figure 3A), particularly when 
two or more mixed components are included, our 
study could be complemented with other analytical 
tools that would allow study of the undefined shapes 
that species IOA take on, for example, using tools 
from differential geometry. 

CONCLUSIONS

	 The density functions tested in our study allowed 
definition of the optimal interval of a relevant 
environmental variable for a species. In this interval, 
the highest probability of abundance of the entire 
spectrum of values of any variable occurs, for 
example, to establish plantations of these or other 
species of ecological interest in the face of a climatic 
contingency or one caused by different types of 
biological factors or agents.

—End of the English version—
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u otras de alto interés ecológico ante una contingen-
cia climática o causada por agentes o factores biológi-
cos de distinta índole.
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