
1

PREDICCIÓN DE VARIABLES METEOROLÓGICAS 
POR MEDIO DE MODELOS ARIMA

METEOROLOGICAL VARIABLES PREDICTION THROUGH ARIMA MODELS

G. Javier Aguado-Rodríguez1*, Abel Quevedo-Nolasco1, Martiniano Castro-Popoca1, 
Ramón Arteaga-Ramírez2, M. Alberto Vázquez-Peña2, B. Patricia Zamora-Morales3

1Hidrociencias. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de 
México. (aguado.graciano@colpos.mx), (anolasco@colpos.mx), (mcastro@colpos.mx). 2Irriga-
ción. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México. (arteagar@co-
rreo.chapingo.mx), (mvazquezp@correo.chapingo.mx). 3Instituto Nacional de Investigaciones 
Forestales, Agrícolas y Pecuarias. Km. 13.5. Carretera Los Reyes-Texcoco. 56250. Texcoco, 
Estado de México (zamora.patricia@inifap.gob.mx).

Resumen

La predicción de las variables meteorológicas se aplica en la 
agricultura al predecir el consumo de agua de las plantas para 
planear la lámina de riego. En esta investigación se elaboró 
un programa para realizar la predicción de la temperatura, 
radiación solar, evapotranspiración de referencia y humedad 
relativa con modelos autorregresivos integrados de media 
móvil (ARIMA) y se probó la efectividad del programa para 
realizar la predicción en condiciones de alta y baja precipita-
ción.  Los periodos de predicción evaluados fueron en marzo 
y en junio de 2013 en tres estaciones meteorológicas auto-
máticas (EMAS) del Servicio Meteorológico Nacional (SMN). 
El análisis de los resultados indicó que la predicción de las 
variables meteorológicas con modelos ARIMA fue mejor que 
con la predicción persistente en el periodo con condiciones 
de baja precipitación (marzo).
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Introducción

Hay grandes progresos en el desarrollo y las 
aplicaciones de la predicción del clima a 
mediano plazo y su predicción estacional 

(Vitart et al. 2012). Los algoritmos de predicción 
automáticas más usados son con base en el suaviza-
do exponencial o modelos autorregresivos integrados 
de media móvil (ARIMA) (Hyndman y Khandakar, 
2008). Box y Jenkins (1976) desarrollaron la meto-
dología clásica que emplea las series de tiempo para 
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Abstract

Meteorological variables prediction is applied in agriculture to 
predict water uptake of plants for planning irrigation depths. 
In the present study a program was made for the prediction 
of temperature, solar radiation, reference evapotranspiration 
and relative humidity by means of autoregressive integrated 
mobile media models. The effectiveness of the program was 
tested for prediction under high and low rainfall conditions. 
The prediction periods evaluated were in March and in June, 
2013, in three automatic meteorological stations (EMAS) 
of the National Meteorological Service (SMN). The analysis 
of results indicated that the prediction of meteorological 
variables with ARIMA models was better than with persistent 
prediction in the period with low rainfall conditions (March).
    
Key words: Prediction, R Statistics, real time.

Introduction

There is great progress in the development 
and applications of medium term weather 
prediction and seasonal climate (Vitart et 

al., 2012). The most frequently used automatic 
prediction algorithms are based on the softened 
exponential or autoregressive integrated mobile 
media models (ARIMA) (Hyndman and Khandakar, 
2008). Box and Jenkins (1976) developed the classic 
methodology that uses the time series for generating 
models such as the autoregressive mobile media 
model (ARMA) or also the ARIMA model for 
obtaining predictions. 

Karl et al. (2000) found an increment in the global 
warming rate using the time series of global mean 
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generar modelos como el autoregresivo de media 
móvil (ARMA) o también el modelo ARIMA para 
obtener predicciones.

Karl et al. (2000) reportaron un aumento en la 
tasa de calentamiento global usando la serie de tiem-
po de la temperatura media global indicada por Qua-
yle et al. (1999), por medio del análisis de valores 
mensuales de temperatura y con modelos ARMA. 
Reikard (2009) investigó la predicción de la radia-
ción solar en intervalos de tiempos de 5 min hasta 
varias horas y aunque los datos exhibieron variabi-
lidad no lineal debido a la nubosidad, en la mayoría 
de las pruebas se obtuvieron los mejores resultados 
usando los modelos ARIMA. Pulido (2002) propuso 
estimar la demanda de agua en las próximas 24 h en 
un sistema de distribución de agua para riego usan-
do modelos ARIMA y otros modelos. Para predecir 
la lluvia del monzón de verano en la India, Chatto-
padhyay y Chattopadhyay (2010) identificaron un 
modelo ARIMA como adecuado, pero el modelo de 
redes neuronales autorregresivas (ARNN) proporcio-
nó mejores predicciones, mientras que Narayanan et 
al. (2013) usaron modelos ARIMA para predecir las 
lluvias antes del monzón en el oeste de la India.

Debido a que los modelos ARIMA son una herra-
mienta para realizar predicción de series de tiempo 
univariadas, en esta investigación se propuso elaborar 
un programa de cómputo que calcule la predicción 
en tiempo real de variables meteorológicas usando 
modelos ARIMA y probar su efectividad en condi-
ciones de baja y alta precipitación.

Materiales y Métodos

Para esta investigación se usó una computadora con proce-
sador de 2.2 GHz, 2 GB de memoria RAM y sistema operativo 
Windows 7®. En la computadora se instaló: el programa de cóm-
puto MySQL Server®, que es un gestor de bases de datos para 
almacenar información (Korhonen et al., 2008); Microsoft Vi-
sual Studio 2010® que es un conjunto completo de herramientas 
de desarrollo para la generación de aplicaciones Web ASP.NET, 
Servicios Web XML, aplicaciones de escritorio y aplicaciones 
móviles (Randolph et al., 2010); MySQL Conector Net 6.3.5® 
que es un conector del programa Microsoft Visual Studio 2010® 
con MySQL Server (Kofler, 2005); R Statistics 2.15.3®, un pa-
quete de cómputo estadístico (Dalgaard, 2008); librerías ‘rcom’ 
y ‘rscproxy’del programa R Statistics 2.15.3 (conectores del pro-
grama R Statistics 2.15.3 con Microsoft Visual Studio 2010); y 
la librería ‘forecast’ del programa R Statistics 2.15.3, se usó para 
la estimación y predicción de los modelos ARIMA.

temperature indicated by Quayle et al. (1999), using 
the analysis of monthly values of temperature and 
with ARMA models. Reikard (2009) investigated the 
prediction of solar radiation in 5 min time intervals 
for various hours, and although the data exhibited 
non-linear variability due to cloudiness, in most of 
the tests best results were obtained using the RIMA 
models. Pulido (2002) proposed the estimation of 
water demand in the next 24 h in a water distribution 
system for irrigation using ARIMA and other 
models. To predict rainfall of the summer monsoon 
in India, Chattopadhyay and Chattopadhyay (2010) 
identified an ARIMA model as adequate, but the 
autoregressive neuronal network model (ARNN) 
provided better predictions, while Narayanan et al. 
(2013) used ARIMA models to predict rainfall prior 
to the monsoon in western India.

Because the ARIMA models are a tool used 
for univariate weather prediction, the present 
investigation was made with the purpose of 
elaborating a computer program that calculates 
prediction in real time of meteorological variables 
using ARIMA models and testing its effectiveness 
under low and high rainfall conditions.

Materials and Methods

The present investigation used a computer with a processor 
of 2.2 GHz, 2 GB of RAM memory and Windows 7® operative 
system. The following programs were installed: MySQL Server®, 
which is an administrator of data bases for storing information 
(Korhonen et al., 2008); Microsoft Visual Studio 2010®, which 
is a complete set of development tools for the generation of 
applications of Web ASP.NET, XML Web Services, desktop and 
mobile applications (Randolph et al., 2010); MySQL Connector 
Net 6.3.5® which is a connector of the program Microsoft Visual 
Studio 2010® with MySQL Server (Kofler, 2005); R Statistics 
2.15.3®, computer statistical package (Dalgaard, 2008); ‘rcom’ 
and ‘rscproxy’ libraries of the program R Statistics 2.15.3 
(connectors of the program R Statistics 2.15.3 with Microsoft 
Visual Studio 2010); and the ‘forecast’ library of the program 
R Statistics 2.15.3, which was used for the estimation and 
prediction of the ARIMA models.

To store meteorological information, a data base was made 
integrated with two data tables, in the program MySQL Server 
(Figure 1). The first data table was called ‘station’ and was used 
to store the information of each meteorological station, and 
for each station an identifier is required of station, latitude, 
longitude, altitude and name, and the primary key is the station 
identifier. The second data table, called ‘elemhoraria’ was used 
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Para almacenar información meteorológica se elaboró una 
base de datos integrada con dos tablas de datos, en el programa 
MySQL Server (Figura 1). La primera tabla de datos se deno-
minó ‘estación’ y fue usada para guardar la información de cada 
estación meteorológica, y por cada estación se requiere un iden-
tificador de estación, latitud, longitud, altitud y nombre, y la 
llave primaria es el identificador de estación. La segunda tabla de 
datos, denominada ‘elemhoraria’, se usó para almacenar la infor-
mación de los datos meteorológicos a nivel horario de estaciones 
meteorológicas; los datos almacenados en esta tabla son: fecha 
y hora, evapotranspiración (ET0 en mm), velocidad del viento 
(VELS en m/s), precipitación (mm), radiación solar (RADSOL 
en W/m2), temperatura media (TEMP en °C), humedad relativa 
(HR en %),  y un identificador de estación de la cual provienen 
los datos; la llave primaria es la unión de los datos de fecha e 
identificador de estación.

En la Figura 1 se observa que una estación puede tener mu-
chos registros a nivel horario y muchas estaciones pueden tener 
datos meteorológicos para una hora en particular.

Datos meteorológicos

Para comprobar la bondad predictiva de los modelos ARI-
MA, se usaron datos de tres estaciones meteorológicas automáti-
cas (EMAS) del Servicio Meteorológico Nacional, México, para 
el 2013. Las EMAS fueron: ENCB. II del IPN, ubicada en 19° 
29’ 55” N, 99° 08’ 43” O y altitud de 2240 m; Acolman, ubicada 
en 19° 38’ 05” N, 98° 54’ 42” O y altitud de 2269  m; Chapingo, 
ubicada en 19° 29’ 39” N, 98° 53’ 19” O y altitud de 2260 m.

En las EMAS para este estudio hay datos continuos a nivel 
horario de cinco variables meteorológicas en dos periodos: el pri-
mero es del 7 de marzo de 2013 a las 16:00 h y el 17 de marzo 
de 2013 a las 15:00 h; el segundo es del 16 de junio de 2013 a las 
16:00 h y 26 de junio de 2013 a las 15:00 h. Las variables me-
teorológicas obtenidas de las EMAS fueron: velocidad del viento 
(m/s), precipitación (mm), radiación solar (W/m2), temperatura 
media (°C), humedad relativa (%). Además se calculó la eva-
potranspiración de referencia (ET0) por el método de Penman 
Monteith (Allen, 2006) con los datos anteriores.

Modelos ARIMA

Según Pankratz (1983), los modelos ARIMA sirven para 
predecir series simples (de una sola variable), en los que las pre-
dicciones de los modelos ARIMA están basadas sólo en valores 
pasados de la variable a predecir. Los modelos ARIMA se pueden 
usar para hacer predicciones a corto plazo porque la mayoría de 
ellos ponen mayor énfasis en el pasado reciente que en el pasado 
distante; se aplican a variables discretas o continuas, aunque el 
tiempo debe ser igualmente espaciado y en intervalos discretos; 

Figura 1. Base de datos.
Figure 1. Data base

‘estación’

ID. Estación °
Latitud
Longitud
Altitud
Nombre

‘elemhoraria’

Fecha °
ETo
Vel. Viento
Precipitación
Radiación
Temperatura
Humedad
ID. Estación °° Llave primaria

to store the information of the meteorological data at the time 
level of meteorological stations; the data stored in this table are: 
date and time, evapotranspiration (ET0 in mm), wind velocity 
(VELS in m/s), rainfall (mm), solar radiation (SOLRAD in W/
m2), mean temperature (TEMP in °C), relative humidity (RH in 
%), and an identifier of the station from which the data is from: 
the primary key is joining the data of date and station identifier.   

In Figure 1, it is observed that a station can have many records 
at the hourly level and many stations can have meteorological 
data for a particular hour.

Meteorological data

To test the predictive goodness of the ARIMA models, data 
were used from three automatic meteorological stations (EMAS) 
of the National Meteorological Service, Mexico, for 2013. 
The EMAS considered were as follows: ENCB. II of the IPN, 
located at 19° 29’ 55” N, 99° 08’ 43” W and altitude of 2240 m; 
Acolman, located at 19° 38’ 05” N, 98° 54’ 42 W and altitude 
of 2269 m; Chapingo, located at 19° 29’ 39” N, 98° 53’ 19” W 
and altitude of 2260 m.

In the EMAS for this study there are continuous data at the 
hourly level of five meteorological variables in two periods: the 
first is of March 7, 2013 at 16:00 h and March 17, 2013 at 
15:00 h; the second is of June 16 , 2013 at 16:00 h and June 
26, 2013 at 15:00 h. The meteorological variables obtained 
from the EMAS were as follows: wind velocity (m/s), rainfall 
(mm), solar radiation (W/m2), mean temperature (°C), relative 
humidity (%). In addition, reference evapotranspiration (ET0) 
was calculated by the Penman Monteith method (Allen, 2006) 
with the above data.

ARIMA Models

According to Pankratz (1983), the ARIMA models serve 
to predict simple series (of a single variable), in which the 
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son útiles para predecir series de datos que contienen variación 
estacional (u otras variaciones periódicas), incluyendo aquellas 
con patrones estacionales cambiantes; requieren como mínimo 
alrededor de 50 observaciones; se aplican sólo a series de datos 
estacionarios, y una serie de tiempo estacionaria tiene una me-
dia, varianza y función de autocorrelación constantes a través del 
tiempo (Pankratz, 1983).

El requisito de una serie de tiempo estacionaria puede pa-
recer enteramente restrictiva, pero la mayoría de las series no 
estacionarias en la práctica se pueden transformar a una serie es-
tacionaria a través de una transformación llamada “diferenciar”, 
la cual es una operación relativamente simple que envuelve el 
cálculo de cambios sucesivos en los valores de las series de datos. 
Los cambios en la serie de datos se conocen como (wt) y se obtie-
nen con la ecuación wt=zt - zt-1, donde z representa los valores 
de la serie de datos. Con las diferencias se construye una nueva 
serie diferente de la serie original, y una “diferencia” es cuando la 
media de una serie de datos cambia con el tiempo. Es posible “di-
ferenciar” más de una sola vez para obtener una serie estacionaria. 
Al ya tener una serie estacionaria, se realiza la búsqueda por un 
buen modelo ARIMA y consiste en: identificación, estimación, 
diagnóstico del modelo; y si el modelo es adecuado se realiza la 
predicción (Pankratz, 1983).

Descripción del procedimiento de la 
librería Forecast para estimar el modelo ARIMA

Según Hyndman et al. (2013), un obstáculo común al usar 
modelos ARIMA para predecir es que el proceso de selección del 
orden es generalmente considerado subjetivo y difícil de aplicar. 
Por tanto, se elaboró la librería Forecast para elegir el orden del 
modelo de manera automática, y donde los algoritmos son apli-
cables a ambos, datos estacionales y no-estacionales.

Para Hyndman et al. (2013) un proceso ARIMA(p,d,q) no-
estacional está dado por:

(1-Bd)yt = c + f(B)yt +  f(B)et

donde {et} es un proceso de ruido blanco con media cero y va-
rianza s2, B es el operador de retraso, y f(z) y f(z) son polino-
mios de orden p y q, respectivamente. Para asegurar casualidad 
e invertibilidad se asume que f(z) y f(z) no tienen raíces para 
|z|<1. Si c≠0, hay un polinomio implícito de orden d en la fun-
ción de predicción. El proceso estacional ARIMA (p,d,q) (P,D,Q)m 
está dado por

(1-Bm)D (1-B)d yt = c + f (Bm) f(B) yt  + Q(Bm) q(B) et

predictions of the ARIMA models are based only on past values 
of the variable for prediction. The ARIMA models can be used 
to make short term predictions because most of them place more 
emphasis on the recent past than on the distant past; they are 
applied to discrete or continuous variables, although time should 
be equally spaced and in discrete intervals; they are useful for 
predicting data series that contain seasonal variation (or other 
periodic variations), including those with changing seasonal 
patterns; they require a minimum of 50 observations; it is 
applied only to series of stationary data, and a series of stationary 
time has a mean, variance and function of autocorrelation that 
are constant through time (Pankratz,1983).

The requirement of a stationary time series may seem totally 
restrictive, but most of the non-stationary series in practice can 
be transformed into a stationary series through a process called 
“differentiation”, which is a relatively simple operation that 
involves the calculation of successive changes in the values of 
the data series. The changes in the data series are known as (wt) 
and are obtained with the equation wt=zt–zt-1, where z represents 
the values of the data series. With the differences a new series 
is constructed, different from the original, and a “difference” is 
when the mean of a series of data changes with time. It is possible 
to “differentiate” more than just once to obtain a stationary series. 
When a stationary series is obtained, a good ARIMA model is 
sought and consists of : identification, estimation, diagnostic of 
the model, and if the model is adequate the prediction is made 
(Pankratz, 1983).

Description of the procedure of the 
Forecast library for estimating the ARIMA model

According to Hyndman et al. (2013), a common obstacle 
when using ARIMA models for prediction is that the selection 
process of the order is generally considered subjective and difficult 
to apply. Therefore, the Forecast library was made to select the 
order of the model automatically, and where the algorithms are 
applicable to both stationary and non-stationary data.

For Hyndman et al. (2013), a non-stationary ARIMA 
process (p,d,q) is obtained by:

(1-Bd)yt = c + f(B)yt +  f(B)et

where {et} is a white noise process with mean zero and variance 
s2, B is the delay operator, and f(z) and f(z) are polynomials of 
order p and q, respectively. To insure causality and invertibility, 
it is assumed that f(z) and f(z) do not have roots for |z|<1. If 
c≠0, there is an implicit polynomial of d order in the prediction 
function. The seasonal process ARIMA(p,d,q)(P,D,Q)m is 
obtained as follows:
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donde f(z) y f(z) son polinomios de orden P y Q respectiva-
mente, cada uno no conteniendo raíces dentro del círculo uni-
tario. Si c≠0, hay un polinomio implícito de orden d+D en la 
función de predicción.

     La tarea principal de la librería Forecast que Hyndman et al. 
(2013) realizan en la predicción automática del modelo ARIMA, 
es seleccionar un apropiado orden de modelo y son los valores 
de p, q, P, Q, D, d. Si D y d conocidos. Los órdenes p, q, P y Q 
se pueden seleccionar por medio de un criterio de información 
como el Criterio de Información de Akaike (AIC):

AIC = -2 log(L) + 2 (p+q+P+Q+k)

donde k=1 si c≠0 y 0 de otra manera, y L es la probabilidad 
maximizada del modelo ajustado a los datos diferenciados (1-Bm)D 

(1-B)dyt.

Para propósitos de predicción Hyndman et al. (2013) indi-
can que es mejor hacer tan pocas diferencias como sea posible. 
Para datos no estacionales Hyndman et al. (2013) consideran 
modelos ARIMA(p,d,q) donde d es seleccionada basándose en el 
test de raíces unitarias sucesivas KPSS (Kwiatkowski et al., 1992). 
El método prueba los datos para una raíz unitaria; si el resultado 
de la prueba es significativa, se prueban los datos diferenciados 
para para una raíz unitaria; y así sucesivamente.

Para datos estacionales, en la librería Forecast se consideran 
modelos ARIMA (p,d,q) (P,D,Q)m donde m es la frecuencia esta-
cional y D=0 o D=1, dependiendo de una prueba extendida de 
Canova-Hansen (Canova and Hansen, 1995). Después de selec-
cionar D se elige d aplicando el test de raíces unitarias sucesivas 
KPSS a los datos estacionales diferenciados (si D=1) o a los datos 
originales (si D=0).

Estimación de la predicción

Con Microsoft Visual Studio 2010 se desarrolló una apli-
cación ejecutable (.exe), con la cual se realizan funciones para la 
predicción de las variables meteorológicas. Sin embargo, antes de 
describir dichas funciones es importante remarcar que la mayoría 
de las EMAS tienen la opción de descargar la información que 
registran y guardarla en archivos de texto. Por lo anterior, se rea-
lizó la primera función para extraer los datos de las variables me-
teorológicas almacenados en archivos de texto (de cada EMAS) y 
guardarlos en la base de datos. En la base de datos se almacenan 
los datos meteorológicos a nivel horario de distintas EMAS y 
se organizan por fecha y por identificador de EMA; los datos 
obtenidos se guardan en la tabla de datos ‘elemhoraria’. Con esta 
función también se calcula la evapotranspiración de referencia 

(1-Bm)D (1-B)d yt = c + f (Bm) f(B) yt  + Q(Bm) q(B) et

where f(z) and f(z) are polynomials of order P and Q, 
respectively, neither one containing roots within the unitary 
circle. If c≠0, there is an implicit polynomial of order d+D in the 
prediction function.

The principal task of the Forecast library that Hyndman et 
al. (2013) carry out in the automatic prediction of the ARIMA 
model is to select an appropriate order of model and they are the 
known values of p, q, P, Q, d. If D and d are known. The orders p, 
q, P, and Q can be selected by means of a criterion of information 
such as the Akaike Information Criterion (AIC):

AIC = -2 log(L) + 2 (p+q+P+Q+k)

where k=1 if c≠0 and 0 otherwise, and L is the maximized 
probability of the model fitted to the differentiated data (1-Bm)D 

(1-B)dyt.

For purposes of prediction, Hyndman et al. (2013) point 
out that it is better to make the fewest differences possible. For 
non-seasonal data, Hyndman et al. (2013) consider ARIMA 
(p,d,q) models where d is selected based on the test of successive 
unitary roots KPSS (Kwiatkowski et al., 1992). The method tests 
the data for a unitary root; if the result of the test is significant, 
differentiated data are tested for a unitary root; and so on.

For seasonal data, in the Forecast library ARIMA(p,d,q)
(P,D,Q)m models are considered where m is the seasonal 
frequency and D = 0 or D = 1, depending on an extended test of 
Canova-Hansen (Canova and Hansen, 1995). After selecting D, 
d is selected applying the test of successive unitary roots KPSS to 
the differentiated seasonal data (if D =1) or to the original data 
(if D=0).

Estimation of the prediction

With Microsoft Visual Studio 2010 a usable application 
was developed (.exe), with which functions are made for the 
prediction of the meteorological variables. However, before 
describing these functions it is important to emphasize that most 
of the EMAS have the option of downloading the information 
they record and saving it in text files. Therefore, a first function 
was made for extracting the data of the meteorological variables 
stored in text files (of each EMAS) and storing them in the data 
base. The meteorological data are stored in the data base at the 
schedule level of different EMAS and are organized by date and 
identifier of EMA; the data obtained are stored in the data table 
‘elemhoraria’. Its function is also used to calculate reference 
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por el método de Penman Monteith (Allen, 2006) y el resultado 
se almacena en la misma tabla de datos.

Cuando termina la primera función se tienen los promedios 
de las variables meteorológicas a nivel horario en la base de datos. 
Con la segunda función se genera una serie de tiempo por cada 
variable meteorológica de las tres EMAS, y la serie de tiempo así 
generada tiene 60 datos. Cada dato de la serie de tiempo con-
siste en el promedio de dos horas; por ejemplo, si para el día 
16/06/2013 a las 16:00, 17:00, 18:00 y 19:00 h el promedio 
de temperatura fue 22, 23.7, 24.7 y 24.8 °C respectivamente, 
y el día 21 de junio de 2013 a las 14:00 y 15:00 h el promedio 
de temperatura fue 16.2 y 15.6 °C, respectivamente, entonces la 
serie de tiempo tendrá los valores 22.85, 24.75, …, 15.9 °C, con 
un total de 60 datos. Las series de tiempo generadas se almacenan 
en un archivo de texto creado automáticamente con extensión 
‘.txt’ para cada EMA (Figura 2); el archivo tiene seis columnas 
(una columna por cada variable meteorológica) y 61 filas. La pri-
mer fila contiene los nombres de las variables meteorológicas; sin 
embargo, sólo se analizaron cuatro variables. La primera variable 
está en la primer columna y tiene los datos de evapotranspira-
ción de referencia  (mm), en la cuarta columna están los datos 
de radiación solar (W/m2), en la quinta columna están los datos 
de la temperatura (°C), y en la sexta columna están los datos de 
humedad relativa (%).

Al terminar la segunda función se tienen las series de tiempo 
para cada variable meteorológica necesaria para realizar la predic-
ción. Con la tercera función se realiza la predicción. En el primer 
paso de la tercera función se establece una conexión entre el pro-
grama R Statistics 2.15.3 con Microsoft Visual Studio 2010; el 
lenguaje de programación fue C#. Después se envía un comando 
al programa R Statistics 2.15.3 para hacer el ajuste de las series 
de tiempo, de cada variable meteorológica, a un modelo ARIMA 
usando la función “auto.arima” de la librería Forecast (Hyndman 
et al., 2013); después de lo anterior, ya con el modelo ARIMA 
estimado automáticamente, se envía un comando al programa 

Figura  2.	 Contenido del archivo de texto con series de tiem-
po de variables meteorológicas para la EMA ENC-
BII para el periodo de junio.

Figure 2.	 Content of the text file with time series of 
meteorological variables for the EMA ENCBII for 
the period of June.

evapotranspiration by the Penman Monteith method (Allen, 
2006) and the result is stored in the same data table.

When the first function is completed, the averages of the 
meteorological variables are obtained at the hour level in the data 
base. The second function is used to generate a time series for 
each meteorological variable of the three EMAS, and the resulting 
time series contains 60 data. Each data of the time series consists 
of the average of two hours. For example, if for day 16/06/2013 
at 16:00, 17:00, 18:00 and 19:00 the average temperature was 
22, 23.7, 24.7 and 24.8 °C, respectively, and on June 21 of 2013 
at 14:00 and 15:00 h the average temperature was 16.2 and 15.6 
°C, respectively, then the time series will have the values 22.85, 
24.75, …, 15. °C, with a total of 60 data. The generated time 
series are stored in a text file created automatically with extension 
‘.txt’ for each EMA (Figure 2). The file has six columns (one 
column for each meteorological variable) and 61 days. The first 
row contains the names of the meteorological variables; however, 
only four variables are analyzed. The first variable is in the first 
column and has the data of reference evapotranspiration (mm), 
the fourth column has the data of solar radiation (W/m2), the 
fifth column contains the data of temperature (1C) and the sixth 
column includes the data of relative humidity (%).

When the second function is finished, we have obtained 
the time series for each meteorological variable necessary for 
carrying out the prediction. The prediction is obtained with the 
third function. In the first step of the third function a connection 
is established between the program R Statistics 2.15.3 and 
Microsoft Visual Studio 2010; the programming language 
was C#. Then a command is sent to the program R Statistics 
2.15.3 to fit the time series of each meteorological variable to an 
ARIMA model using the function “auto.arima” of the Forecast 
library (Hyndman et al., 2013). Next, using the automatically 
estimated ARIMA model, a command is sent to the program R 
Statistics 2.15 to make the prediction of the next 60 elements in 
the time series.

The function “auto.arima” of the Forecast library (Hyndman 
et al., 2013) gives back the best ARIMA model. However, the 
function “auto.arima” requires arguments such as a univariate 
time series, the order of the first difference “d” (if it is not put in, 
the function “auto.arima” selects a value according to the KPSS 
test), the order of the first seasonal difference “D” (if it is not put 
in, the function “auto.arima” calculates it), the maximum value 
for p, q, P, Q, the initial value of p, q, P, Q (optional), if the time 
series is stationary, if the time series is seasonal, among other 
optional data.

For the function “auto.arima” the options were specified of 
maximum value of p equal to 5, maximum value of q equal to 
5, and the seasonal option equal to “TRUE”, because otherwise 
the search for non-seasonal models is restricted. The last function 
consists of saving the predictions obtained with the function 
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R Statistics 2.15 para hacer la predicción de los 60 elementos 
siguientes en la serie de tiempo.

La función “auto.arima” de la librería Forecast (Hyndman et 
al., 2013) regresa el mejor modelo ARIMA. No obstante, la fun-
ción “auto.arima” requiere argumentos como una serie de tiempo 
univariada, el orden de la primera diferencia “d” (si no se coloca, 
la función “auto.arima” elige un valor de acuerdo con la prueba 
KPSS), el orden de la primera diferencia estacional  “D” (si no se 
coloca, la función “auto.arima” lo calcula), el máximo valor para 
p, q, P, Q, el valor inicial de  p, q, P, Q (opcional), si la serie de 
tiempo estacionaria, si la serie de tiempo es estacional, entre otros 
datos opcionales.

Para la función “auto.arima” se especificaron las opciones 
valor máximo de p igual a 5, valor máximo de q igual a 5, y 
la opción estacional igual a “TRUE” porque de lo contrario se 
restringe la búsqueda para modelos no-estacionales. La última 
función consiste en guardar las predicciones obtenidas con la 
función “auto.arima”. Para lo anterior, se crean archivos de texto 
con extensión ‘.txt’ y en estos se almacenan las predicciones; el 
nombre del archivo se crea con la unión del nombre de la EMA, 
el nombre de la variable y la palabra PRED al final (para indicar 
que es predicción). En la Figura 3 se muestra el archivo generado 
de la estación ENCBII para la variable temperatura del aire.

     En el archivo texto generado por la predicción (Figura 3), en la 
primera línea, la predicción del promedio de la variable entre las 
16:00 y 17:00 h el 21 de junio de 2013, en la segunda línea está 
la predicción del promedio de la variable entre las 18:00 y 19:00 
h el 21 de junio de 2013, y en la última fila del archivo está la 
predicción del promedio de la variable entre las 14:00 y 15:00 h 
del día 26 de junio de 2013.

Resultados y Discusión

La precisión de la predicción en los dos periodos 
fue evaluada. En el primero, los datos observados en-
tre 7 de marzo de 2013 a las 16:00 h hasta el 12 de 
marzo de 2013 a las 15:00 h, se usaron para generar 
la serie de tiempo, y los datos observados entre 12 de 
marzo de 2013 a las 16:00 y 17 de marzo de 2013 a 
las 15:00 h se usaron para compararlos con los da-
tos estimados con el modelo de predicción. Después 
se evaluó la precisión de la predicción en el segundo 
periodo. Los datos observados entre el16 de junio de 
2013 a las 16:00 h y el 21 de junio de 2013 a las 
15:00 h se usaron para generar la serie de tiempo. 
Los datos observados entre 21 de junio de 2013 a 
las 16:00 h y el 26 de junio de 2013 a las 15:00 h se 
usaron para compararlos con los datos de las predic-
ciones estimadas.

Figura 3. Archivo generado con datos de la predicción esti-
mada con la función “auto.arima” para la EMA 
ENCBII en el periodo de junio y la variable meteo-
rológica temperatura del aire (°C).

Figure 3.	������������������������������������������������        File generated with data of the prediction esti-
mated with the function “auto.arima” for the EMA 
ENCBII in the period of June and the meteorologi-
cal variable air temperature (°C).

“auto.arima”. To carry this out, text files are created with 
extension ‘.txt’ where the predictions are stored. The name of 
the file is created with the combination of the name of the EMA, 
the name of the variable and the word PRED at the end (to 
indicate that it is prediction). Figure 3 shows the name of the file 
generated of the station ENCBII for the variable air temperature.

In the text file generated by the prediction (Figure 3), in the 
first line, the prediction of the average of the variable between 
16:00 and 17:00 h on June 21 of 2013, in the second line is 
the prediction of the average of the variable between 18:00 and 
19:00 h on June 21 of 2013, and in the last row of the file is 
the prediction of the average of the variable between 14:00 and 
15:00 h of June 26 of 2013.

Results and Discussion

The precision of the prediction in the two periods 
was evaluated. In the first, the data observed between 
March 7 of 2013 at 16:00 h until March 12 of 2013 
at 15:00 h were used to generate the time series, 
and the data observed between March 12 of 2013 
at 16:00 and March 17 of 2013 at 15:00 h were 
used to be compared with the data estimated with 
the prediction model. Next, the precision of the 
prediction in the second period was evaluated. The 
data observed between June 16 of 2013 at 16:00 h 
and June 21 of 2013 at 15:00 were used to generate 
the time series. The data observed between June 21 
of 2013 at 16:00 h and June 26 of 2013 at 15:00 h 
were used to compare with the data of the estimated 
predictions.  
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Figura 4.	 Predicción y variables observadas 60 h hacia adelante para la EMA Acolman (A), Chapingo (B), y ENCB. II del IPN 
(C) en el primer periodo (marzo).

Figure 4.	 Prediction and variables observed 60 h ahead for the EMA Acolman (A), Chapingo (B), and ENCB. II of the IPN (C) 
in the first period (March).

En las Figuras 4 y 5 se graficaron los datos obser-
vados con los datos estimados de las variables meteo-
rológicas: humedad relativa (%), temperatura del aire 
(°C), radiación solar (W/m2) y evapotranspiración de 
referencia (mm). Los datos tomados como observa-
dos de evapotranspiración de referencia fueron cal-
culados con el método de Penman Monteith (Allen, 
2006) y usando los datos observados de las demás 
variables meteorológicas.
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In Figures 4 and 5 the observed data were graphed 
with the estimated data of the meteorological 
variables: relative humidity (%), air temperature 
(°C), solar radiation (W/m2) and reference 
evapotranspiration (mm). The data obtained as 
observed from reference evapotranspiration were 
calculated with the method of Penman Monteith 
(Allen, 2006) and using the observed data of the 
other meteorological variables.
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Los modelos ARIMA obtenidos para cada esta-
ción y variable meteorológica están en el Cuadro 1.

Para una serie de tiempo dada {yn}, la predicción 
persistente se obtiene al colocar y(n+1)=y(n), que im-
plica que el promedio de la variable para la siguiente 
hora es igual al promedio de la variable en la hora 
actual (Kavasseri et al., 2009). 

Para comparar la bondad predictiva de los mode-
los ARIMA con la predicción persistente se calcularon 

Figura 5.	 Predicción y variables observadas 60 h hacia adelante para la EMA Acolman (A), Chapingo (B), y ENCB. II del IPN 
(C) en el segundo periodo (junio).

Figure 5.	 Prediction and variables observed 60 h forward for the EMA Acolman (A), Chapingo (B), and ENCB II of the IPN (C) 
in the second period (June).
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The ARIMA models obtained for each station 
and meteorological variable are found in Table 1.

For a given time series {yn}, the persistent 
prediction is obtained by placing y(n+1)=y(n), which 
implies that the average of the variable for the next 
hour is equal to the average of the variable in the 
present hour (Kavasseri et al., 2009).

To compare the predictive goodness of the 
ARIMA models with the persistent prediction, 
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Cuadro 1.	 Modelos ARIMA para las series de tiempo de las variables meteorológicas evapotranspiración (ET0), humedad relati-
va (HR), radiación solar (RADSOL) y temperatura del aire (TEMP).

Table 1.	 ARIMA models for the time series of the meteorological variables evapotranspiration (ET0), relative humidity (RH), 
solar radiation (SOLRAD) and air temperature (TEMP).

Estación Variable f1 f2 q1 q2 q3 F1 Q 1

 ARIMA
(p, d, q)(P, D, Q)12

Periodo de marzo
Acolman ET0 0.38         -0.58   ( 1, 0, 0 )( 1, 1, 0 )
Chapingo ET0 0.68 ( 1, 0, 0 )( 0, 1, 0 )
ENCBII ET0               Sin ajuste
Acolman HR 0.86 0.69 0.45 -0.67 ( 0, 0, 3 )( 1, 1, 0 )
Chapingo HR 1.11 -0.35 -0.28 ( 2, 0, 0 )( 1, 1, 0 )
ENCBII HR -0.44 -0.45 ( 0, 1, 1 )( 0, 1, 1 )
Acolman RADSOL 0.81 -0.26       -0.72   ( 2, 0, 0 )( 1, 1, 0 )
Chapingo RADSOL 0.40 -0.25 -0.67 ( 2, 0, 0 )( 1, 1, 0 )
ENCBII RADSOL     -0.27         ( 0, 0, 1 )( 0, 1, 0 )
Acolman TEMP -0.61 ( 0, 1, 0 )( 0, 1, 1 )
Chapingo TEMP 1.45 -0.62 -0.43 0.97 -0.50 ( 2, 0, 1 )( 1, 0, 1 )
ENCBII TEMP 0.76 ( 0, 0, 1 )( 0, 1, 0 )

Periodo de junio
Acolman ET0 1.63 -0.87 -1.68 0.78   0.73   ( 2, 1, 2 )( 1, 0, 0 )
Chapingo ET0 1.19 -0.51 -0.96 0.57 ( 2, 1, 1 )( 1, 0, 0 )
ENCBII ET0     0.22     0.60   ( 0, 1, 1 )( 1, 0, 0 )
Acolman HR 0.34 0.68 ( 1, 1, 0 )( 1, 0, 0 )
Chapingo HR 0.35 0.38 ( 1, 1, 0 )( 1, 0, 0 )
ENCBII HR 0.72 -0.50 -0.42 0.36 ( 1, 1, 2 )( 1, 0, 0 )
Acolman RADSOL 1.23 -0.55       0.83   ( 2, 0, 0 )( 1, 0, 0 )
Chapingo RADSOL 0.62 0.52 0.89 -0.39 ( 1, 0, 1 )( 1, 0, 1 )
ENCBII RADSOL     1.02 0.50   0.80 -0.37 ( 0, 0, 2 )( 1, 0, 1 )
Acolman TEMP 1.38 -0.63 0.64 ( 2, 0, 0 )( 1, 0, 0 )
Chapingo TEMP 1.66 -0.91 -1.67 0.72 0.29 ( 2, 1, 2 )( 1, 0, 0 )
ENCBII TEMP 0.41 0.04 -0.35 -0.56 0.95 -0.75 ( 1, 1, 3 )( 1, 0, 1 )

mediciones del error y del cuadrado medio del error 
(MSE). Cadenas y Rivera (2007) mencionan que si el 
valor observado en el tiempo t  es yt  y Ft es la predic-
ción para el mismo tiempo, entonces el error se de-
fine como et=yt-Ft, y el cuadrado medio del error es:

MSE
n

et
t

n





1 2

1

En nuestro estudio el valor observado del prome-
dio de la temperatura del aire entre las 16:00 y 17:00 
del 12 de marzo, 2013, fue 20.7 °C y el valor obte-
nido con la predicción del modelo ARIMA para el 
mismo tiempo fue 19.96 °C, por lo cual el MSE del 
modelo ARIMA, de ese tiempo fue de 0.547. El valor 
de la predicción persistente de ese mismo tiempo fue 

measurements of the error and of the mean square of 
the error (MSE) were calculated. Cadenas and Rivera 
(2007) point out that is the value observed in the 
time t is yt and Ft is the prediction for the same time, 
then the error is defined as et =yt – Ft, and the mean 
square of the error is:

MSE
n

et
t

n





1 2

1

                     

In our study the observed value of the average of 
air temperature between 16:00 and 17:00 of March 
12, 2013, was 20.7 °C and the value obtained with 
the prediction of the ARIMA model for the same time 
was 19.96 °C, thus the MSE of the ARIMA model 
of that time was 0.547. The value of the persistent 
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14.95 (el valor observado del promedio de la tem-
peratura del aire entre las 14:00 y 15:00 h del 12 de 
marzo de 2013); por lo tanto, el valor del MSE del 
modelo persistente, de ese tiempo fue de 33.06. La 
misma operación se realizó para las 40 h hacia ade-
lante (20 tiempos hacia delante).

El valor MSE se calculó en tiempos de 5 en 5 ha-
cia adelante para todas las variables (5, 10, 15, 20, 
etc.) hasta que el valor del MSE obtenido con la pre-
dicción de los modelos ARIMA (MSEA) fuera mayor 
que el valor del MSE obtenido con la predicción del 
modelo de persistencia (MSEB). En la variable tem-
peratura del aire del periodo de marzo de la estación 
Acolman se encontró que hasta 15 tiempos hacia 
adelante el valor del MSEA (2.531) fue menor que el 
del MSEB (10.309); y a los 20 tiempos  el valor del 
MSEA (11.204) fue mayor que el del MSEB (10.422). 
Para comparar los errores se calculó un porcentaje de 
mejoría de la predicción del modelo ARIMA con res-
pecto a la predicción con el modelo persistente.

El porcentaje de mejoría de la predicción del mo-
delo ARIMA con respecto a la predicción con el mo-
delo persistente (PM) se calculó como sigue:

PM
MSE

MSE
A

P

 100
100*

donde MSEA es el MSE del modelo ARIMA, MSEP 
es el MSE del modelo persistente.

En la variable temperatura del aire del periodo 
de marzo de la estación Acolman y 15 tiempos hacia 
adelante, se encontró que el valor del PM fue 75.4 %, 
lo cual indica que el modelo ARIMA se desempeña 
75.4 % mejor que el modelo persistente hasta los 15 
tiempos hacia adelante (30 h). De la misma manera 
se realizó el cálculo del PM para todas las variables 
meteorológicas en ambos periodos (marzo y junio) y 
para las tres EMAS (Cuadro 2).

Dos aspectos importantes en un esquema de pre-
dicción son: 1) que tan bien un modelo retiene su 
precisión sobre el horizonte de predicción y, 2) que 
tan robusto es el esquema para la elección del hori-
zonte de predicción (Kavasseri et al., 2009). Para ob-
servar el primer aspecto se realizaron predicciones de 
los valores de las variables meteorológicas hacia ade-
lante hasta que el PM fuera menor que cero. Cuando 

prediction of this same time was 14.95 (the observed 
value of the average of the air temperature between 
14:00 and 15:00 h of March 12, 2013); therefore, 
the value of the MSE of the persistent model of this 
time was 33.06. The same operation was carried out 
for the 40 h ahead (20 times ahead).

The MSE value MSE was calculated from 5 in 
5 times ahead for all of the variables (5, 10, 15, 
20, etc) until the value of the MSE obtained with 
the prediction of the ARIMA models (MSEA) was 
higher than the value of the MSE obtained with the 
prediction of the persistence model (MSEB). In the 
air temperature variable of the period of March of 
the Acolman station, it was found that up to 15 times 
ahead the value of MSEA (2.531) was lower than that 
of the MSEB (10.309); and at 20 times the value of 
MSA (11.204) was higher than that of MSB (10.422). 
To compare the errors, a percentage of improvement 
of prediction was calculated of the ARIMA model 
with respect to the prediction with the persistent 
model.
     The percentage of improvement of the prediction 
of the ARIMA model with respect to the prediction 
with the persistent model (PM) was calculated as 
follows:

PM
MSE

MSE
A

P

 100
100*

where MSEA is the MSE of the ARIMA model, 
MSEP is the MSE of the persistent model.

In the variable of air temperature of the period of 
March at the Acolman station and 15 times ahead, it 
was found that the value of PM was 75.4 %, which 
indicates that the ARIMA model performs 75.4 % 
better than the persistent model as far as 15 times 
ahead (30 h). Thus, the calculation of the PM was 
made for all of the meteorological variables in both 
periods (March and June) and for the three EMAS 
(Table 2).

Two important aspects in a prediction plan are: 
1) how well a model retains its precision over the 
prediction horizon, and 2) how robust is the plan 
for the selection of the prediction horizon (Kavasseri 
et al., 2009). To observe the first aspect, predictions 
were made of the values of the meteorological 
variables ahead until the PM was less than zero. When 
the values of PM are less than zero, it indicates that 
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los valores de PM son menores que cero, indica que 
el MSEP fue mejor que el MSEA (la predicción con 
el modelo persistente fue mejor que con el modelo 
ARIMA). Para observar el segundo aspecto se eligie-
ron dos periodos: el periodo de marzo con muy poca 
precipitación (menos de tres eventos de precipitación 
y menos de 1 mm en total), y el periodo de junio en 
donde se presentan más de 20 eventos de precipita-
ción (más de 8 mm en total).

El modelo ARIMA predice mejor que el persis-
tente más de 15 tiempos hacia adelante para las va-
riables ET0, HR, RADSOL y TEMP en el periodo 
de marzo (Cuadro 2). Para el periodo de junio se en-
contró que el modelo persistente fue mejor que el 
ARIMA para las variables ET0, HR y TEMP. Una 
probable razón de esto es que la precipitación afecta 
las demás variables meteorológicas y puede cambiar 
el comportamiento de una serie temporal.

Conclusiones

El uso de software de computadora y modelos 
ARIMA permite al investigador estimar la predic-
ción de variables meteorológicas automáticamente y 
en tiempo real. Sin embargo, los resultados indican 
que, en promedio, en el periodo de marzo con muy 
poca precipitación (menos 1 mm), la predicción con 
los modelos ARIMA fue mejor que la predicción con 
el modelo persistente en: 53.6 % en evapotranspira-
ción de referencia hasta 20 tiempos hacia adelante 
(40 h); 46.7 % en humedad relativa hasta 15 tiempos 
hacia adelante (30 h); 71 % en radiación solar hasta 30 
tiempos hacia adelante (60 h); 43.4% en temperatura 

Cuadro 2.	 Porcentaje de mejoría de la predicción del modelo ARIMA con respecto a la predicción 
con el modelo persistente (PM) para las estaciones meteorológicas Acolman (A), Chapingo 
(B), y ENCBII (C), los tiempos hacia adelante (T) y en los periodos de marzo y junio.

Table 2.	����������������������������������������������������������������������������������������� Percentage of improvement of the prediction of the ARIMA model with respect to the preci-
sion with the persistent model (PM) for meteorological stations Acolman (A), Chapingo (B), 
and ENCBII (C), the times ahead (T) and in the periods of March and June.

PM (%)
  Marzo Junio Promedio

Variable T A B C A B C Marzo Junio

ET0 20 51.4 55.7 ---- -153.3 -42.6 -56.1 53.6 -84.0
HR 15 65.7 27.7 49.5 -408.8 -425.3 -135.3 46.7 -323.1
RADSOL 30 83.3 64.9 65.0 19.1 13.1 23.8 71.0 18.7
TEMP 15 75.4 33.0 21.7 -42.0 -140.8 4.9 43.4 -59.3

the MSEP was better than the MSEA (the prediction 
with the persistent model was better than with the 
ARIMA model). To observe the second aspect, two 
periods were selected: the period of March with very 
little precipitation (less than three rainfall events and 
less than 1 mm total) and the period of June in which 
more than 20 rainfall events occurred (more than 8 
mm total).

The ARIMA model predicts better than the 
persistent model more than 15 times ahead for the 
variables ET0, RH, SOLRAD and TEMP in the 
period of March (Table 2). For the period of June 
it was found that the persistent model was better 
than the ARIMA model for the variables ET0, RH 
and TEMP. A possible reason for this is that rainfall 
affects the other meteorological variables and can 
change the behavior of a time series.

Conclusions

The use of computer software and ARIMA 
models allows the investigator to estimate the 
prediction of meteorological variables automatically 
and in real time. However, the results indicate that 
on the average, in the period of March with very little 
rainfall (less than 1 mm), prediction with the ARIMA 
models was better than prediction with the persistent 
model with: 53.6 % in reference evapotranspiration 
by as much as 20 times ahead (40 h); 46.7 % in 
relative humidity up to 15 times ahead (30 h); 71 % 
in solar radiation up to 30 times ahead (60 h); 43.4 % 
in air temperature as much as 15 times ahead (30 h). In 
the period of June, the predictions obtained with the 
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del aire hasta 15 tiempos hacia adelante (30 h). En 
el periodo de junio, las predicciones obtenidas con 
el modelo persistente fueron mejores que con el mo-
delo ARIMA.
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