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Resumen

La sintomatología visual en hojas debida a deficiencias nu-
trimentales, como la de hierro (Fe) y manganeso (Mn), son 
similares en coloración y en tipo de hojas en que se presenta, 
por lo cual se requiere un método, con base en análisis de 
imágenes digitales de hojas, que discrimine esas deficien-
cias. El objetivo de esta investigación fue analizar imágenes 
digitales de hojas de frijol (Phaseolus vulgaris L.) var. Caca-
huate para identificar, con un clasificador creado con redes 
neuronales probabilísticas, deficiencias de Fe y Mn en una 
etapa inicial, cuando todavía es posible revertir los daños 
con fertilización. Los tratamientos fueron: 1) deficiencia 
parcial (DP) de Fe (50 %); 2) DP de Mn (50 %); 3) deficien-
cia total (DT) de Fe (0 %); 4) DT de Mn (0 %); 5) interac-
ción (0 % Fe, 0 % Mn); 6) testigo (100 % Fe, 100 % Mn), 
con 10 repeticiones; la referencia fue la solución Steiner. Los 
valores promedio de ocho variables de color y tres de tex-
tura, se obtuvieron de seis muestras de imágenes digitales 
de 100100 píxeles (360 muestras en total), de hojas de 
frijol obtenidas 74 dds. Estas fueron usadas como variable 
de entrada para generar clasificadores con redes neuronales 
probabilísticas con el algoritmo de correlación en cascada 
de los tratamientos de deficiencias de Fe y Mn. Los clasifica-
dores que solo consideraron características texturales, como 
variables de entrada, tuvieron porcentajes de clasificación 
correcta global de síntomas menores o iguales a 44 %. En 
cambio, el porcentaje de clasificación correcta global del 

Abstract

The visual symptomatology of nutriment deficiencies, 
like iron (Fe) and manganese (Mn) in plant leafs is similar 
in their coloration and the kind of leaf they present on. 
A method based on the analysis of digital images of the 
leaves, capable to discriminate the differences of such 
deficiencies is required. The aim of this research was to 
analyze digital images of common bean (Phaseolus vulgaris 
L. var. Cacahuate), in order to identify differences in the 
Fe and Mn lesions in the initial development stage, when 
it is possible to revert damages with fertilization. To do 
so, we used a classifier created with probabilistic neuronal 
networks. The experimental treatments were: 1) partial 
deficiency (DP) of Fe (50 %); 2) DP of Mn (50 %); 3) 
total deficiency (DT) of Fe (0 %); 4) DT of Mn (0 %); 5) 
Fe/Mn interaction (0 % Fe, 0 % Mn); 6) control (100 % 
Fe, 100 % Mn), with 10 repetitions; Steiner solution was 
used as reference. The mean values of eight color and 
three texture variables from digital images of six common 
bean leaf samples were obtained; these were of 100100 
pixels (360 total samples) in 74 dds. These mean values 
were used as entry variables to generate the classifiers 
with a cascade correlation algorithm of the Fe and Mn 
deficiency treatments. The classifiers that only considered 
textural characteristics had correct global classification 
of symptoms less or equal to 44 %. In contrast, the 
highest percentage of correct global classification of the 
classifiers in the test was of 76.6 % with six variables, 
which included texture and color characteristics, and six 
exit classes of difference treatments. The reduction of 
the number of classes did not increase the percentage of 
correct classification in the test.  
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mejor clasificador en la prueba fue 76.6 % con seis variables 
que incluyeron características de textura y color, y seis clases 
de salida o tratamientos de deficiencias. Un número menor 
de clases de salida no aumentó  el porcentaje de clasificación 
correcta global en la prueba.

Palabras claves: croma, entropía, espacio de color RGB, homo-
geneidad local, matiz, segundo momento angular.

Introducción

El frijol (Phaseolus vulgaris L.) es una especie 
susceptible a la deficiencia de hierro (Fe) que 
puede reducir hasta 100 % el rendimiento 

de grano (Clark, 1991; Hansen et al., 2006). Esta 
deficiencia se manifiesta como clorosis intervenal, 
mientras que la de manganeso (Mn) se caracteriza 
en dicotiledóneas como manchas amarillas pequeñas, 
pero también como clorosis intervenal, lo cual puede 
confundirse con deficiencia de Fe. El Mn y Fe son 
nutrimentos relativamente inmóviles en el floema, es 
decir, no son removilizados hacia los tejidos jóvenes 
cuando disminuye su suministro vía xilema (Barba-
zán, 1998). La deficiencia de ambos elementos pue-
de confundirse debido a la similitud de los síntomas 
de la deficiencia de cada elemento bajo condiciones 
severas, por lo cual se podría enmascarar además de 
presentarse en hojas jóvenes (Howeler, 1978). Según 
Jones et al. (1991), una concentración de Fe y Mn 
de 15 a 49 mg kg1 es baja y el óptimo es 50 a 300 
mg kg1. La toxicidad por Mn distorsiona las ho-
jas y produce manchas oscuras; en casos severos hay 
necrosamiento de los bordes de las hojas que avanza 
hacia el interior al aumentar la severidad (Schulte y 
Kelling, 1999). La deficiencia de Fe ocasiona toxici-
dad por Mn y viceversa (Somers y Shive, 1942) y una 
toxicidad leve por Mn es idéntica a la deficiencia de 
Fe (Twyman, 1950).
	 Según Barbazán (1998), la apreciación visual de 
las deficiencias de Fe y Mn es aparente después de 
que la disponibilidad de estos nutrientes es tan baja 
que la planta no puede completar sus funciones fi-
siológicas o ciclo biológico; por lo cual, el cambio 
de color y textura de la hoja sería una forma práctica 
para evaluar el estado nutricional, así como la sani-
dad requiere determinación visual en una etapa tem-
prana de la deficiencia. Sin embargo, en esta etapa, 
los síntomas no son tan evidentes, lo cual dificulta el 
diagnóstico.

Key words: chroma, entropy, RGB color space, local 
homogeneity, hue, second angular momentum. 

Introduction

Common bean (Phaseolus vulgaris L.) is a 
species susceptible to iron (Fe) deficiency, 
which can reduce up to 100 % of the 

grain yield (Clark, 1991; Hansen et al., 2006). This 
deficiency is manifested as interveinal chlorosis, while 
that of manganese (Mn) in dicots is characterized by 
small yellow spots but but can also present interveinal 
chlorosis, which can therefore be confused with iron 
deficiency. The Mn and Fe are nutrients relatively 
immobile in the phloem, i.e. they are not moved back 
to young tissues when their supply is reduced by the 
xylem (Barbazan, 1998). Deficiency of both elements 
can be confused because of the symptoms similarity at 
severe conditions, which could be masked, as well as 
present in young leaves (Howeler, 1978).  According 
to Jones et at. (1991), concentrations of Fe and Mn 
of 15 to 49 mg kg1 are low and their optimum is of 
50 to 300 mg kg1. Mn toxicity distort leaves and 
produces dark spots; in severe cases there is necrosis at 
the leaves edges which moves inwards as the severity 
increase (Schulte and Kelling, 1999). Fe deficiency 
causes toxicity by Mn and vice versa (Somers and 
Shive, 1942) and a slight Mn toxicity is identical to 
Fe deficiency (Twyman, 1950).
	 According to Barbazán (1998), the visual 
appreciation of the Fe and Mn is only apparent when 
the availability of these nutrients is so low that the 
plant cannot fulfill its physiological functions or 
biological cycle; therefore changes in the color and 
texture of the leafs would be a practical way to assess 
both, the nutritional status and the overall health of 
the plants. This requires the visual determination at 
an early stage of the deficiency. Nevertheless, at this 
stage, symptoms are not obvious, which makes its 
diagnosis difficult.  
	 Murakami et al. (2005) points out the increase 
in the research that applies color analysis of digital 
images to evaluate the foliar nutrition and health 
in response to environmental stress, mainly because 
it is a low-cost method. They propose a method to 
determine the health level of maple leafs based on the 
bands or the red (R) and green (G) channels of the 
RGB color space. Textural analysis classifies images 
ranging from photomicrograph to satellite images, 
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	 Murakami et al. (2005) señalan el aumento en 
las investigaciones que aplican el análisis de color de 
imágenes digitales para evaluar la nutrición foliar y 
la sanidad en respuesta al estrés ambiental, por ser 
un método de costo bajo. Ellos proponen un méto-
do para determinar el nivel de sanidad de hojas de 
maple basado en las bandas o canales rojo (R) y ver-
de (G) del espacio de color RGB. El análisis textural 
clasifica imágenes desde microfotografías hasta imá-
genes satelitales porque las características texturales 
contienen información de la distribución espacial de 
las variaciones de tono de una banda; el tono se basa 
en la variación de sombras de gris de unidades de 
resolución en una imagen fotográfica, mientras que 
la textura está enfocada a la distribución espacial de 
los tonos de gris (Haralick et al., 1973). Haralick et 
al. (1973) usaron características de textura con base 
en matrices de co-ocurrencia en tonos de gris para 
analizar imágenes obtenidas por sensores remotos; la 
clasificación de superficies terrestres con base en su 
uso y la aplicación selectiva de pesticidas se puede 
hacer mediante esas características. Para distinguir 
malezas y asperjar selectivamente un pesticida para 
malezas de hoja ancha o pastos, Meyer et al. (1998) 
usaron características texturales, las cuales fueron la 
base para identificar el tipo de cubierta en la super-
ficie y el análisis de color fue útil para separar entre 
plantas y suelo. Hay clasificadores con base en las 
características texturales y el análisis discriminan-
te para identificar tipos de malezas. En un estudio 
(Burks et al., 2000) se diferenció el suelo y la planta 
con 100 % de precisión, mientras que la precisión 
fue 93 % al identificar malezas con el método de 
co-ocurrencia de color. Kim et al. (2009) usaron el 
método de co-ocurrencia de color para diferenciar 
hojas de cítricos con ocho síntomas, incluyendo de-
ficiencias de Fe, Mn y Zinc (Zn) y la enfermedad 
enverdecimiento de los cítricos; mediante un análi-
sis discriminante ellos crearon tres clasificadores con 
base en 14 características texturales como variables, 
la precisión para diferenciar deficiencias de esos mi-
croelementos fue 97.3 %. El análisis textural es la 
herramienta más precisa para la discriminación de 
malezas de acuerdo con Meyer et al. (1998), quienes 
cuestionan si es conveniente combinar característi-
cas texturales con las de color para identificar ma-
lezas. Según Kim et al. (2009), diversas caracterís-
ticas texturales deben considerarse, aunque algunas 
darán más información que otras, y eliminar las que 

because textural features contain information of 
the spatial distribution of the tone variations of a 
band; the tone is based on the variation of shades 
of gray of resolution units in a photographic image, 
while texture is focused on the spatial distribution of 
shades of gray (Haralick et al., 1973). Haralick et al. 
(1973) used texture features based on co-occurrence 
matrices of gray tones to analyze images obtained 
by remote sensors; the classification of terrestrial 
surfaces based on its use and the selective application 
of pesticides can be done via such features. In order 
to distinguish weeds and selectively spraying a 
pesticide for broadleaf weeds or grasses, Meyer et al. 
(1998) used textural features, which were the basis 
for identifying the type of cover on the surface and 
color analysis was useful to discriminate between 
plants from soil. There are classifiers based on 
textural features and discriminant analysis to identify 
weed types. In a study (Burks et al., 2000) soil and 
plants were differentiated with a 100 % accuracy, 
whereas the precision was of 93 % when weeds were 
identified with the co-occurrence of color method.  
Kim et al. (2009) used the color co-occurrence 
method to differentiate citrus fruit leaves with eight 
symptoms, including deficiencies of Fe, Mn and 
Zinc (Zn) along with the Citrus Greening disease; 
using a discriminant analysis they created three 
classifiers based on 14 textural features like variables, 
with a accuracy in differentiating deficiencies of 
these micronutrients was 97.3 %. Textural analysis 
is the most accurate tool for discrimination of weeds 
according to Meyer et al. (1998), who questioned 
whether it is suitable to combine textural features 
with the color ones to identify weeds. According to 
Kim et al. (2009), various textural characteristics 
should be considered, although some will yield 
more information than others, and eliminate those 
that provide redundant information. To this regard, 
probabilistic neural networks can be used to create 
classifiers capable of identifying patterns in data; for 
this reason, they are a useful tool for the analysis of 
information (Oide and Ninomiya, 2000).
	 The aim of this research was to identify the 
symptoms of Fe and Mn deficiency, both separately 
and in combination, on common beans plants in 
vegetative stage, via variables of color and texture, 
using analysis of digital images of leaves and a 
classifier set by artificial neural networks with the 
cascade correlation algorithm. The hypothesis was 
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proporcionen información redundante. Al respecto, 
las redes neuronales probabilísticas pueden usarse 
para crear clasificadores capaces de identificar patro-
nes en datos, por lo cual son una herramienta útil en 
el análisis de información (Oide y Ninomiya, 2000).
	 El objetivo de la presente investigación fue iden-
tificar los síntomas de deficiencia de Fe y Mn, sepa-
rados y combinados, de frijol en etapa vegetativa, 
mediante variables de color y textura, usando aná-
lisis de imágenes digitales de hojas y un clasificador 
con base en redes neuronales artificiales con el al-
goritmo de correlación en cascada. La hipótesis fue 
que las deficiencias de Fe y Mn pueden ser identifi-
cadas con características texturales. Las variables de 
color se calcularon para determinar si éstas tienen 
nivel mayor de asociación con las deficiencias del 
cultivo de frijol que las de textura en una etapa tem-
prana de desarrollo.

Materiales y Métodos

	 En un invernadero en Texcoco, México (2250 msnm, 19° 29’ 
N y 98° 54’ O), se sembraron semillas de frijol (Phaseolus vulgaris 
L.) var. Cacahuate en charolas de poliestireno expandido de 60 
cavidades con perlita (Agrolita), sustrato inerte y estéril, y se 
regaron con agua destilada. La germinación de las semillas fue 
12 d después de la siembra (dds). Las plántulas se trasplantaron a 
vasos de poliestireno de 1 L de capacidad con perlita (Agrolita). 
A los 19 dds inició el riego de las plantas con las soluciones nu-
tritivas de acuerdo con los tratamientos (Cuadro 1), en función 
del micronutriente a estudiar, mediante la técnica del elemento 
faltante. Para preparar la solución nutritiva se usó agua destilada 
y la solución nutritiva Steiner. Las soluciones fueron ajustadas a 
pH de 6.3 y la CE está predeterminada a 2.0 dS m1. El diseño 

that the Fe and Mn deficiencies can be identified by 
textural features. The color variables were calculated 
to determine if they have a higher level of association 
with deficiencies of the common bean crop than the 
texture at an early stage of development.

Materials and Methods 

	 In a greenhouse in Texcoco, Mexico (2250 masl, 19° 29’ 
N and 98° 54’ W), seeds of beans (Phaseolus vulgaris L.) var. 
Cacahuate were sown in expanded polystyrene trays of 60 
cavities with perlite (Agrolite), sterile and inert substrate, and 
watered with distilled water. Seed germination happened 12 d 
after sowing (das). Seedlings were transplanted to 1 L capacity 
polystyrene cups with perlite (Agrolite). Plant watering started 
19 dds with nutritious solutions, in accordance with treatments 
(Table 1), depending on the micro-nutrient to be studied, using 
the missing element technique. To prepare the nutrient solution 
distilled water and Steiner nutrient solution were used. The pH 
of the solutions was adjusted to 6.3 and the EC predetermined to 
2.0 dS m1. The experimental design was completely randomized 
with six treatments and 10 repetitions per treatment. 
	 Digital images were obtained at 74 das from a fourth, recently 
mature and fully expanded leaf (Figure 1) of each repetition and 
treatment (60 images in total); these were captured at 300 dpi 
with a commercial scanner (HP Scanjet G2410), and stored in 
the JPEG format. Six samples of 100100 pixels were obtained 
from each left leaflet (360 processed images).
	 Channels of RGB color space values were obtained for 
the analysis of images. The color space is the specification of a 
coordinate system and subspaces within a system where each 
color is represented by a single point (Gonzalez and Woods, 
2002). Using a Visual Basic v. 6.0 program, the RGB (red, 
green, and blue) average values were obtained for the samples 

Cuadro 1. Tratamientos en función del micronutriente a estudiar mediante la técnica del elemento 
faltante y con base en la solución Steiner al 100 %.

Table 1. 	Treatments based on the micro-nutrient to be studied, using the missing element technique 
based on a 100 % Steiner solution.

Tratamiento
Contenido del micronutriente en la solución nutritiva

Hierro (Fe, %) Manganeso (Mn, %)

1 Testigo (solución Steiner 100 %) 100 100
2 Sin Mn 100 0
3 Sin Fe 0 100
4 Sin Mn, sin Fe 0 0
5 Deficiente en Mn 100 50
6 Deficiente en Fe 50 100
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of 100100 pixels for each color category. The RGB values 
were transformed to the standard sRGB color sorter (linear) 
defined by the Commission Internationale de L’Éclairage (IEC, 
IEC61966-2-1, 1999, cited by Mendoza et al., 2006), with which 
the CIE-Lab color space was calculated. The chroma (C) was 

obtained with the equation C a b= +( )2 2 1 2/
, and the hue (H) 

was calculated from the arctangent of the ratio a/b (McGuire, 
1992), where a and b are two channels of the CIE-Lab color 
space. The constructed program recorded average values per 
sample of the channels of these color spaces in a spreadsheet. 
Data were stored in a comma-separated text file, therefore 300 
data input/output were obtained for the training and 60 samples 
for the tests. To calculate the secondary statistics, each pixel of 
the 100100 pixels sample was transformed to an 8-bit grayscale 
and the image segments were quantized to 16 shades of gray.  The 

experimental fue completamente al azar con seis tratamientos y 
10 repeticiones por tratamiento.
	 Las imágenes digitales se obtuvieron a los 74 dds de la cuarta 
hoja recientemente madura (Figura 1) y completamente expan-
dida de cada repetición y tratamiento (60 imágenes en total); 
se capturaron a 300 dpi con un escáner comercial (HP Scanjet 
G2410), y se almacenaron en el formato JPEG. Seis muestras de 
100100 píxeles se obtuvieron de cada foliolo izquierdo (360 
imágenes procesadas).
	 Para el análisis de imágenes se obtuvieron los valores de los 
canales del espacio de color RGB. El espacio de color es la espe-
cificación de un sistema de coordenadas y subespacios dentro de 
un sistema donde cada color es representado por un solo punto 
(Gonzalez y Woods, 2002). Con un programa en Visual Basic v. 
6.0 se obtuvieron los valores RGB (red, green y blue) promedio 

Figura 1. 	Cuarta hoja de frijol var. Cacahuate, recientemente madura, de una repetición de los tratamientos: 
	 (A) 100 % de Fe y Mn; (B) 100 % Fe y 0 % Mn; (C) 0 % Fe y 100 % Mn; (D) 0 % Fe y Mn; (E) 100 % Fe 

y 50 % Mn; (F) 50 % Fe y 100 % Mn. Las hojas se recolectaron a los 74 dds en septiembre del 2012.
Figure 1. Fourth bean leaf of var. Cacahuate, recently mature, from a repetition of the treatments: (A) 100 % of 

Fe and Mn; (B) 100 % Fe and 0 % Mn; (C) 0 % Fe and 100 % Mn; (D) 0% Fe and Mn; (E) 100 % Fe 
and 50 % Mn; (F) 50 % Fe and 100 % MN. The leaves were collected at 74 das in September 2012.

A B C

D E F
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methodology by Haralick et al. (1973) was used to obtain the co-
occurrence matrix of relative frequencies pij of pairs of neighbors 
pixels in a digital image, one with level of tone i and another j, 
separated by (r1, 0°, 45°, 90°, 135°)  in the sub-sample, 
where r is the distance in pixels and  the angle. δ θ=( )r,  
denotes a vector in the polar coordinates of the image. The pij per 
angle were averaged to generate a co-occurrence average matrix, 
which was recorded in a spreadsheet and where n is the number 
of gray shades. Three textural characteristics were determined:

1)	 Second angular momentum (SMA ), also called 
uniformity, is a local measure of the homogeneity 
and opposite to the entropy and is calculated with the 
equation:

	
SMA p rij

j

m

i

n
= ( ) 

==
∑∑ ,θ 2

11

2) 	 Entropy (EN ) is a value that analyzes the randomness 
of pij (r, ). Small values in the 0 and 1 range indicate 
uniformity (Jensen, 2006), these was calculated with the 
equation:  

	
EN p r p rij ij

j

m

i

n
= ( ) ( ) 

==
∑∑ , log ,θ θ

11

3) 	 Inertia (IN ) was calculated from the co-occurrence 
matrix with equation:

	
IN i j p rij

j

m

i

n
= −( ) ( ) 

==
∑∑ 2

11
,θ

4) 	 Local homogeneity (HoL ) is a measure of contrast, as 
the contrast increase local homogeneity decreases, and 
was calculated with the equation: 

	
HoL i j p rij

j

m

i

n
= + −( )  ( )

==
∑∑ 1 1 2

11
/ ,θ

where pij (r, ) refers to a relative frequency of neighboring 
pixels pairs in a digital image, one with tone i level and another 
j, separated by a r distance in pixels, at angle  and n and m 
number of gray shades. 

	 The classifier used was created and trained with the 
Neuroshell Classifier of AI Trilogy (Ward Systems Group, 
Inc.) system, with a neuronal type training strategy, this 

de las muestras de 100100 pixeles por cada categoría de color. 
Los valores RGB  se convirtieron al clasificador de color estándar 
sRGB (lineales) definido por la Commission Internationale de 
L’Éclairage (IEC, IEC61966-2-1, 1999, citado por Mendoza et 

al., 2006), con lo cual se calculó el espacio de color CIE-Lab. 

El croma (C) se obtuvo con la ecuación C a b= +( )2 2 1 2/
, y el 

matiz (H) se calculó con el arcotangente de la relación a/b (Mc-
Guire, 1992), donde a y b son dos canales del espacio de color 
CIE-Lab. El programa construido registró los valores promedios 
por muestra de los canales de estos espacios de color en una hoja 
de cálculo. Los datos se almacenaron en un archivo de texto de-
limitando por comas, con lo cual se obtuvieron 300 muestras de 
datos entrada-salida para el entrenamiento y 60 para las pruebas.
Para calcular los estadísticos secundarios, cada píxel de las mues-
tras de 100100 píxeles fue transformado a una escala de grises 
de 8 bits y los segmentos de imagen se cuantizaron a 16 tonos 
de grises. La metodología de Haralick et al. (1973) se usó para 
obtener la matriz de co-ocurrencia de frecuencias relativas pij de 
pares de píxeles vecinos en una imagen digital, uno con nivel de 
tono i y otro j, separados por (r1, 0°, 45°, 90°, 135°) en 
la submuestra, donde r es la distancia en píxeles y  el ángulo. 
δ θ=( )r,  denota un vector en las coordenadas polares de la ima-
gen. Los pij por ángulo se promediaron para generar una matriz 
de co-ocurrencia promedio, que fue registrada en una hoja de 
cálculo y donde n es el número de tonos de grises. Cuatro carac-
terísticas texturales fueron determinadas:

1)	 Segundo momento angular (SMA ), también llamado 
uniformidad, es una medida local de la homogeneidad 
y opuesta a la entropía, y se calculó con la ecuación:

	
SMA p rij

j

m

i

n
= ( ) 

==
∑∑ ,θ 2

11

2) 	 Entropía (EN ) es un estadístico que analiza la aleato-
riedad de pij (r, ). Valores pequeños en el rango 0 y 1 
indican uniformidad (Jensen, 2006), y se calculó con la 
ecuación:

	
EN p r p rij ij

j

m

i

n
= ( ) ( ) 

==
∑∑ , log ,θ θ

11

3)	 Inercia (IN ) se calculó de la matriz de co-ocurrencia con 
la ecuación:

	
IN i j p rij

j

m

i

n
= −( ) ( ) 
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4) 	 Homogeneidad local (HoL ) es una medida del contras-
te, al aumentar el contraste disminuye la homogeneidad 
local, y se calculó con la ecuación:

	
HoL i j p rij

j

m

i

n
= + −( )  ( )

==
∑∑ 1 1 2

11
/ ,θ

donde pij (r, ) se refiere a una frecuencia relativa de pares de 
píxeles vecinos en una imagen digital, uno con nivel de tono i y 
otro j, separados por una distancia r en pixeles, en el ángulo , y 
con n y m número de tonos de grises.

	 El clasificador que se utilizó se creó y entrenó con el sistema 
Neuroshell Classifier de AI Trilogy (Ward Systems Group, Inc.) 
con la estrategia de entrenamiento tipo neuronal; este programa 
permite crear redes neuronales artificiales supervisadas con el al-
goritmo de correlación en cascada y fue propuesto por Fahlman 
y Lebiere (1990). Este algoritmo inicia con una red neuronal 
artificial mínima que durante el entrenamiento añade, una por 
una, nuevas unidades en la capa oculta, lo cual genera una estruc-
tura multicapa. Una vez que se añade a la estructura una nueva 
unidad en la capa oculta, los pesos del lado de las entradas se 
hacen constantes por lo cual esta unidad se vuelve un detector de 
patrones permanente en la red neuronal, y está disponible para 
producir valores de salida o para crear otros detectores de patro-
nes más complejos. Esta arquitectura se caracteriza por la rapidez 
para entrenar las redes neuronales artificiales con pocos juegos 
de datos, y donde un patrón de entrada es clasificado de acuerdo 
con un número específico de categorías (Ward Systems Group, 
Inc., 1997-2007). Las redes neuronales artificiales son modelos 
estadísticos no lineales diferenciables, que pueden aprender de 
una base de datos donde en ocasiones no se cuenta con todos 
los escenarios posibles, y no requieren de funciones o reglas bien 
definidas; producen aproximaciones convenientes e incluyen 
variaciones que otros sistemas consideran como ruido (Neural 
Innovations Ltd, 1997). 
	 El clasificador tuvo dos a ocho escenarios de variables de en-
tradas de color y textura (los canales del espacio de color RGB, el 
C y H; y cuatro características texturales (SMA, EN, IN y HoL), 
seis (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 
0 % Fe, 0 % Mn; 100 % Fe, 50 % Mn y 50 % Fe, 100 % Mn) o 
cuatro clases (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 
% Mn; 0 % Fe, 0 % Mn) tratamientos; y un número máximo 
de 150 neuronas en la capa oculta. Quince escenarios de entradas 
se usaron, con 360 datos entrada-salida balanceados, cuando se 
consideraron seis clases de salida del clasificador, y otros 15 esce-
narios de entradas, con 240 datos entrada-salida, cuando fueron 
cuatro clases de salida del clasificador. Tanto en el clasificador de 
seis (que corresponde a seis tratamientos), como en el de cuatro 

program allows to create artificial neural networks supervised 
with the cascade correlation algorithm and it was proposed 
by Fahlman and Lebiere (1990). This algorithm starts with 
a minimum artificial neural network that, during training, 
add one by one new units in a hidden layer, which creates 
a multilayer structure. Once a new unit in the hidden layer 
is added to the structure, the weights on the entries side of 
become constant by which this unit becomes a permanent 
patterns detector in the neural network, and is available to 
produce output values, or to create other detectors of more 
complex patterns. This architecture is characterized by the 
speed to train artificial neural networks using few data sets, 
and where a pattern of entry is classified according with a 
specific number of categories (Ward Systems Group, Inc., 
1997-2007). Artificial neural networks are differentiable non-
linear statistical models, which can learn from a database 
where sometimes not all the possible scenarios are found, and 
do not require functions or well defined rules; they produce 
convenient approaches and include variations that other 
systems considered noise (Neural Innovations Ltd, 1997).  
	 The classifier had two to eight scenarios variables of color 
and texture inputs (the RGB space color channels, C and H; 
and four textural characteristics (SMA, EN, IN and HoL)), six 
(100 % Fe and Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 
0 % Fe, 0 % Mn; 100 % Fe, 50 % Mn and 50 % Fe, 100 % 
Mn) or four classes (100 % Fe and Mn; 100 % Fe, 0 % Mn; 
0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn) or treatments; and a 
maximum of 150 neurons in the hidden layer. 15 entry scenarios, 
with 360 balanced input/output data, were used when six kinds 
of classifier output and other 15 scenarios of entries, with 240 
input/output data, were considered when they were four kinds of 
classifier output. Both in the classifier of six (which corresponds 
to six treatments) as in the four classes (four treatments), each 
entry scenario was repeated 10 times with random partitions of 
data from 90 % for training and 10 % for the test.
	 The experimental design was completely randomized, 
with the data an ANOVA was performed, to evaluate the 
performance of the classifier based on the percentage of correct 
overall classification between entries in the test scenarios the 
treatment means were compared with the Tukey test (p0.05). 
These analyses were performed with the SAS statistical 
program version 8.1 (SAS Institute Inc., 1999-2000). The 
contingency table of the best-case scenario entries was obtained 
based on the overall response percentage of classification in the 
classifier of six and four classes. Sensitivity, referred to as the 
fraction of observations with the symptom identified correctly, 
was calculated in this contingency table, and refers to the 
probability that a model correctly detects a symptom when in 
fact it is present. Also, the specificity was calculated, referred 
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clases (cuatro tratamientos), cada escenario de entradas se repitió 
10 veces con particiones aleatorias de los datos de 90 % para el 
entrenamiento y 10 % para la prueba.
	 El diseño experimental fue completamente al azar, con los 
datos se realizó un ANDEVA y las medias de los tratamientos se 
compararon con la prueba de Tukey (p0.05), para evaluar el 
desempeño del clasificador con base en el porcentaje de clasifi-
cación global correcta entre escenarios de entradas en la prueba. 
Estos análisis se hicieron con SAS versión 8.1 (SAS Institute Inc., 
1999-2000). La tabla de contingencia de los mejores escenarios 
de entradas se obtuvo con base en la respuesta global del por-
centaje de clasificación en el clasificador de seis y en el de cuatro 
clases. En esta tabla de contingencia se calculó la sensibilidad, 
referida como la fracción de observaciones con el síntoma iden-
tificado correctamente, y se refiere a la probabilidad de que un 
modelo detecte correctamente un síntoma cuando de hecho está 
presente. También se calculó la especificidad referida como la 
fracción de observaciones descartadas correctamente de tener el 
síntoma, y se refiere a la probabilidad de que un modelo detecte 
la ausencia de un síntoma.

Resultados y Discusión

Prueba de escenarios de entradas 
de seis tratamientos

	 En el Cuadro 2 se presentan los escenarios de en-
tradas en la prueba cuando se consideraron seis clases 
de salida y diferentes combinaciones de variables de 
color y textura como variables de entrada.
	 Las diferencias entre tratamientos en la prue-
ba (Cuadro 2) fueron altamente significativas 
(p0.001). El escenario de entradas 12 (Cuadro 2), 
que consideró las características texturales como va-
riables de entrada, tuvo el porcentaje menor de cla-
sificación correcta global de síntomas de deficiencias 
de Fe y Mn (33.6 %) durante la prueba. En cambio, 
se obtuvo 63.5 % de clasificación correcta global en 
la prueba con el escenario de entradas que incluyó los 
tres canales del espacio de color RGB (clasificador 6), 
y este porcentaje aumentó al usar otras combinacio-
nes de canales de color. La combinación de caracteres 
texturales y de color permitió obtener algunos de los 
escenarios de entradas (10 y 14) con  mayores por-
centajes de clasificación global correcta en la prueba, 
pero estos no fueron diferentes (p0.05) con los ob-
tenidos con los mejores escenarios de entradas (1 y 2), 
los cuales consistieron principalmente de variables de 
color. Durante la prueba, la única diferencia fue la 

to as the fraction of observations correctly discarded of with 
symptom, and refers to the probability that a model detects the 
absence of a symptom.

Results and Discussion 

Scenarios test of six treatments entries

	 The scenarios of entries in the test, that considered 
six kinds of output and different combinations of 
variables in color and texture as input variables, 
are presented in Table 2. The differences between 
treatments in the test (Table 2) were highly significant 
(p0.001). The scenario 12 of the entries (Table 2), 
which considered textural characteristics as input 
variables, had the lowest percentage (33.6 %) of 
correct global classification of Fe and Mn deficiencies 
symptoms during the test. On the other hand, 
63.5 % of overall correct classification was obtained 
in the test with the scenario of entries that included 
three RGB color space channels (classifier 6), and 
this percentage increased to use other combinations 
of color channels. The combination of textural and 
color characters allowed some of the input scenarios 
(10 and 14) with higher overall percentages of correct 
classification in the test, but these were not different 
(p0.05) to those obtained with the inputs best-
case scenario (1 and 2), which mainly consisted color 
variables. During the test, the only difference was the 
mean of scenario of entries 12 respect to the other 
treatments, which indicate that a greater number of 
repetitions during the test are required.

Test of entire scenarios of four treatments

	 Table 3 presents scenarios of entries during the 
test when we considered four kinds of output classes 
and different combinations of variables in color and 
texture were used as input variables.  The computation 
time was of 6 s to 1.31 min on a computer with an 
AMD AthlonTM 64Dual-Core processor TK-55 
1.80 GHz.
	 The difference in the test (p0.05) is the average 
of the percentage of overall correct classification 
of inputs scenario that considered the variables 
of texture (classifier 12) from the rest of inputs 
scenario (Table 3). With the entries scenarios, when 
considering four treatments, a higher percentage of 
overall correct classification respect to scenarios of 
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Cuadro 2.	Promedios del porcentaje de clasificación global correcta en la prueba 
(CCP) de escenarios de entradas creados con redes neuronales artificia-
les cuando se consideraron seis clases de salida o tratamientos (100 % 
de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn; 
100 % Fe, 50 % Mn y 50 % Fe, 100 % Mn).

Table 2.	Averages for the global percentage of correct classification (CCP) in 
the test input scenarios created with artificial neural networks when 
six kinds of output or treatments were considered (100 % Fe and Mn; 
100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn; 100 % Fe, 

	 50 % Mn and 50 % Fe, 100 % Mn). 

NC Variables de entrada CCP

1 L, a, b, C, H 74.7 a   (6.0)
2 R, G, B, L, a, b, C, H 74.7 a   (6.4)
3 R, B, L, a, b 70.5 ac  (8.6)
4 R, G, B, C 67.4 ac  (7.7)
5 R, B, a, C, SMA 72.0 abc (5.8)
6 R, G, B 63.5 bc  (2.8)
7 R, B, H 62.5 c   (3.7)
8 R, G, B, C, H 68.9 abc (5.9)
9 R, B, H, SMA, En, HoL 72.7 ab  (3.5)
10 R, G, B, C, SMA, EN, HoL 74.3 a   (7.9)
11 R, B, C, SMA, EN, HoL 65.6 abc (14.9)
12 SMA, EN, IN, HoL 33.6 d   (8.7)
13 L, a, b, SMA, EN, HoL 72.6 abc (5.9)
14 L, a, b, C, H, SMA, EN, HoL 73.6 a   (3.5)
15 L, C, H, SMA, EN, HoL 72.6 ab  (5.0)

En la columna CCP, letras diferentes indican diferencias estadísticamente signifi-
cativas (p0.05); las desviaciones estándar (n10) se muestran entre paréntesis. 
NC: Número de escenario de entradas; R: Canal rojo; G: Canal verde; B: Canal 
azul; L: Luminosidad; a: Canal del espacio CIE-Lab; b: Canal del espacio CIE-Lab; 
C: croma; H: matiz; SMA: segundo momento angular; EN: entropía; IN: inercia 
(IN); HoL: homogeneidad local  In the CCP column, different letters indicate 
statistically significant differences (p0.05); the standard deviations (n10) are 
shown in parentheses. NC: Number of inputs stage; R: Red channel; G: Green 
channel; B: Blue channel; L: Luminosity; a: the CIE-Lab space channel; b: channel 
of the CIE-Lab space; C: chroma; H: hue; SMA: second angular momentum; 
EN: entropy; IN: inertia; HoL: local homogeneity.

media del escenario de entradas 12 con respecto a los 
demás tratamientos, lo cual significa que se requiere 
un número mayor de repeticiones durante la prueba. 

Prueba de escenarios de entradas 
de cuatro tratamientos

	 En el Cuadro 3 se presentan los escenarios de 
entradas durante la prueba cuando se consideraron 
cuatro clases de salida y se usaron como variables 
de entrada, diferentes combinaciones de variables 
de color y textura. El tiempo de cómputo fue de 6 
s a 1.31 min en una computadora con procesador 
AMD AthlonTM 64Dual Core-Processor TK-55 
1.80 GHz.

inputs considering six treatments during training was 
obtained, but this increase was marginal during the 
test and even some entry scenarios with combined 
variables of texture and color (9, 10, 13, and 15 
classifiers) showed lower percentages.  

Contingency table of entry scenarios 
of with six and four classes 

	 The contingency table of one of the best entry 
scenarios with texture and color variables, with six 
classes during the test (Classifier 10, Table 2), is 
presented in Table 4. Two treatments were correctly 
classified with sensitivity greater than 90 %: the 
control (treatment 1) and treatment 6 with 50 % Fe 
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Cuadro 3. Promedios del porcentaje de clasificación global correcta en la prue-
ba (CCP) de escenarios de entradas creados con redes neuronales 
artificiales cuando se consideraron cuatro clases de salida o trata-
mientos (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 
0 % Fe, 0 % Mn).

Table 3.	Averages for the percentage of overall correct classification (CPC) in 
the test of input scenarios created with artificial neural networks when 
four kinds of output or treatments were considered (100 % Fe and Mn; 
100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn). 

NC Variables de entrada CCP

1 L, a, b, C, H 79.7 a (7.5)
2 R, G, B, L, a, b, C, H 75.9 a (8.4)
3 R, B, L, a, b 74.6 a (8.0)
4 R, G, B, C 75.1 a (7.0)
5 R, B, a, C, SMA 73.6 a (8.1)
6 R, G, B 68.1 a (7.7)
7 R, B, H 70.1 a (5.6)
8 R, G, B, C, H 76.1 a (5.6)
9 R, B, H, SMA, En, HoL 70.0 a (7.4)
10 R, G, B, C, SMA, EN, HoL 73.8 a (6.6)
11 R, B, C, SMA, EN, HoL 67.0 a (10.8)
12 SMA, EN, IN, HoL 44.9 b (9.2)
13 L, a, b, SMA, EN, HoL 70.4 a (7.5)
14 L, a, b, C, H, SMA, EN, HoL 78.3 a (7.8)
15 L, C, H, SMA, EN, HoL 68.7 a (5.6 )

En la columna CCP, letras diferentes indican diferencias estadísticamente signifi-
cativas (p0.05); las desviaciones estándar (n10) se muestran entre paréntesis. 
NC: Número de escenario de entradas; R: Canal rojo; G: Canal verde; B: Canal 
azul; L: Luminosidad; a: Canal del espacio CIE-Lab; b: Canal del espacio CIE-Lab; 
C: croma; H: matiz; SMA: segundo momento angular; EN: entropía; IN: inercia 
(IN); HoL: homogeneidad local  In the CCP column, different letters indicate 
statistically significant differences (p0.05); the standard deviations (n10) are 
shown in parentheses. NC: Number of inputs scenarios; R: Red channel; G: Green 
channel; B: Blue channel; L: Luminosity; a: CIE-Lab space channel; b: Channel 
of the CIE-Lab space; C: chroma; H: hue; SMA: second angular momentum; 
EN: entropy; IN: inertia; HoL: local homogeneity.

	 La diferencia en la prueba (p0.05) es el pro-
medio del porcentaje de clasificación correcta 
global del escenario de entradas que consideró las 
variables de textura (clasificador 12) del resto de 
escenarios de entradas (Cuadro 3). Con los escena-
rios de entradas al considerar cuatro tratamientos 
se obtuvo porcentaje mayor de clasificación co-
rrecta global respecto a los escenarios de entradas, 
considerando seis tratamientos durante el entrena-
miento, pero este aumento fue marginal durante la 
prueba e inclusive algunos escenarios de entradas 
con variables combinadas de textura y color (Cla-
sificadores 9, 10, 13, y 15) presentaron porcentajes 
menores. 

and 100 % MN.  The other treatments are classified 
with sensitivities over 60 % except for treatment 2 
(100 % Fe and 0 % Mn) with a sensitivity of 40 %,
which was mainly confused with class 3; the 
absence of one of two micronutrient of modified 
Steiner solution is characteristic of classes 2 and 3.  
The treatments had specificity than 90 %, where 
treatments 2 (100 % Fe, 0 % Mn) and 3 (0 % Fe, 100% 
Mn) had the lower specificities, whereas treatment 6 
(50 % Fe, 100 % Mn) had the highest specificity.  
	 Regarding the entry scenario with four kinds 
of output (Table 5), control (100 % Fe and Mn) 
had sensitivity greater than 90 %, while treatment 
2 (100 % Fe, 0 % Mn) had the lower sensitivity 
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Cuadro 4. Estadísticas promedio (n10) del arreglo matricial o tabla de contingencia en la prueba para el escenario de entradas 
con las variables de entrada “red” (R), “green”  (G), “blue”  (B), croma (C), y los caracteres texturales segundo momen-
to angular (SMA), entropía (EN), y homogeneidad local (HoL), y seis clases de salida o tratamientos†.

Table 4.	Statistical average (n10) of the matrix arrangement or table of contingency in the test for the scenario of inputs 
with the variables of input “red” (R), “green” (G), “blue” (B), chroma (C), and textural characters second angular 
momentum (SMA), entropy (EN), and local homogeneity (HoL), and six kinds of output or treatments†. 

Clasificado
Observado

Total
1 2 3 4 5 6

1 54 5 0 3 8 0 70
2 1 25 11 8 2 0 47
3 1 18 38 2 2 1 62
4 2 5 5 46 2 1 61
5 1 6 5 1 46 0 59
6 1 1 1 0 0 58 61

Total 60 60 60 60 60 60 360

Relación V-P 0.9 0.42 0.63 0.77 0.77 0.97
Relación F-P 0.05 0.07 0.08 0.05 0.04 0.01
Relación V-N 0.95 0.93 0.92 0.95 0.96 0.99
Relación F-N 0.10 0.58 0.37 0.23 0.23 0.03
Sensibilidad 99 % 42 % 63 % 77 % 77 % 97 %
Especificidad 95 % 93 % 92 % 95 % 96 % 99 %

†100 % Fe y Mn, tratamiento 1; 100 % Fe, 0 % Mn, tratamiento 2; 0 % Fe, 100 % Mn, tratamiento 3; 0 % Fe, 0 % Mn. tratamiento 
4; 100 % Fe, 50 % Mn, tratamiento 5; 50 % Fe, 100 % Mn, tratamiento 6. V-P: identificados correctamente; F-P: identificados inco-
rrectamente; V-N: descartados correctamente; F-N: descartados incorrectamente  †100 % Fe and Mn, treatment 1; 100 % Fe, 0 % Mn, 
treatment 2; 0 % Fe, 100 % Mn, treatment 3; 0 % Fe, 0 % Mn, treatment 4; 100 % Fe, 50 % Mn, treatment 5; 50 % Fe, 100 % Mn, 
treatment 6. V-P: identified correctly; F-P: identified incorrectly; V-N: discarded properly; F-N: discarded improperly.

Tabla de contingencia de escenarios de entradas 
con  seis y cuatro clases

	 La tabla de contingencia de uno de los mejores 
escenarios de entradas con variables de textura y co-
lor, con seis clases durante la prueba (Clasificador 10, 
Cuadro 2), se presenta en el Cuadro 4. Dos trata-
mientos fueron clasificados correctamente con sensi-
bilidad mayor a 90 %: e1 testigo (tratamiento 1) y el 
tratamiento 6 con 50 % de Fe y 100 % de Mn. Los 
otros tratamientos son clasificados con sensibilidades 
mayores de 60 % excepto el tratamiento 2 (100 % 
Fe y 0 % Mn) con sensibilidad de 40 %, el cual fue 
confundido principalmente con la clase 3; es caracte-
rístico de las clases 2 y 3 la ausencia de uno de los dos 
micronutrientes modificados en la solución Steiner. 
Los tratamientos presentaron especificidades mayo-
res a 90 %, donde los tratamientos 2 (100 % Fe, 0 % 
Mn) y 3 (0 % Fe, 100 % Mn) tuvieron las especifici-
dades menores mientras que el tratamiento 6 (50 % 
Fe, 100 % Mn) observó la mayor especificidad.

although it presented the highest specificity. The 
lower specificity was observed with treatment 3 
(0 % Fe, 100 % Mn). 
	 According with Howeler (1978), severe deficiencies 
of Fe or Mn can produce similar symptoms, and under 
these circumstances the plant damage is irreversible. In 
the present research, the symptoms of these elements 
deficiency at 74 das in leaves of common bean 
(Figure 1) were not apparent (55 d after treatment 
started), making the identification of the cause to the 
naked eye difficult, even for an expert; however, its 
detection at this stage is critical to be able to reverse 
deficiencies with fertilization. Due to the difficulty of 
identification, artificial neural networks as a tool are 
used to create a classifier based on color and texture 
variables from the analysis of digital images. Whit 
this strategy up to 74.7% of correct classification 
was obtained of six treatments during the test. Burks 
et al. (2000) with discriminant analysis and texture 
characteristics obtained a classifier capable of 93 % 
of correct identification of weed species; whereas 
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	 Con respecto al escenario de entradas con cuatro 
clases de salida (Cuadro 5), el testigo (100 % Fe y 
Mn) tuvo sensibilidad mayor a 90 % mientras que 
el tratamiento 2 (100 % Fe, 0 % Mn) tuvo la menor 
sensibilidad aunque presentó la especificidad mayor. 
La especificidad menor fue observada con el trata-
miento 3 (0 % Fe, 100 % Mn).
	 De acuerdo con Howeler (1978), las deficiencias 
severas de Fe o Mn pueden producir síntomas simila-
res, y bajo estas circunstancias el daño en los vegetales 
es irreversible. En la presente investigación, los sínto-
mas de deficiencia de estos elementos a los 74 dds en 
hojas de frijol (Figura 1) no fueron aparentes (55 d 
después de iniciar los tratamientos), lo cual dificulta 
la identificación de la causa a simple vista, incluso 
para un experto; sin embargo, su detección en esta 
etapa es crítica para poder revertir las deficiencias con 
fertilización. Debido a la dificultad para la identifi-
cación, se usaron redes neuronales artificiales como 
herramienta para crear un clasificador, basado en va-
riables de color y textura resultado de análisis de imá-
genes digitales. Con esta estrategia  se obtuvo hasta 

Kim et al. (2009) created a classifier with principal 
components with 97.3 % of correct identification of 
Fe, Mn, Zn deficiencies and a disease in citrus leaves. 
This greater rating capacity may be due to the fact that 
the evaluated leaves were collected by someone that 
visually identified the symptoms, which indicates the 
severity of the deficiency was high; on the contrary, 
in this study the symptoms were in its initial stages 
(Figure 1). Besides, any symptoms of deficiency is not 
static and is possible to observe changes in color and 
texture as a function of the time and phenological stage, 
therefore these temporal and spatial changes in leaves 
of the species should be investigated in agronomic 
species. Thus, Meyer et al. (1998) found that the 
ability to identify the same species with discriminant 
analysis and textural characters ranged from 30 to 
77 %, dependent on the age of the leaf texture change 
attributable to the EN, but not the HoL that remained 
unchanged with phenology. But the SMA recorded an 
early differentiation between weeds such as “quelite” 
regarding other evaluated as sorghum, foxtail and a 
Malvaceae.

Cuadro 5. Estadísticas promedio (n10) del arreglo matricial o tabla de contingencia en la prueba 
para el escenario de entradas con las variables de entrada L (luminosidad), a (canal del 
espacio CIE-Lab), b (Canal del espacio CIE-Lab), croma (C), matiz (H), y cuatro  clases 
de salida o tratamientos†.

Table 5. Average statistics (n10) of the matrix arrangement or table of contingency in the test 
for the scenario of inputs of variables L (luminosity), a (CIE-Lab space channel), b 
(CIE-Lab space channel), chroma (C), hue (H), and four kinds of output or treatments†.

Clasificado
Observado Total

1 2 3 4

1 58 2 1 7 68
2 1 35 2 3 41
3 0 21 53 5 79
4 1 2 4 45 52

Total 60 60 60 60 240

Relación Verd-Pos. 0.97 0.58 0.88 0.75
Relación Fals-Pos. 0.06 0.03 0.14 0.04
Relación Verd-Neg 0.94 0.97 0.86 0.96
Relación Fals-Neg. 0.03 0.42 0.12 0.23
Sensibilidad 97 % 58 % 88 % 75 %
Especificidad 94 % 97 % 86 % 96 %

†100 % Fe y Mn, tratamiento 1; 100 % Fe, 0 % Mn, tratamiento 2; 0 % Fe, 100 % Mn, trata-
miento 3; 0 % Fe, 0 % Mn, tratamiento 4. V-P: identificados correctamente; F-P: identificados 
incorrectamente; V-N: descartados correctamente; F-N: descartados incorrectamente  †100 % Fe 
and Mn, treatment 1; 100 % Fe, 0 % Mn, treatment 2; 0 % Fe, 100 % Mn, treatment 3; 0 % Fe, 
0 % Mn, treatment 4. V-P: identified correctly; F-P: identified incorrectly; V-N: discarded properly; 
F-N: discarded improperly.
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74.7 % de clasificación correcta de seis tratamientos 
durante la prueba. Burks et al. (2000) con análisis 
discriminante y características de textura obtuvieron 
un clasificador con 93 % de identificación correcta de 
especies de malezas, mientras que Kim et al. (2009) 
crearon un clasificador con componentes principales 
con 97.3 % de identificación correcta de deficiencias 
de Fe, Mn, Zn y una enfermedad en hojas de cítricos. 
Esta mayor capacidad de clasificación puede deberse 
a que las hojas fueron recolectadas por quien visual-
mente identificó los síntomas, lo cual indica que la 
severidad de la deficiencia era alta; en cambio, en el 
presente estudio, los síntomas eran iniciales (Figura 
1). Además, cualquier síntoma de deficiencia no es es-
tática y es posible observar cambios en color y textura 
en función del tiempo y etapa fenológica, por lo cual 
se deben investigar estos cambios temporales y espa-
ciales en hojas de las especies con importancia agro-
nómica. Así, Meyer et al. (1998) encontraron que la 
capacidad para identificar la misma especie con aná-
lisis discriminante y caracteres texturales varió de 30 
a 77 %, por el cambio en la textura dependientes de 
la edad de la hoja atribuibles a la EN, a diferencia de 
la HoL que permaneció invariable con la fenología. 
Pero el SMA registra una diferenciación temprana 
entre malezas, como el quelite con respecto a otras 
evaluadas como el sorgo, cola de zorra y una malvá-
cea.
	 La finalidad de disminuir el número de clases, de 
6 a 4, fue eliminar lo que Kim et al. (2009) denomi-
nan la matriz de confusión, en la cual un clasifica-
dor confunde dos o más clases entre sí; se esperaba 
que conforme disminuyera el número de clases, au-
mentara la capacidad de clasificación correcta. Las 
clases con 50 % de Fe o Mn se eliminaron cuan-
do se consideraron solo cuatro clases porque estas 
clases podrían ser las que producen confusión entre 
deficiencias severas y tratamientos sin deficiencia. 
Sin embargo, tanto en los mejores clasificadores con 
seis o cuatro clases, los tratamientos con 100 % Fe 
y 0 % Mn, 0 % Fe y 100 % Mn y 0 % Fe y 0 % 
Mn presentaron características similares en color y 
textura, en la etapa de recolección de las hojas, y 
fueron confundidas entre sí por los clasificadores. 
Las últimas dos clases comparten la ausencia de Fe 
en la solución nutritiva Steiner, mientras que 100 %
Fe y 0 % Mn, y 0 % Fe y Mn carecen de Mn. En 
condiciones de campo, es difícil la ausencia total 
de los micronutrientes, excepto cuando existe otro 

	 The purpose of reducing the number of classes 
from 6 to 4, was to eliminate what Kim et al. (2009) 
called the confusion matrix, in which a classifier 
confused two or more classes; it was expected that 
as the number of classes decreases the ability of 
correct classification increased. Classes with 50 % 
of Fe or Mn were eliminated when only four classes 
were considered because these classes could be those 
that produce confusion between treatments without 
deficiency and severe deficiencies. However, in the 
best classifiers with six or four kinds, the treatments 
with 100 % Fe and 0 % Mn, 0 % Fe and 100 % 
Mn and 0 % Fe and 0 % Mn presented similar 
color and texture at the stage when the leaves were 
collected, and were confused by classifiers. The last 
two classes share the absence of Fe in the Steiner 
nutrient solution, while 100 % Fe and 0 % Mn, and 
0 % Fe and Mn lack of Mn. Under field conditions 
the total absence of micronutrients is unlikely, except 
when there is an antagonistic nutrient element or by 
effect of pH. On the other hand, partial deficiencies 
of the same elements do occur more frequently and 
are best identified with classifiers. In this sense, both 
the sensitivity and specificity were higher than 95 % 
in the scenario entries 10 and six kinds of output or 
treatments (Table 2), treatments without deficiencies 
(100 % Fe and Mn, treatment 1) or partial deficiencies 
(100 % Fe, 50 % Mn, treatment 5) and 50 % Fe, 
100 % Mn, treatment 6), except the sensitivity of 
treatment 5 which was 77 % (Table 4).
	 Thus, there is evidence that at an early stage Fe 
and Mn deficiencies in leaves of common bean, used 
textural characteristics were not sufficient to identify 
symptoms patterns, because the patterns of deficiency 
were not so marked or due to the insensitivity of 
the method because of the used parameters, since 
only a r1 pixels distance was used to calculate the 
relative frequency of pairs of neighboring pixels in 
a digital image, one with i tone level and another 
j, so it is possible that it is not spatially recovering 
the variation in tone caused by deficiencies. On the 
contrary, the variables obtained from color spaces 
allowed obtaining best classifiers.
	 However, it remains to be tested if other secondary 
statistics or methods for texture determination 
can incorporate better patterns to differentiate the 
shortcomings of Fe and Mn. It is possible that, to 
increase the accuracy of the classification of Fe and Mn 
deficiency symptoms, complementary physiological, 
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elemento nutrimental antagónico o por efecto del 
pH. En cambio, deficiencias parciales de los mis-
mos elementos sí ocurren con mayor frecuencia y 
son mejor identificados con los clasificadores. En 
este sentido, tanto la sensibilidad como la especifici-
dad fueron mayores a 95 % en el escenario de entra-
das 10 y seis clases de salida o tratamientos (Cuadro 
2), de los tratamientos sin deficiencias (100 % de 
Fe y Mn, tratamiento 1) o con deficiencias parciales 
(100 % Fe, 50 % Mn, tratamiento 5) y 50 % Fe, 
100 % Mn, tratamiento 6), excepto la sensibilidad 
de el tratamiento 5 que fue 77 % (Cuadro 4).
	 Así, hay evidencia de que en una etapa tempra-
na de deficiencias de Fe y Mn en hojas de frijol, las 
características texturales usadas no fueron suficientes 
para identificar patrones de síntomas, porque los pa-
trones de deficiencia no eran tan marcados o debi-
do a la insensibilidad del método por los parámetros 
usados, ya que solo se usó una distancia r1 pixeles 
para calcular las frecuencia relativa de pares de píxeles 
vecinos en una imagen digital, uno con nivel de tono 
i y otro j. Así, es posible que no se esté recuperando 
espacialmente la variación del tono producido por las 
deficiencias. En cambio, las variables obtenidas de los 
espacios de color permitieron obtener mejores clasifi-
cadores.
     Sin embargo, falta probar si otros estadísticos 
secundarios u métodos para la determinación de tex-
tura permiten incorporar mejores patrones para di-
ferenciar las deficiencias de Fe y Mn. Es posible que 
para incrementar la precisión de clasificación de sín-
tomas de deficiencia de Fe y Mn se requieran varia-
bles fisiológicas, morfológicas o anatómicas comple-
mentarias a las evaluaciones visuales propuestas en el 
presente estudio. Además, Adams et al. (2000) con-
sideran que algunos factores pueden interferir para 
obtener una clasificación de síntomas buena, por 
ejemplo el estrés hídrico, lumínico o por deficiencias 
de macronutrientes. En particular, deficiencias seve-
ras de  nitrógeno (N) o azufre (S) pueden causar sín-
tomas similares a los causados por deficiencia de Fe.

Conclusiones

	 Con variables de color y textura fue posible iden-
tificar deficiencias iniciales de Fe y Mn en hojas de 
frijol hasta 75 % de clasificación global correcta, 
síntomas que difícilmente pueden caracterizarse a 
simple vista por un experto porque las muestras se 

morphological, or anatomical variables have to be 
added to the visual assessments proposed in this 
study. In addition, Adams et al. (2000) consider that 
to obtain a good classification of symptoms other 
factors can interfere, for example water stress, light 
stress or macronutrient deficiencies. Particularly, 
severe deficiencies of nitrogen (N) or sulphur (S) 
may cause symptoms similar to those caused by Fe 
deficiency.

Conclusions 

	 It was possible to identify initial shortcomings 
of Fe and Mn in common bean leaves up to 75 % 
overall correct classification using color and texture 
variables, symptoms that can hardly be characterized 
at a glance by an expert, because the samples were 
taken at an early stage of deficiency, when it is possible 
to reverse the damage with fertilization. Never the 
less, the variables of texture by themselves are not 
sufficient to obtain a good classifier, and therefore 
the hypothesis is rejected. The identification of 
plants without deficiencies and partial deficiencies 
in both Fe and Mn were higher than 95 %, except 
the sensitivity of the partial deficiency produced by 
100 % Fe and only 50 % of MN. 

—End of the English version—

pppvPPP

tomaron en una etapa inicial de deficiencia cuando 
es posible revertir los daños con fertilización. Pero las 
variables de textura por sí mismas no son suficientes 
para obtener un buen clasificador, y la hipótesis se re-
chaza. La identificación de plantas sin deficiencias y 
con deficiencias parciales tanto de Fe y Mn tuvieron 
especificidad y sensibilidad mayores a 95 %, excepto 
la sensibilidad  de la deficiencia parcial producida por 
aplicar 100 % de Fe y solo 50 % de Mn.  
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