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RESUMEN

La sintomatologia visual en hojas debida a deficiencias nu-
trimentales, como la de hierro (Fe) y manganeso (Mn), son
similares en coloracién y en tipo de hojas en que se presenta,
por lo cual se requiere un método, con base en anilisis de
imdgenes digitales de hojas, que discrimine esas deficien-
cias. El objetivo de esta investigacién fue analizar imdgenes
digitales de hojas de frijol (Phaseolus vulgaris L.) var. Caca-
huate para identificar, con un clasificador creado con redes
neuronales probabilisticas, deficiencias de Fe y Mn en una
etapa inicial, cuando todavia es posible revertir los dafios
con fertilizacién. Los tratamientos fueron: 1) deficiencia
parcial (DP) de Fe (50 %); 2) DP de Mn (50 %); 3) deficien-
cia total (DT) de Fe (0 %); 4) DT de Mn (0 %); 5) interac-
cién (0 % Fe, 0 % Mn); 6) testigo (100 % Fe, 100 % Mn),
con 10 repeticiones; la referencia fue la solucién Steiner. Los
valores promedio de ocho variables de color y tres de tex-
tura, se obtuvieron de seis muestras de imdgenes digitales
de 100X100 pixeles (360 muestras en total), de hojas de
frijol obtenidas 74 dds. Estas fueron usadas como variable
de entrada para generar clasificadores con redes neuronales
probabilisticas con el algoritmo de correlacién en cascada
de los tratamientos de deficiencias de Fe y Mn. Los clasifica-
dores que solo consideraron caracteristicas texturales, como
variables de entrada, tuvieron porcentajes de clasificacién
correcta global de sintomas menores o iguales a 44 %. En

cambio, el porcentaje de clasificacién correcta global del
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ABSTRACT

The visual symptomatology of nutriment deficiencies,
like iron (Fe) and manganese (Mn) in plant leafs is similar
in their coloration and the kind of leaf they present on.
A method based on the analysis of digital images of the
leaves, capable to discriminate the differences of such
deficiencies is required. The aim of this research was to
analyze digital images of common bean (Phaseolus vulgaris
L. var. Cacahuate), in order to identify differences in the
Fe and Mn lesions in the initial development stage, when
it is possible to revert damages with fertilization. To do
so, we used a classifier created with probabilistic neuronal
networks. The experimental treatments were: 1) partial
deficiency (DP) of Fe (50 %); 2) DP of Mn (50 %); 3)
total deficiency (DT) of Fe (0 %); 4) DT of Mn (0 %); 5)
Fe/Mn interaction (0 % Fe, 0 % Mn); 6) control (100 %
Fe, 100 % Mn), with 10 repetitions; Steiner solution was
used as reference. The mean values of eight color and
three texture variables from digital images of six common
bean leaf samples were obtained; these were of 100100
pixels (360 total samples) in 74 dds. These mean values
were used as entry variables to generate the classifiers
with a cascade correlation algorithm of the Fe and Mn
deficiency treatments. The classifiers that only considered
textural characteristics had correct global classification
of symptoms less or equal to 44 %. In contrast, the
highest percentage of correct global classification of the
classifiers in the test was of 76.6 % with six variables,
which included texture and color characteristics, and six
exit classes of difference treatments. The reduction of
the number of classes did not increase the percentage of

correct classification in the test.
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mejor clasificador en la prueba fue 76.6 % con seis variables
que incluyeron caracteristicas de textura y color, y seis clases
de salida o tratamientos de deficiencias. Un niimero menor
de clases de salida no aumentd el porcentaje de clasificacién

correcta global en la prueba.

Palabras claves: croma, entropfa, espacio de color RGB, homo-

geneidad local, matiz, segundo momento angular.
INTRODUCCION

| frijol (Phaseolus vulgaris L.) es una especie

susceptible a la deficiencia de hierro (Fe) que

puede reducir hasta 100 % el rendimiento
de grano (Clark, 1991; Hansen ez al., 2006). Esta
deficiencia se manifiesta como clorosis intervenal,
mientras que la de manganeso (Mn) se caracteriza
en dicotiledéneas como manchas amarillas pequenas,
pero también como clorosis intervenal, lo cual puede
confundirse con deficiencia de Fe. El Mn y Fe son
nutrimentos relativamente inméviles en el floema, es
decir, no son removilizados hacia los tejidos jévenes
cuando disminuye su suministro via xilema (Barba-
z4n, 1998). La deficiencia de ambos elementos pue-
de confundirse debido a la similitud de los sintomas
de la deficiencia de cada elemento bajo condiciones
severas, por lo cual se podria enmascarar ademds de
presentarse en hojas jovenes (Howeler, 1978). Segin
Jones et al. (1991), una concentracién de Fe y Mn
de 15 a 49 mg kg ! es baja y el éptimo es 50 a 300
mg kg ™' La toxicidad por Mn distorsiona las ho-
jas y produce manchas oscuras; en casos severos hay
necrosamiento de los bordes de las hojas que avanza
hacia el interior al aumentar la severidad (Schulte y
Kelling, 1999). La deficiencia de Fe ocasiona toxici-
dad por Mn y viceversa (Somers y Shive, 1942) y una
toxicidad leve por Mn es idéntica a la deficiencia de
Fe (Twyman, 1950).

Segtin Barbazdn (1998), la apreciacién visual de
las deficiencias de Fe y Mn es aparente después de
que la disponibilidad de estos nutrientes es tan baja
que la planta no puede completar sus funciones fi-
sioldgicas o ciclo biolégico; por lo cual, el cambio
de color y textura de la hoja serfa una forma prictica
para evaluar el estado nutricional, asi como la sani-
dad requiere determinacién visual en una etapa tem-
prana de la deficiencia. Sin embargo, en esta etapa,
los sintomas no son tan evidentes, lo cual dificulta el
diagnéstico.
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homogeneity, hue, second angular momentum.
INTRODUCTION

ommon bean (Phaseolus vulgaris L.) is a

species susceptible to iron (Fe) deficiency,

which can reduce up to 100 % of the
grain yield (Clark, 1991; Hansen ez a/., 20006). This
deficiency is manifested as interveinal chlorosis, while
that of manganese (Mn) in dicots is characterized by
small yellow spots but but can also present interveinal
chlorosis, which can therefore be confused with iron
deficiency. The Mn and Fe are nutrients relatively
immobile in the phloem, i.e. they are not moved back
to young tissues when their supply is reduced by the
xylem (Barbazan, 1998). Deficiency of both elements
can be confused because of the symptoms similarity at
severe conditions, which could be masked, as well as
present in young leaves (Howeler, 1978). According
to Jones et at. (1991), concentrations of Fe and Mn
of 15 t0 49 mg kg ™" are low and their optimum is of
50 to 300 mg kg™". Mn toxicity distort leaves and
produces dark spots; in severe cases there is necrosis at
the leaves edges which moves inwards as the severity
increase (Schulte and Kelling, 1999). Fe deficiency
causes toxicity by Mn and vice versa (Somers and
Shive, 1942) and a slight Mn toxicity is identical to
Fe deficiency (Twyman, 1950).

According to Barbazdn (1998), the visual
appreciation of the Fe and Mn is only apparent when
the availability of these nutrients is so low that the
plant cannot fulfill its physiological functions or
biological cycle; therefore changes in the color and
texture of the leafs would be a practical way to assess
both, the nutritional status and the overall health of
the plants. This requires the visual determination at
an early stage of the deficiency. Nevertheless, at this
stage, symptoms are not obvious, which makes its
diagnosis difficult.

Murakami ez a/. (2005) points out the increase
in the research that applies color analysis of digital
images to evaluate the foliar nutrition and health
in response to environmental stress, mainly because
it is a low-cost method. They propose a method to
determine the health level of maple leafs based on the
bands or the red (R) and green (G) channels of the
RGB color space. Textural analysis classifies images
ranging from photomicrograph to satellite images,
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Murakami et 2/. (2005) sefalan el aumento en
las investigaciones que aplican el andlisis de color de
imdgenes digitales para evaluar la nutricién foliar y
la sanidad en respuesta al estrés ambiental, por ser
un método de costo bajo. Ellos proponen un méto-
do para determinar el nivel de sanidad de hojas de
maple basado en las bandas o canales rojo (R) y ver-
de (G) del espacio de color RGB. El anilisis textural
clasifica imdgenes desde microfotografias hasta ima-
genes satelitales porque las caracteristicas texturales
contienen informacién de la distribucién espacial de
las variaciones de tono de una banda; el tono se basa
en la variacién de sombras de gris de unidades de
resolucién en una imagen fotografica, mientras que
la textura estd enfocada a la distribucién espacial de
los tonos de gris (Haralick e a/., 1973). Haralick ez
al. (1973) usaron caracteristicas de textura con base
en matrices de co-ocurrencia en tonos de gris para
analizar imdgenes obtenidas por sensores remotos; la
clasificacién de superficies terrestres con base en su
uso y la aplicacidn selectiva de pesticidas se puede
hacer mediante esas caracteristicas. Para distinguir
malezas y asperjar selectivamente un pesticida para
malezas de hoja ancha o pastos, Meyer ez al. (1998)
usaron caracteristicas texturales, las cuales fueron la
base para identificar el tipo de cubierta en la super-
ficie y el andlisis de color fue util para separar entre
plantas y suelo. Hay clasificadores con base en las
caracteristicas texturales y el andlisis discriminan-
te para identificar tipos de malezas. En un estudio
(Burks ez al., 2000) se diferencié el suelo y la planta
con 100 % de precisién, mientras que la precisién
fue 93 % al identificar malezas con el método de
co-ocurrencia de color. Kim ez 2/. (2009) usaron el
método de co-ocurrencia de color para diferenciar
hojas de citricos con ocho sintomas, incluyendo de-
ficiencias de Fe, Mn y Zinc (Zn) y la enfermedad
enverdecimiento de los citricos; mediante un anali-
sis discriminante ellos crearon tres clasificadores con
base en 14 caracteristicas texturales como variables,
la precisién para diferenciar deficiencias de esos mi-
croelementos fue 97.3 %. El andlisis textural es la
herramienta mds precisa para la discriminacién de
malezas de acuerdo con Meyer ez al. (1998), quienes
cuestionan si es conveniente combinar caracteristi-
cas texturales con las de color para identificar ma-
lezas. Segtin Kim ez /. (2009), diversas caracteris-
ticas texturales deben considerarse, aunque algunas
dardn mds informacién que otras, y eliminar las que

because textural features contain information of
the spatial distribution of the tone variations of a
band; the tone is based on the variation of shades
of gray of resolution units in a photographic image,
while texture is focused on the spatial distribution of
shades of gray (Haralick ez a/., 1973). Haralick ez al.
(1973) used texture features based on co-occurrence
matrices of gray tones to analyze images obtained
by remote sensors; the classification of terrestrial
surfaces based on its use and the selective application
of pesticides can be done via such features. In order
to distinguish weeds and selectively spraying a
pesticide for broadleaf weeds or grasses, Meyer et al.
(1998) used textural features, which were the basis
for identifying the type of cover on the surface and
color analysis was useful to discriminate between
plants from soil. There are classifiers based on
textural features and discriminant analysis to identify
weed types. In a study (Burks ez a/., 2000) soil and
plants were differentiated with a 100 % accuracy,
whereas the precision was of 93 % when weeds were
identified with the co-occurrence of color method.
Kim et al. (2009) used the color co-occurrence
method to differentiate citrus fruit leaves with eight
symptoms, including deficiencies of Fe, Mn and
Zinc (Zn) along with the Citrus Greening disease;
using a discriminant analysis they created three
classifiers based on 14 textural features like variables,
with a accuracy in differentiating deficiencies of
these micronutrients was 97.3 %. Textural analysis
is the most accurate tool for discrimination of weeds
according to Meyer er al. (1998), who questioned
whether it is suitable to combine textural features
with the color ones to identify weeds. According to
Kim et al. (2009), various textural characteristics
should be considered, although some will yield
more information than others, and eliminate those
that provide redundant information. To this regard,
probabilistic neural networks can be used to create
classifiers capable of identifying patterns in data; for
this reason, they are a useful tool for the analysis of
information (Oide and Ninomiya, 2000).

The aim of this research was to identify the
symptoms of Fe and Mn deficiency, both separately
and in combination, on common beans plants in
vegetative stage, via variables of color and texture,
using analysis of digital images of leaves and a
classifier set by artificial neural networks with the
cascade correlation algorithm. The hypothesis was

GARCIA-CRUZ e al. 397



AGROCIENCIA, 16 de mayo - 30 de junio, 2015

proporcionen informacién redundante. Al respecto,
las redes neuronales probabilisticas pueden usarse
para crear clasificadores capaces de identificar patro-
nes en datos, por lo cual son una herramienta 4til en
el andlisis de informacién (Oide y Ninomiya, 2000).

El objetivo de la presente investigacion fue iden-
tificar los sintomas de deficiencia de Fe y Mn, sepa-
rados y combinados, de frijol en etapa vegetativa,
mediante variables de color y textura, usando ani-
lisis de imdgenes digitales de hojas y un clasificador
con base en redes neuronales artificiales con el al-
goritmo de correlacidon en cascada. La hipdtesis fue
que las deficiencias de Fe y Mn pueden ser identifi-
cadas con caracteristicas texturales. Las variables de
color se calcularon para determinar si éstas tienen
nivel mayor de asociacién con las deficiencias del
cultivo de frijol que las de textura en una etapa tem-
prana de desarrollo.

MATERIALES Y METODOS

En un invernadero en Texcoco, México (2250 msnm, 19° 29’
Ny 98° 54’ O), se sembraron semillas de frijol (Phaseolus vulgaris
L.) var. Cacahuate en charolas de poliestireno expandido de 60
cavidades con perlita (Agrolita®), sustrato inerte y estéril, y se
regaron con agua destilada. La germinacién de las semillas fue
12 d después de la siembra (dds). Las pldntulas se trasplantaron a
vasos de poliestireno de 1 L de capacidad con perlita (Agrolita®).
Alos 19 dds inici6 el riego de las plantas con las soluciones nu-
tritivas de acuerdo con los tratamientos (Cuadro 1), en funcién
del micronutriente a estudiar, mediante la técnica del elemento
faltante. Para preparar la solucién nutritiva se usé agua destilada
y la solucién nutritiva Steiner. Las soluciones fueron ajustadas a
pH de 6.3 y la CE est4 predeterminada a 2.0 dS m™". El disefio

that the Fe and Mn deficiencies can be identified by
textural features. The color variables were calculated
to determine if they have a higher level of association
with deficiencies of the common bean crop than the
texture at an early stage of development.

MATERIALS AND METHODS

In a greenhouse in Texcoco, Mexico (2250 masl, 19° 29’
N and 98° 54’ W), seeds of beans (Phaseolus vulgaris L.) var.
Cacahuate were sown in expanded polystyrene trays of 60
cavities with perlite (Agrolite®), sterile and inert substrate, and
watered with distilled water. Seed germination happened 12 d
after sowing (das). Seedlings were transplanted to 1 L capacity
polystyrene cups with perlite (Agrolite®). Plant watering started
19 dds with nutritious solutions, in accordance with treatments
(Table 1), depending on the micro-nutrient to be studied, using
the missing element technique. To prepare the nutrient solution
distilled water and Steiner nutrient solution were used. The pH
of the solutions was adjusted to 6.3 and the EC predetermined to
2.0dS m™". The experimental design was completely randomized
with six treatments and 10 repetitions per treatment.

Digital images were obtained at 74 das from a fourth, recently
mature and fully expanded leaf (Figure 1) of each repetition and
treatment (60 images in total); these were captured at 300 dpi
with a commercial scanner (HP Scanjet G2410), and stored in
the JPEG format. Six samples of 100X100 pixels were obtained
from each left leaflet (360 processed images).

Channels of RGB color space values were obtained for
the analysis of images. The color space is the specification of a
coordinate system and subspaces within a system where each
color is represented by a single point (Gonzalez and Woods,
2002). Using a Visual Basic v. 6.0® program, the RGB (red,

green, and blue) average values were obtained for the samples

Cuadro 1. Tratamientos en funcién del micronutriente a estudiar mediante la técnica del elemento
faltante y con base en la solucidén Steiner al 100 %.
Table 1. Treatments based on the micro-nutrient to be studied, using the missing element technique

based on a 100 % Steiner solution.

Contenido del micronutriente en la solucién nutritiva

Tratamiento

Hierro (Fe, %)

Manganeso (Mn, %)

Testigo (solucién Steiner 100 %)
Sin Mn

Sin Fe

Sin Mn, sin Fe

Deficiente en Mn

Deficiente en Fe

() WA RSN SR

100 100
100 0
0 100

0 0
100 50
50 100
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experimental fue completamente al azar con seis tratamientos y
10 repeticiones por tratamiento.

Las imdgenes digitales se obtuvieron a los 74 dds de la cuarta
hoja recientemente madura (Figura 1) y completamente expan-
dida de cada repeticién y tratamiento (60 imdgenes en total);
se capturaron a 300 dpi con un escdner comercial (HP Scanjet
(G2410), y se almacenaron en el formato JPEG. Seis muestras de
100X100 pixeles se obtuvieron de cada foliolo izquierdo (360
imdgenes procesadas).

Para el andlisis de imdgenes se obtuvieron los valores de los
canales del espacio de color RGB. El espacio de color es la espe-
cificacién de un sistema de coordenadas y subespacios dentro de
un sistema donde cada color es representado por un solo punto
(Gonzalez y Woods, 2002). Con un programa en Visual Basic v.

6.0% se obtuvieron los valores RGB (red, green y blue) promedio

%o &
A

of 100X100 pixels for each color category. The RGB values
were transformed to the standard sRGB color sorter (linear)
defined by the Commission Internationale de L’Eclairage (IEC,
IEC61966-2-1, 1999, cited by Mendoza ez al., 2006), with which
the CIE-Lab color space was calculated. The chroma (C) was

obtained with the equation C'= (ﬂz +4? )1/2, and the hue (H)
was calculated from the arctangent of the ratio 2/6 (McGuire,
1992), where a and b are two channels of the CIE-Lab color
space. The constructed program recorded average values per
sample of the channels of these color spaces in a spreadsheet.
Data were stored in a comma-separated text file, therefore 300
data input/output were obtained for the training and 60 samples
for the tests. To calculate the secondary statistics, each pixel of
the 100 X100 pixels sample was transformed to an 8-bit grayscale

and the image segments were quantized to 16 shades of gray. The

*
2

Figura 1. Cuarta hoja de frijol var. Cacahuate, recientemente madura, de una repeticién de los tratamientos:
(A) 100 % de Fe y Mn; (B) 100 % Fe y 0 % Mn; (C) 0 % Fe y 100 % Mn; (D) 0 % Fe y Mn; (E) 100 % Fe
y 50 % Mn; (F) 50 % Fe y 100 % Mn. Las hojas se recolectaron a los 74 dds en septiembre del 2012.

Figure 1. Fourth bean leaf of var. Cacahuate, recently mature, from a repetition of the treatments: (A) 100 % of
Fe and Mn; (B) 100 % Fe and 0 % Mn; (C) 0 % Fe and 100 % Mn; (D) 0% Fe and Mn; (E) 100 % Fe
and 50 % Mn; (F) 50 % Fe and 100 % MN. The leaves were collected at 74 das in September 2012.
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de las muestras de 100 X100 pixeles por cada categoria de color.
Los valores RGB se convirtieron al clasificador de color estdndar
sRGB (lineales) definido por la Commission Internationale de
L’Eclairage (IEC, IEC61966-2-1, 1999, citado por Mendoza et

al., 2006), con lo cual se calculé el espacio de color CIE-Lab.

1/2
El croma (C) se obtuvo con la ecuacién C = (az +bz)

,yel
matiz (H) se calcul6 con el arcotangente de la relacién a/b (Mc-
Guire, 1992), donde 2 y & son dos canales del espacio de color
CIE-Lab. EI programa construido registré los valores promedios
por muestra de los canales de estos espacios de color en una hoja
de cdlculo. Los datos se almacenaron en un archivo de texto de-
limitando por comas, con lo cual se obtuvieron 300 muestras de
datos entrada-salida para el entrenamiento y 60 para las pruebas.
Para calcular los estadisticos secundarios, cada pixel de las mues-
tras de 100X100 pixeles fue transformado a una escala de grises
de 8 bits y los segmentos de imagen se cuantizaron a 16 tonos
de grises. La metodologia de Haralick ez al. (1973) se usé para
obtener la matriz de co-ocurrencia de frecuencias relativas p;; de
pares de pixeles vecinos en una imagen digital, uno con nivel de
tono 7y otro j, separados por 0 =(r=1, §=0°, 45°, 90°, 135°) en
la submuestra, donde 7 es la distancia en pixeles y 6 el dngulo.
0 =(7,0) denota un vector en las coordenadas polares de la ima-
gen. Los p;; por dngulo se promediaron para generar una matriz
de co-ocurrencia promedio, que fue registrada en una hoja de
célculo y donde 7 es el niimero de tonos de grises. Cuatro carac-

teristicas texturales fueron determinadas:

1) Segundo momento angular (SMA), también llamado
uniformidad, es una medida local de la homogeneidad

y opuesta a la entropfa, y se calcul$ con la ecuacién:

sma=3 3 [p; O]

i=1 j=1

2) Entropia (EN) es un estadistico que analiza la aleato-
riedad de p;;(r,6). Valores pequefios en el rango 0 y 1
indican uniformidad (Jensen, 2006), y se calculé con la

ecuacién:

EN = i i Pij (’ﬁ)log[l’z‘j (’,9)]

i=1j=1

3) Inercia (IIV) se calculé de la matriz de co-ocurrencia con

la ecuacidn:

=336 ;0]

i=1j=1
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methodology by Haralick ez al. (1973) was used to obtain the co-
occurrence matrix of relative frequencies p;; of pairs of neighbors
pixels in a digital image, one with level of tone 7 and another j,
separated by 0= (r=1, 0=0°, 45°, 90°, 135°) in the sub-sample,
where 7 is the distance in pixels and 6 the angle. 0=(r,0)
denotes a vector in the polar coordinates of the image. The p;; per
angle were averaged to generate a co-occurrence average matrix,
which was recorded in a spreadsheet and where n is the number

of gray shades. Three textural characteristics were determined:

1) Second angular momentum (SMA), also called
uniformity, is a local measure of the homogeneity
and opposite to the entropy and is calculated with the

equation:

sma=3 3 [2; O]

i=1 j=1

2) Entropy (EN) is a value that analyzes the randomness
ofpl-]» (7, 0). Small values in the 0 and 1 range indicate
uniformity (Jensen, 2006), these was calculated with the

equation:

EN = i i Pij ("ﬁ)log[ﬁij (’)9)]

i=1 j=1

3) Inertia (/NV) was calculated from the co-occurrence

matrix with equation:

=3 3= 7,0:0)]

i=1j=1

4) Local homogeneity (HoL) is a measure of contrast, as
the contrast increase local homogeneity decreases, and

was calculated with the equation:

Hot =3 S 1[1+ (= 3] 5 (0)

i=1 j=1

where pj; (r, ) refers to a relative frequency of neighboring
pixels pairs in a digital image, one with tone 7 level and another
J» separated by a r distance in pixels, at angle 6 and 7 and m

number of gray shades.

The classifier used was created and trained with the
Neuroshell Classifier® of Al Trilogy (Ward Systems Group,

Inc.) system, with a neuronal type training strategy, this
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4) Homogeneidad local (HoL) es una medida del contras-
te, al aumentar el contraste disminuye la homogeneidad

local, y se calculé con la ecuacidn:

Ho=3 Su[1+G= )], -0)

i=1 j=1

donde Pz‘j(” 0) se refiere a una frecuencia relativa de pares de
pixeles vecinos en una imagen digital, uno con nivel de tono 7 y
otro j, separados por una distancia 7 en pixeles, en el dngulo 0, y

con 7'y m nimero de tonos de grises.

El clasificador que se utilizé se cred y entrend con el sistema
Neuroshell Classifier® de AT Trilogy (Ward Systems Group, Inc.)
con la estrategia de entrenamiento tipo neuronal; este programa
permite crear redes neuronales artificiales supervisadas con el al-
goritmo de correlacién en cascada y fue propuesto por Fahlman
y Lebiere (1990). Este algoritmo inicia con una red neuronal
artificial minima que durante el entrenamiento afiade, una por
una, nuevas unidades en la capa oculta, lo cual genera una estruc-
tura multicapa. Una vez que se afiade a la estructura una nueva
unidad en la capa oculta, los pesos del lado de las entradas se
hacen constantes por lo cual esta unidad se vuelve un detector de
patrones permanente en la red neuronal, y estd disponible para
producir valores de salida o para crear otros detectores de patro-
nes mds complejos. Esta arquitectura se caracteriza por la rapidez
para entrenar las redes neuronales artificiales con pocos juegos
de datos, y donde un patrén de entrada es clasificado de acuerdo
con un nimero especifico de categorias (Ward Systems Group,
Inc., 1997-2007). Las redes neuronales artificiales son modelos
estadisticos no lineales diferenciables, que pueden aprender de
una base de datos donde en ocasiones no se cuenta con todos
los escenarios posibles, y no requieren de funciones o reglas bien
definidas; producen aproximaciones convenientes ¢ incluyen
variaciones que otros sistemas consideran como ruido (Neural
Innovations Ltd, 1997).

El clasificador tuvo dos a ocho escenarios de variables de en-
tradas de color y textura (los canales del espacio de color RGB, el
Cy H; y cuatro caracteristicas texturales (SMA, EN, IN y HoL),
seis (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn;
0 % Fe, 0 % Mn; 100 % Fe, 50 % Mn y 50 % Fe, 100 % Mn) o
cuatro clases (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100
% Mn; 0 % Fe, 0 % Mn) tratamientos; y un niimero médximo
de 150 neuronas en la capa oculta. Quince escenarios de entradas
se usaron, con 360 datos entrada-salida balanceados, cuando se
consideraron seis clases de salida del clasificador, y otros 15 esce-
narios de entradas, con 240 datos entrada-salida, cuando fueron
cuatro clases de salida del clasificador. Tanto en el clasificador de

seis (que corresponde a seis tratamientos), como en el de cuatro

program allows to create artificial neural networks supervised
with the cascade correlation algorithm and it was proposed
by Fahlman and Lebiere (1990). This algorithm starts with
a minimum artificial neural network that, during training,
add one by one new units in a hidden layer, which creates
a multilayer structure. Once a new unit in the hidden layer
is added to the structure, the weights on the entries side of
become constant by which this unit becomes a permanent
patterns detector in the neural network, and is available to
produce output values, or to create other detectors of more
complex patterns. This architecture is characterized by the
speed to train artificial neural networks using few data sets,
and where a pattern of entry is classified according with a
specific number of categories (Ward Systems Group, Inc.,
1997-2007). Artificial neural networks are differentiable non-
linear statistical models, which can learn from a database
where sometimes not all the possible scenarios are found, and
do not require functions or well defined rules; they produce
convenient approaches and include variations that other
systems considered noise (Neural Innovations Ltd, 1997).

The classifier had two to eight scenarios variables of color
and texture inputs (the RGB space color channels, C and H;
and four textural characteristics (SMA, EN, IN and Hol)), six
(100 % Fe and Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn;
0 % Fe, 0 % Mn; 100 % Fe, 50 % Mn and 50 % Fe, 100 %
Mn) or four classes (100 % Fe and Mn; 100 % Fe, 0 % Mn;
0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn) or treatments; and a
maximum of 150 neurons in the hidden layer. 15 entry scenarios,
with 360 balanced input/output data, were used when six kinds
of classifier output and other 15 scenarios of entries, with 240
input/output data, were considered when they were four kinds of
classifier output. Both in the classifier of six (which corresponds
to six treatments) as in the four classes (four treatments), each
entry scenario was repeated 10 times with random partitions of
data from 90 % for training and 10 % for the test.

The experimental design was completely randomized,
with the data an ANOVA was performed, to evaluate the
performance of the classifier based on the percentage of correct
overall classification between entries in the test scenarios the
treatment means were compared with the Tukey test (p=<0.05).
These analyses were performed with the SAS statistical
program version 8.1 (SAS Institute Inc., 1999-2000). The
contingency table of the best-case scenario entries was obtained
based on the overall response percentage of classification in the
classifier of six and four classes. Sensitivity, referred to as the
fraction of observations with the symptom identified correctly,
was calculated in this contingency table, and refers to the
probability that a model correctly detects a symptom when in

fact it is present. Also, the specificity was calculated, referred
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clases (cuatro tratamientos), cada escenario de entradas se repitié
10 veces con particiones aleatorias de los datos de 90 % para el
entrenamiento y 10 % para la prueba.

El disefio experimental fue completamente al azar, con los
datos se realizé un ANDEVA vy las medias de los tratamientos se
compararon con la prueba de Tukey (p=0.05), para evaluar el
desempefio del clasificador con base en el porcentaje de clasifi-
cacién global correcta entre escenarios de entradas en la prueba.
Estos andlisis se hicieron con SAS versién 8.1 (SAS Institute Inc.,
1999-2000). La tabla de contingencia de los mejores escenarios
de entradas se obtuvo con base en la respuesta global del por-
centaje de clasificacién en el clasificador de seis y en el de cuatro
clases. En esta tabla de contingencia se calculé la sensibilidad,
referida como la fraccién de observaciones con el sintoma iden-
tificado correctamente, y se refiere a la probabilidad de que un
modelo detecte correctamente un sintoma cuando de hecho estd
presente. También se calculd la especificidad referida como la
fraccién de observaciones descartadas correctamente de tener el
sintoma, y se refiere a la probabilidad de que un modelo detecte

la ausencia de un sintoma.
REsuLTADOS Y DISCUSION

Prueba de escenarios de entradas
de seis tratamientos

En el Cuadro 2 se presentan los escenarios de en-
tradas en la prueba cuando se consideraron seis clases
de salida y diferentes combinaciones de variables de
color y textura como variables de entrada.

Las diferencias entre tratamientos en la prue-
ba (Cuadro 2) fueron altamente significativas
(p=<0.001). El escenario de entradas 12 (Cuadro 2),
que consideré las caracteristicas texturales como va-
riables de entrada, tuvo el porcentaje menor de cla-
sificacién correcta global de sintomas de deficiencias
de Fe y Mn (33.6 %) durante la prueba. En cambio,
se obtuvo 63.5 % de clasificacién correcta global en
la prueba con el escenario de entradas que incluyé los
tres canales del espacio de color RGB (clasificador 6),
y este porcentaje aumentd al usar otras combinacio-
nes de canales de color. La combinacién de caracteres
texturales y de color permiti6é obtener algunos de los
escenarios de entradas (10 y 14) con mayores por-
centajes de clasificacion global correcta en la prueba,
pero estos no fueron diferentes (p>0.05) con los ob-
tenidos con los mejores escenarios de entradas (1y 2),
los cuales consistieron principalmente de variables de
color. Durante la prueba, la tnica diferencia fue la
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to as the fraction of observations correctly discarded of with
symptom, and refers to the probability that a model detects the

absence of a symptom.
REsuLrs AND DiscussioN
Scenarios test of six treatments entries

The scenarios of entries in the test, that considered
six kinds of output and different combinations of
variables in color and texture as input variables,
are presented in Table 2. The differences between
treatments in the test (Table 2) were highly significant
(p=<0.001). The scenario 12 of the entries (Table 2),
which considered textural characteristics as input
variables, had the lowest percentage (33.6 %) of
correct global classification of Fe and Mn deficiencies
symptoms during the test. On the other hand,
63.5 % of overall correct classification was obtained
in the test with the scenario of entries that included
three RGB color space channels (classifier 6), and
this percentage increased to use other combinations
of color channels. The combination of textural and
color characters allowed some of the input scenarios
(10 and 14) with higher overall percentages of correct
classification in the test, but these were not different
(p>0.05) to those obtained with the inputs best-
case scenario (1 and 2), which mainly consisted color
variables. During the test, the only difference was the
mean of scenario of entries 12 respect to the other
treatments, which indicate that a greater number of
repetitions during the test are required.

Test of entire scenarios of four treatments

Table 3 presents scenarios of entries during the
test when we considered four kinds of output classes
and different combinations of variables in color and
texture were used as input variables. The computation
time was of 6 s to 1.31 min on a computer with an
AMD AthlonTM 64 X Dual-Core processor TK-55
1.80 GHz.

The difference in the test (p=0.05) is the average
of the percentage of overall correct classification
of inputs scenario that considered the variables
of texture (classifier 12) from the rest of inputs
scenario (Table 3). With the entries scenarios, when
considering four treatments, a higher percentage of
overall correct classification respect to scenarios of
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Cuadro 2. Promedios del porcentaje de clasificacién global correcta en la prueba

(CCP) de escenarios de entradas creados con redes neuronales artificia-

les cuando se consideraron seis clases de salida o tratamientos (100 %
de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn;
100 % Fe, 50 % Mn y 50 % Fe, 100 % Mn).

Table 2. Averages for the global percentage of correct classification (CCP) in
the test input scenarios created with artificial neural networks when
six kinds of output or treatments were considered (100 % Fe and Mn;
100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn; 100 % Fe,
50 % Mn and 50 % Fe, 100 % Mn).

NC Variables de entrada CcCp
1 L,a b CH 74.7a (6.0)
2 R,G,B,L, 4 b C,H 74.7a (6.4)
3 R,B, L, ab 70.5 ac (8.6)
4 R, G, B, C 67.4 ac (7.7)
5 R, B, 4, C, SMA 72.0 abc (5.8)
6 R, G, B 63.5be (2.8)
7 R, B, H 625¢ (3.7)
8 R,G,B,C H 68.9 abc (5.9)
9 R, B, H, SMA, En, HoL 72.7 ab (3.5)
10 R, G, B, C, SMA, EN, HoL 7432 (7.9)
11 R, B, C, SMA, EN, HolL 65.6 abc (14.9)
12 SMA, EN, IN, HoL 33.6d (8.7)
13 L, a, b, SMA, EN, HoL 72.6 abc (5.9)
14 L, 4, b, C, H, SMA, EN, HoL 73.6a (3.5)
15 L, C, H, SMA, EN, HoL 72.6 ab (5.0)

En la columna CCPD, letras diferentes indican diferencias estadisticamente signifi-
cativas (p=<0.05); las desviaciones estdndar (n=10) se muestran entre paréntesis.
NC: Numero de escenario de entradas; R: Canal rojo; G: Canal verde; B: Canal
azul; L: Luminosidad; @: Canal del espacio CIE-Lab; 4: Canal del espacio CIE-Lab;
C: croma; H: matiz; SMA: segundo momento angular; EN: entropia; IN: inercia
(IN); HoL: homogeneidad local < In the CCP column, different letters indicate
statistically significant differences (p=<0.05); the standard deviations (n=10) are
shown in parentheses. NC: Number of inputs stage; R: Red channel; G: Green
channel; B: Blue channel; L: Luminosity; #: the CIE-Lab space channel; 4: channel
of the CIE-Lab space; C: chroma; H: hue; SMA: second angular momentum;
EN: entropy; IN: inertia; HoL: local homogeneity.

media del escenario de entradas 12 con respecto a los
demds tratamientos, lo cual significa que se requiere
un nimero mayor de repeticiones durante la prueba.

Prueba de escenarios de entradas
de cuatro tratamientos

En el Cuadro 3 se presentan los escenarios de
entradas durante la prueba cuando se consideraron
cuatro clases de salida y se usaron como variables
de entrada, diferentes combinaciones de variables
de color y textura. El tiempo de cémputo fue de 6
s a 1.31 min en una computadora con procesador
AMD AthlonTM 64 X Dual Core-Processor TK-55
1.80 GHz.

inputs considering six treatments during training was
obtained, but this increase was marginal during the
test and even some entry scenarios with combined
variables of texture and color (9, 10, 13, and 15
classifiers) showed lower percentages.

Contingency table of entry scenarios
of with six and four classes

The contingency table of one of the best entry
scenarios with texture and color variables, with six
classes during the test (Classifier 10, Table 2), is
presented in Table 4. Two treatments were correctly
classified with sensitivity greater than 90 %: the
control (treatment 1) and treatment 6 with 50 % Fe
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Cuadro 3. Promedios del porcentaje de clasificacién global correcta en la prue-
ba (CCP) de escenarios de entradas creados con redes neuronales
artificiales cuando se consideraron cuatro clases de salida o trata-
mientos (100 % de Fe y Mn; 100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn;

0 % Fe, 0 % Mn).

Table 3. Averages for the percentage of overall correct classification (CPC) in
the test of input scenarios created with artificial neural networks when
four kinds of output or treatments were considered (100 % Fe and Mn;
100 % Fe, 0 % Mn; 0 % Fe, 100 % Mn; 0 % Fe, 0 % Mn).

NC Variables de entrada ccrp
1 L ,a b C,H 79.7 a (7.5)
2 R,G,B,L,4 b6 CH 75.9 a (8.4)
3 R,B,L,ab 74.6 a (8.0)
4 R,G,B,C 75.1a(7.0)
5 R, B, 4, C, SMA 73.6a(8.1)
6 R G,B 68.1a(7.7)
7 R, B, H 70.1a (5.6)
8 R,G,B,C, H 76.1a(5.6)
9 R, B, H, SMA, En, HoL 70.0 a (7.4)
10 R, G, B, C, SMA, EN, HoL 73.8 2 (6.6)
11 R, B, C, SMA, EN, HoL 67.0a(10.8)
12 SMA, EN, IN, Hol. 4491 (9.2)
13 L, 2, b, SMA, EN, HoL 70.4 a (7.5)
14 L, 4, b, C, H, SMA, EN, HoL 78.3 2 (7.8)
15 L, C, H, SMA, EN, HoL 68.7a(5.6)

En la columna CCPR, letras diferentes indican diferencias estadisticamente signifi-
cativas (p=<0.05); las desviaciones estdndar (n=10) se muestran entre paréntesis.
NC: Numero de escenario de entradas; R: Canal rojo; G: Canal verde; B: Canal
azul; L: Luminosidad; @: Canal del espacio CIE-Lab; 4: Canal del espacio CIE-Lab;
C: croma; H: matiz; SMA: segundo momento angular; EN: entropia; IN: inercia
(IN); HoL: homogeneidad local % In the CCP column, different letters indicate
statistically significant differences (p=<0.05); the standard deviations (n=10) are
shown in parentheses. NC: Number of inputs scenarios; R: Red channel; G: Green
channel; B: Blue channel; L: Luminosity; a: CIE-Lab space channel; 4: Channel
of the CIE-Lab space; C: chroma; H: hue; SMA: second angular momentum;
EN: entropy; IN: inertia; HoL: local homogeneity.

La diferencia en la prueba (p=<0.05) es el pro-
medio del porcentaje de clasificacién correcta
global del escenario de entradas que consideré las
variables de textura (clasificador 12) del resto de
escenarios de entradas (Cuadro 3). Con los escena-
rios de entradas al considerar cuatro tratamientos
se obtuvo porcentaje mayor de clasificacién co-
rrecta global respecto a los escenarios de entradas,
considerando seis tratamientos durante el entrena-
miento, pero este aumento fue marginal durante la
prueba e inclusive algunos escenarios de entradas
con variables combinadas de textura y color (Cla-
sificadores 9, 10, 13, y 15) presentaron porcentajes
menores.
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and 100 % MN. The other treatments are classified
with sensitivities over 60 % except for treatment 2
(100 % Fe and 0 % Mn) with a sensitivity of 40 %,
which was mainly confused with class 3; the
absence of one of two micronutrient of modified
Steiner solution is characteristic of classes 2 and 3.
The treatments had specificity than 90 %, where
treatments 2 (100 % Fe, 0 % Mn) and 3 (0 % Fe, 100%
Mn) had the lower specificities, whereas treatment 6
(50 % Fe, 100 % Mn) had the highest specificity.

Regarding the entry scenario with four kinds
of output (Table 5), control (100 % Fe and Mn)
had sensitivity greater than 90 %, while treatment
2 (100 % Fe, 0 % Mn) had the lower sensitivity
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Tabla de contingencia de escenarios de entradas
con seis y cuatro clases

La tabla de contingencia de uno de los mejores
escenarios de entradas con variables de textura y co-
lor, con seis clases durante la prueba (Clasificador 10,
Cuadro 2), se presenta en el Cuadro 4. Dos trata-
mientos fueron clasificados correctamente con sensi-
bilidad mayor a 90 %: el testigo (tratamiento 1) y el
tratamiento 6 con 50 % de Fe y 100 % de Mn. Los
otros tratamientos son clasificados con sensibilidades
mayores de 60 % excepto el tratamiento 2 (100 %
Fe y 0 % Mn) con sensibilidad de 40 %, el cual fue
confundido principalmente con la clase 3; es caracte-
ristico de las clases 2 y 3 la ausencia de uno de los dos
micronutrientes modificados en la solucién Steiner.
Los tratamientos presentaron especificidades mayo-
res a 90 %, donde los tratamientos 2 (100 % Fe, 0 %
Mn) y 3 (0 % Fe, 100 % Mn) tuvieron las especifici-
dades menores mientras que el tratamiento 6 (50 %
Fe, 100 % Mn) observé la mayor especificidad.

although it presented the highest specificity. The
lower specificity was observed with treatment 3
(0 % Fe, 100 % Mn).

According with Howeler (1978), severe deficiencies
of Fe or Mn can produce similar symptoms, and under
these circumstances the plant damage is irreversible. In
the present research, the symptoms of these elements
deficiency at 74 das in leaves of common bean
(Figure 1) were not apparent (55 d after treatment
started), making the identification of the cause to the
naked eye difficult, even for an expert; however, its
detection at this stage is critical to be able to reverse
deficiencies with fertilization. Due to the difficulty of
identification, artificial neural networks as a tool are
used to create a classifier based on color and texture
variables from the analysis of digital images. Whit
this strategy up to 74.7% of correct classification
was obtained of six treatments during the test. Burks
et al. (2000) with discriminant analysis and texture
characteristics obtained a classifier capable of 93 %
of correct identification of weed species; whereas

Cuadro 4. Estadisticas promedio (n=10) del arreglo matricial o tabla de contingencia en la prueba para el escenario de entradas
con las variables de entrada “red” (R), “green” (G), “blue” (B), croma (C), y los caracteres texturales segundo momen-
to angular (SMA), entropia (EN), y homogeneidad local (HoL), y seis clases de salida o tratamientos .
Table 4. Statistical average (n=10) of the matrix arrangement or table of contingency in the test for the scenario of inputs
with the variables of input “red” (R), “green” (G), “blue” (B), chroma (C), and textural characters second angular
momentum (SMA), entropy (EN), and local homogeneity (HoL), and six kinds of output or treatments'.

Observado
Clasificado Total
1 2 3 4 5 6

1 54 5 3 8 0 70

2 1 25 11 8 2 0 47

3 1 18 38 2 2 1 62

4 2 5 5 46 2 1 61

5 1 1 46 0 59

6 1 1 1 0 0 58 61

Total 60 60 60 60 60 60 360
Relacién V-P 0.9 0.42 0.63 0.77 0.77 0.97
Relacién F-P 0.05 0.07 0.08 0.05 0.04 0.01
Relacién V-N 0.95 0.93 0.92 0.95 0.96 0.99
Relacién F-N 0.10 0.58 0.37 0.23 0.23 0.03
Sensibilidad 99 % 42 % 63 % 77 % 77 % 97 %
Especificidad 95 % 93 % 92 % 95 % 96 % 99 %

100 % Fe y Mn, tratamiento 1; 100 % Fe, 0 % Mn, tratamiento 2; 0 % Fe, 100 % Mn, tratamiento 3; 0 % Fe, 0 % Mn. tratamiento
4; 100 % Fe, 50 % Mn, tratamiento 5; 50 % Fe, 100 % Mn, tratamiento 6. V-P: identificados correctamente; F-P: identificados inco-
rrectamente; V-N: descartados correctamente; F-N: descartados incorrectamente +* 100 % Fe and Mn, treatment 1; 100 % Fe, 0 % Mn,
treatment 2; 0 % Fe, 100 % Mn, treatment 3; 0 % Fe, 0 % Mn, treatment 4; 100 % Fe, 50 % Mn, treatment 5; 50 % Fe, 100 % Mn,
treatment 6. V-P: identified correctly; F-P: identified incorrectly; V-N: discarded properly; F-N: discarded improperly.
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Con respecto al escenario de entradas con cuatro
clases de salida (Cuadro 5), el testigo (100 % Fe y
Mn) tuvo sensibilidad mayor a 90 % mientras que
el tratamiento 2 (100 % Fe, 0 % Mn) tuvo la menor
sensibilidad aunque present la especificidad mayor.
La especificidad menor fue observada con el trata-
miento 3 (0 % Fe, 100 % Mn).

De acuerdo con Howeler (1978), las deficiencias
severas de Fe o Mn pueden producir sintomas simila-
res, y bajo estas circunstancias el dano en los vegetales
es irreversible. En la presente investigacion, los sinto-
mas de deficiencia de estos elementos a los 74 dds en
hojas de frijol (Figura 1) no fueron aparentes (55 d
después de iniciar los tratamientos), lo cual dificulta
la identificacion de la causa a simple vista, incluso
para un experto; sin embargo, su deteccién en esta
etapa es critica para poder revertir las deficiencias con
fertilizacién. Debido a la dificultad para la identifi-
cacion, se usaron redes neuronales artificiales como
herramienta para crear un clasificador, basado en va-
riables de color y textura resultado de andlisis de ima-
genes digitales. Con esta estrategia se obtuvo hasta

Kim ez al. (2009) created a classifier with principal
components with 97.3 % of correct identification of
Fe, Mn, Zn deficiencies and a disease in citrus leaves.
This greater rating capacity may be due to the fact that
the evaluated leaves were collected by someone that
visually identified the symptoms, which indicates the
severity of the deficiency was high; on the contrary,
in this study the symptoms were in its initial stages
(Figure 1). Besides, any symptoms of deficiency is not
static and is possible to observe changes in color and
texture as a function of the time and phenological stage,
therefore these temporal and spatial changes in leaves
of the species should be investigated in agronomic
species. Thus, Meyer ez al. (1998) found that the
ability to identify the same species with discriminant
analysis and textural characters ranged from 30 to
77 %, dependent on the age of the leaf texture change
attributable to the EN, but not the HoL that remained
unchanged with phenology. But the SMA recorded an
early differentiation between weeds such as “quelite”
regarding other evaluated as sorghum, foxtail and a
Malvaceae.

Cuadro 5. Estadisticas promedio (n=10) del arreglo matricial o tabla de contingencia en la prueba
para el escenario de entradas con las variables de entrada L (luminosidad),  (canal del
espacio CIE-Lab), 4 (Canal del espacio CIE-Lab), croma (C), matiz (H), y cuatro clases

de salida o tratamientos'.

Table 5. Average statistics (n=10) of the matrix arrangement or table of contingency in the test
for the scenario of inputs of variables L (luminosity), @ (CIE-Lab space channel), &
(CIE-Lab space channel), chroma (C), hue (H), and four kinds of output or treatments'.

Observado Total
Clasificado
1 2 3 4

1 58 2 1 7 68

2 1 35 2 3 41

3 0 21 53 5 79

4 1 2 4 45 52

Total 60 60 60 60 240
Relacién Verd-Pos. 0.97 0.58 0.88 0.75
Relacién Fals-Pos. 0.06 0.03 0.14 0.04
Relacién Verd-Neg 0.94 0.97 0.86 0.96
Relacién Fals-Neg. 0.03 0.42 0.12 0.23
Sensibilidad 97 % 58 % 88 % 75 %
Especificidad 94 % 97 % 86 % 96 %

100 % Fe y Mn, tratamiento 1; 100 % Fe, 0 % Mn, tratamiento 2; 0 % Fe, 100 % Mn, trata-
miento 3; 0 % Fe, 0 % Mn, tratamiento 4. V-P: identificados correctamente; F-P: identificados
incorrectamente; V-N: descartados correctamente; F-N: descartados incorrectamente ** 100 % Fe
and Mn, treatment 1; 100 % Fe, 0 % Mn, treatment 2; 0 % Fe, 100 % Mn, treatment 3; 0 % Fe,
0 % Mn, treatment 4. V-P: identified correctly; F-P: identified incorrectly; V-N: discarded properly;

F-N: discarded improperly.
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74.7 % de clasificacién correcta de seis tratamientos
durante la prueba. Burks ez a/. (2000) con andlisis
discriminante y caracteristicas de textura obtuvieron
un clasificador con 93 % de identificacién correcta de
especies de malezas, mientras que Kim ez a/. (2009)
crearon un clasificador con componentes principales
con 97.3 % de identificacidn correcta de deficiencias
de Fe, Mn, Zn y una enfermedad en hojas de citricos.
Esta mayor capacidad de clasificacién puede deberse
a que las hojas fueron recolectadas por quien visual-
mente identificé los sintomas, lo cual indica que la
severidad de la deficiencia era alta; en cambio, en el
presente estudio, los sintomas eran iniciales (Figura
1). Ademds, cualquier sintoma de deficiencia no es es-
tdtica y es posible observar cambios en color y textura
en funcién del tiempo y etapa fenoldgica, por lo cual
se deben investigar estos cambios temporales y espa-
ciales en hojas de las especies con importancia agro-
némica. Asi, Meyer ez al. (1998) encontraron que la
capacidad para identificar la misma especie con ani-
lisis discriminante y caracteres texturales varié de 30
a 77 %, por el cambio en la textura dependientes de
la edad de la hoja atribuibles a la EN, a diferencia de
la HoL que permanecié invariable con la fenologia.
Pero el SMA registra una diferenciacién temprana
entre malezas, como el quelite con respecto a otras
evaluadas como el sorgo, cola de zorra y una malva-
cea.

La finalidad de disminuir el nimero de clases, de
6 a 4, fue eliminar lo que Kim ¢z 4/. (2009) denomi-
nan la matriz de confusién, en la cual un clasifica-
dor confunde dos o mds clases entre si; se esperaba
que conforme disminuyera el ndmero de clases, au-
mentara la capacidad de clasificacién correcta. Las
clases con 50 % de Fe o Mn se eliminaron cuan-
do se consideraron solo cuatro clases porque estas
clases podrian ser las que producen confusién entre
deficiencias severas y tratamientos sin deficiencia.
Sin embargo, tanto en los mejores clasificadores con
seis o cuatro clases, los tratamientos con 100 % Fe
y 0 % Mn, 0 % Fe y 100 % Mn y 0 % Fey 0 %
Mn presentaron caracteristicas similares en color y
textura, en la etapa de recoleccién de las hojas, y
fueron confundidas entre si por los clasificadores.
Las dltimas dos clases comparten la ausencia de Fe
en la solucién nutritiva Steiner, mientras que 100 %
Fey 0 % Mn, y 0 % Fe y Mn carecen de Mn. En
condiciones de campo, es dificil la ausencia total
de los micronutrientes, excepto cuando existe otro

The purpose of reducing the number of classes
from 6 to 4, was to eliminate what Kim ez 2/. (2009)
called the confusion matrix, in which a classifier
confused two or more classes; it was expected that
as the number of classes decreases the ability of
correct classification increased. Classes with 50 %
of Fe or Mn were eliminated when only four classes
were considered because these classes could be those
that produce confusion between treatments without
deficiency and severe deficiencies. However, in the
best classifiers with six or four kinds, the treatments
with 100 % Fe and 0 % Mn, 0 % Fe and 100 %
Mn and 0 % Fe and 0 % Mn presented similar
color and texture at the stage when the leaves were
collected, and were confused by classifiers. The last
two classes share the absence of Fe in the Steiner
nutrient solution, while 100 % Fe and 0 % Mn, and
0 % Fe and Mn lack of Mn. Under field conditions
the total absence of micronutrients is unlikely, except
when there is an antagonistic nutrient element or by
effect of pH. On the other hand, partial deficiencies
of the same elements do occur more frequently and
are best identified with classifiers. In this sense, both
the sensitivity and specificity were higher than 95 %
in the scenario entries 10 and six kinds of output or
treatments (Table 2), treatments without deficiencies
(100 % Fe and Mn, treatment 1) or partial deficiencies
(100 % Fe, 50 % Mn, treatment 5) and 50 % Fe,
100 % Mn, treatment 6), except the sensitivity of
treatment 5 which was 77 % (Table 4).

Thus, there is evidence that at an early stage Fe
and Mn deficiencies in leaves of common bean, used
textural characteristics were not sufficient to identify
symptoms patterns, because the patterns of deficiency
were not so marked or due to the insensitivity of
the method because of the used parameters, since
only a »=1 pixels distance was used to calculate the
relative frequency of pairs of neighboring pixels in
a digital image, one with 7 tone level and another
J» so it is possible that it is not spatially recovering
the variation in tone caused by deficiencies. On the
contrary, the variables obtained from color spaces
allowed obtaining best classifiers.

However, it remains to be tested if other secondary
statistics or methods for texture determination
can incorporate better patterns to differentiate the
shortcomings of Fe and Mn. It is possible that, to
increase the accuracy of the classification of Feand Mn
deficiency symptoms, complementary physiological,

GARCIA-CRUZ e al. 407



AGROCIENCIA, 16 de mayo - 30 de junio, 2015

elemento nutrimental antagénico o por efecto del
pH. En cambio, deficiencias parciales de los mis-
mos elementos si ocurren con mayor frecuencia y
son mejor identificados con los clasificadores. En
este sentido, tanto la sensibilidad como la especifici-
dad fueron mayores a 95 % en el escenario de entra-
das 10 y seis clases de salida o tratamientos (Cuadro
2), de los tratamientos sin deficiencias (100 % de
Fe y Mn, tratamiento 1) o con deficiencias parciales
(100 % Fe, 50 % Mn, tratamiento 5) y 50 % Fe,
100 % Mn, tratamiento 6), excepto la sensibilidad
de el tratamiento 5 que fue 77 % (Cuadro 4).

Asi, hay evidencia de que en una etapa tempra-
na de deficiencias de Fe y Mn en hojas de frijol, las
caracteristicas texturales usadas no fueron suficientes
para identificar patrones de sintomas, porque los pa-
trones de deficiencia no eran tan marcados o debi-
do a la insensibilidad del método por los pardmetros
usados, ya que solo se usé una distancia 7=1 pixeles
para calcular las frecuencia relativa de pares de pixeles
vecinos en una imagen digital, uno con nivel de tono
iy otro j. Asi, es posible que no se esté recuperando
espacialmente la variacién del tono producido por las
deficiencias. En cambio, las variables obtenidas de los
espacios de color permitieron obtener mejores clasifi-
cadores.

Sin embargo, falta probar si otros estadisticos
secundarios u métodos para la determinacién de tex-
tura permiten incorporar mejores patrones para di-
ferenciar las deficiencias de Fe y Mn. Es posible que
para incrementar la precisién de clasificacion de sin-
tomas de deficiencia de Fe y Mn se requieran varia-
bles fisiolégicas, morfolégicas o anatémicas comple-
mentarias a las evaluaciones visuales propuestas en el
presente estudio. Ademds, Adams ez 4/. (2000) con-
sideran que algunos factores pueden interferir para
obtener una clasificacién de sintomas buena, por
ejemplo el estrés hidrico, luminico o por deficiencias
de macronutrientes. En particular, deficiencias seve-
ras de nitrégeno (N) o azufre (S) pueden causar sin-
tomas similares a los causados por deficiencia de Fe.

CONCLUSIONES

Con variables de color y textura fue posible iden-
tificar deficiencias iniciales de Fe y Mn en hojas de
frijol hasta 75 % de clasificacién global correcta,
sintomas que dificilmente pueden caracterizarse a
simple vista por un experto porque las muestras se
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morphological, or anatomical variables have to be
added to the visual assessments proposed in this
study. In addition, Adams ez /. (2000) consider that
to obtain a good classification of symptoms other
factors can interfere, for example water stress, light
stress or macronutrient deficiencies. Particularly,
severe deficiencies of nitrogen (N) or sulphur (S)
may cause symptoms similar to those caused by Fe
deficiency.

CONCLUSIONS

It was possible to identify initial shortcomings
of Fe and Mn in common bean leaves up to 75 %
overall correct classification using color and texture
variables, symptoms that can hardly be characterized
at a glance by an expert, because the samples were
taken at an early stage of deficiency, when it is possible
to reverse the damage with fertilization. Never the
less, the variables of texture by themselves are not
sufficient to obtain a good classifier, and therefore
the hypothesis is rejected. The identification of
plants without deficiencies and partial deficiencies
in both Fe and Mn were higher than 95 %, except
the sensitivity of the partial deficiency produced by
100 % Fe and only 50 % of MN.

—FEnd of the English version—
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tomaron en una etapa inicial de deficiencia cuando
es posible revertir los danos con fertilizacién. Pero las
variables de textura por si mismas no son suficientes
para obtener un buen clasificador, y la hipdtesis se re-
chaza. La identificacién de plantas sin deficiencias y
con deficiencias parciales tanto de Fe y Mn tuvieron
especificidad y sensibilidad mayores a 95 %, excepto
la sensibilidad de la deficiencia parcial producida por
aplicar 100 % de Fe y solo 50 % de Mn.
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