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Resumen

La colinealidad y la falta de traslape en los datos son pro-
blemas que afectan la inferencia basada en el modelo de re-
gresión logística. Mediante simulación se investigó como son 
afectados los estimadores que tratan la colinealidad (Ridge 
iterativo), la separación en los datos (de Firth, y de Rous-
seeuw y Christmann) o ambos problemas (de Shen y Gao). 
Estos estimadores se compararon considerando el número 
de condición escalado de la matriz de información estima-
da, el sesgo y el error cuadrático medio. En cada uno de los 
cuatro escenarios estudiados, formados al usar dos niveles de 
colinealidad y dos tamaños de muestra, se consideraron tres 
grados de traslape en los datos. Se encontró que los estimado-
res Ridge iterativo y de Shen y Gao tienen condicionamiento 
nulo, además el sesgo y el error cuadrático medio más peque-
ños. El grado de traslape y el nivel de colinealidad afectan 
fuertemente el sesgo y el error cuadrático medio de los esti-
madores de máxima verosimilitud, de Firth y de Rousseeuw 
y Christmann.

Palabras clave: estimador de Firth, estimador de máxima verosi-
militud estimada, estimador doble penalizado, estimador Ridge 
iterativo, datos traslapados.

Introducción

Sean Yi, i=1,…n, variables aleatorias indepen-
dientes con distribución Bernoulli con proba-
bilidad de éxito pi = P(Yi = 1|xT

i ). Además, sea 
X la matriz diseño de orden n x (p+1) cuyos renglones 
son xT

i = (1, xi1, ..., xip), que corresponden a la i-ésima 
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Abstract

Collinearity and the lack of overlap in the data are problems 
that affect  inference based on the logistic regression model. 
Simulation was used to investigate how the estimators that 
deal with collinearity (iterative Ridge) are affected, along 
with separation in the data (Firth’s, and Rousseeuw and 
Christmann’s) or both problems (Shen and Gao’s). These 
estimators were compared considering the scaled condition 
number of the estimated information matrix, the bias and 
the mean squared error. In each one of the four scenarios 
studied, formed by using two levels of collinearity and two 
sample sizes, three degrees of overlap were considered in the 
data. It was found that iterative Ridge and Shen and Gao’s 
estimators have null conditioning, as well as smaller bias 
and mean square error. The degree of overlap and the level 
of collinearity strongly affect the bias and mean square error 
of the maximum likelihood, Firth’s and Rousseeuw and 
Christmann’s estimators.

Key words: Firth’s estimator, estimated maximum likelihood 
estimator, penalized double estimator, iterative Ridge estimator, 
overlapped data.

Introduction

Let Yi, i=1…n, be independent random variables 
with Bernoulli distribution with probability of 
success pi = P(Yi = 1|xT

i ). Furthermore, let X 
be the n x (p+1)  design matrix whith rows xT

i = (1, 
xi1, ..., xip), which correspond to the i-th observation 
of the independent variables X1, ..., Xp. The logistic 
regression model assumes that the independent 
variables and the response variable are related by:

π β β
i i i

T x xP Y x e ei
T

i
T

= = = +FH IK1 1e j
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observación de las variables independientes X1, ..., 
Xp. El modelo de regresión logística supone que las 
variables independientes y la variable respuesta están 
relacionadas por:

π β β
i i i

T x xP Y x e ei
T

i
T

= = = +FH IK1 1e j

donde b=(b0, b1, ..., bp)
T es el vector de parámetros 

desconocido. 

El estimador de máxima verosimilitud (MV), β  se 
obtiene al maximizar la función de logverosimilitud:

l Y Yi i i i
i

n
( ) log logβ π π= + − −

=
∑ b g b g b go t1 1

1

Bajo los supuestos de que X es de rango completo 
y b pertenece al interior del espacio de parámetros, 
β  es la solución del sistema de p+1 ecuaciones for-

madas al igualar a cero las derivadas de l(b) respecto a 
b. El sistema de ecuaciones se resuelve usando méto-
dos iterativos, como el método de Newton-Raphson, 
que está dado por:

b(s) = b(s) + I-1 (b(s)) U (b(s))

donde U(b) = XT (y-p(b)) es el vector de prime-
ras derivadas parciales de l(b)

 
e I X VXTβb g =    

es la matriz de información estimada con 
   ,...,  V diag n n= − −π π π π1 11 1b g b gm r .

Si la matriz I(b(s)) no tiene inversa entonces no 
existe el estimador de MV. Lesaffre y Marx (1993) 
demuestran que la matriz de información estimada 
del modelo de regresión logística es singular si: 1) X  
es de rango incompleto o 2) β  se acerca a la frontera 
del espacio de parámetros.

Aun cuando X sea de rango completo pueden 
existir dependencias lineales cercanas entre sus co-
lumnas, esto es, c0X0 +...+cpXp » 0 con c0,...,cp no to-
das cero. Entre más cerca a cero esté la combinación 
lineal, más cerca está X a la singularidad, fenómeno 
conocido como colinealidad entre las variables inde-
pendientes.

La colinealidad en regresión logística causa los 
siguientes problemas: 1) β  es sensible a cambios 

where b=(b0, b1, ..., bp)
T is the unknown parameters 

vector.

The maximum likelihood estimator (ML), β  , is 
obtained by maximizing the loglikelihood function:

l Y Yi i i i
i

n
( ) log logβ π π= + − −

=
∑ b g b g b go t1 1

1

Under the assumption that X is full rank and b 
belongs to the interior of the parameters space, β  
is the solution of the p+1 equations system formed 
by equaling to zero the derivates of l(b) with respect 
to b. The equations system is solved using iterative 
methods, such as the Newton-Raphson method, 
which is given by:

b(s) = b(s) + I-1 (b(s)) U (b(s))

where U(b) = XT (y-p(b)) is the first partial 
derivates vector of l(b) and I X VXT( ) β =   
is the information matrix estimated with 
   ,...,  V diag n n= − −π π π π1 11 1b g b gm r .

If the matrix I(b(s)) has no inverse then the ML 
estimator does not exist. Lesaffre and Marx (1993) 
prove that the estimated information matrix from 
the logistic regression model is singular if: 1) X is non 
full rank or 2) β  approaches to the boundary of the 
parameters space.

Even when X is full rank there may exist near 
linear dependencies among its columns, that is, 
c0X0+...+cpXp » 0

 
with c0,...,cp 

not all zero. The closer 
to zero the linear combination is, the closer X is to 
singularity, a phenomenon known as collinearity 
among the independent variables.

Collinearity in logistic regression causes the 
following problems: 1) β  is sensitive to small changes 
in the independent variables, 2) some components of 
β  are large and 3) the estimated variances of some 

components of β  are very large.  As a consequence of 
these problems, the confidence intervals are very wide 
and the hypothesis tests related to the significance of 
the parameters have low power (Schaefer et al., 1984; 
Lee and Silvapulle, 1988; Marx and Smith, 1990).

If π i  approaches one or zero, then the element i 
in the diagonal of V  is zero and there is no inverse of 
the matrix I(b). For ˆiπ  to approximate one or zero, 
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pequeños en las variables independientes, 2) algunas 
componentes de β  son grandes y 3) las varianzas 
estimadas de algunas componentes de β  son muy 
grandes. Como consecuencia de estos problemas re-
sultan intervalos de confianza muy amplios y baja 
potencia de las pruebas de hipótesis relacionadas con 
la significancia de los parámetros (Schaeffer et al., 
1984; Lee y Silvapulle, 1988; Marx y Smith, 1990).

Si π i  se aproxima a uno o a cero, entonces el 
elemento i en la diagonal de V  es cero y no existe 
inversa de la matriz I(b). Para que ˆiπ  se aproxime 
a uno o a cero, con xT

i  fijo, debe ocurrir que al me-
nos una β j → ±∞ , lo cual significa que β j  está en 
la frontera del espacio de parámetros. Esto puede 
ocurrir cuando los datos tienen una configuración 
especial conocida como separación o casi separación. 
Albert y Anderson (1984) y Santner y Duffy (1986) 
demuestran que el estimador de MV del modelo de 
regresión logística no existe cuando hay separación o 
casi separación en los datos, y existe y es único cuan-
do hay traslape en los datos.

Hay separación en los datos si existe un  qÎRp-1  
tal que, xT

i q>0 cuando Yi=1 y xT
i q<0 cuando Yi=0, 

para  i=1,…,n. La casi separación en los datos ocu-
rre si existe un qÎRp-1 \ {0} tal que xT

i q³0 cuando 
Yi=1 y xT

i q£0 cuando Yi=0, para todo i, y existe j 
Î{1,...,n} tal que  xT

j q=0. Por último, existe traslape 
en los datos si no hay separación o casi separación 
en los datos. Si solamente hay una variable indepen-
diente continua X y existe separación en los datos, 
entonces X es una variable predictiva perfecta, pues 
para alguna constante k, cuando X<k  todos son éxi-
tos y cuando X>k todos son fracasos o viceversa. Lo 
contradictorio es que en esta situación no existe esti-
mador de MV del modelo de regresión logística.

En resumen, la matriz de información estimada, 
X VXT  , se puede acercar a la singularidad por el 
efecto combinado de la colinealidad en las variables 
independientes, la cercanía a la separación en los da-
tos o a que se presenten ambas condiciones.

Los estimadores Ridge en regresión logística son 
propuestos para reducir el tamaño de β  ocasiona-
do por la presencia de colinealidad. Schaefer et al. 
(1984) proponen un estimador Ridge logístico de un 
paso (RL) dado por:

 ( )   β βR
T Tk X VX kI X VX= +

L
N
M
M

O
Q
P
P

−1

with fixed xT
i, must occur at least one β j → ±∞  

which means that β j  is at the boundary of the 
parameters space. This can occur when the data have 
a special configuration known as separation or quasi-
separation. Albert and Anderson (1984) and Santner 
and Duffy (1986) prove that the ML estimator of the 
logistic regression model does not exist when there 
is separation or quasi-separation in the data, and it 
exists and is unique when there is overlap in the data.

There is separation in the data if there exists 
qÎRp-1   so that xT

i q>0 when Yi=1 and xT
i q<0 when 

Yi=0, for i= 1,…n. The quasi-separation in the data 
occurs if there is a qÎRp-1 \ {0} so that xT

i q³0 when 
Yi=1 and xT

i q£0 when Yi=0, for every i, and there 
exists j Î{1,...,n} so that xT

j q=0. Finally, there is 
overlap in the data if there is no separation or quasi-
separation in the data. If there is only one continuous 
independent variable X and there is separation in the 
data, then X is a perfect predictive variable, because 
for a constant k, when X<k all are successes and 
when X>k, all are failures ore vice-versa. What is 
contradictory is that in this situation there is no ML 
estimator of the logistic regression model.

In summary, the estimated information matrix, 
X VXT  , can approach to singularity from the 
combined effect of collinearity in the independent 
variables, the proximity to separation in the data or 
both situations are present.

The Ridge estimators in logistic regression are 
proposed to reduce the size of β  caused by the 
presence of collinearity. Schaefer et al. (1984) propose 
a one step logistic Ridge estimator (RL) given by:

 ( )   β βR
T Tk X VX kI X VX= +

L
N
M
M

O
Q
P
P

−1

le Cessie and van Houwenlingen (1992) 
propose a logistic iterative Ridge estimator which 
is obtained by maximizing the loglikelihood that 
is penalized with the square of the norm of  b and 
where k is determined as a function of the estimator’s 
performance.

Schaefer et al. (1984) show for the one step Ridge 
estimator that it is always possible to find a value of 
k that produces an estimator with lower mean square 
error than that of the ML estimator. One problem 
with the Ridge estimator is that there is not exist a 
unique expression to determine k; some proposals 



AGROCIENCIA, 16 de mayo - 30 de junio, 2012

VOLUMEN 46, NÚMERO 4414

le Cessie y van Houwenlingen (1992) proponen 
un estimador Ridge iterativo logístico que se ob-
tiene al maximizar la logverosimilitud que es pena-
lizada con el cuadrado de la norma de b y donde 
k se determina en función del desempeño del es-
timador.

Schaefer et al. (1984) muestran para el estimador 
Ridge de un paso que siempre es posible encontrar 
un valor de k que produce un estimador con me-
nor error cuadrático medio que el del estimador de 
MV. Un problema con el estimador Ridge es que no 
existe una expresión única para determinar k; algu-
nas propuestas son: 1/bTb, (p+1)/bTb

2
, traza (XTVX) 

/ bTXTVXb,   1
2

max vj
Tβe j  donde vT

j es un vector 
propio de X VXT   (Schaefer et al., 1984; Lee y Sil-
vapulle, 1988; le Cessie y van Houwelingen, 1992). 
Para calcular k es necesario conocer b  por lo que β  
se usa en su lugar; como consecuencia, el estimador 
RL herede los problemas del estimador de MV. Una 
forma de determinar el parámetro de Ridge, inde-
pendiente de β , es k=(l1-100lp)/99, donde l1 y lp 
son los valores propios mayor y menor de XTX  (Liu, 
2003).

Firth (1993) propone un estimador para redu-
cir el sesgo al usar muestras pequeñas en el mode-
lo lineal generalizado. Heinze y Schemper (2002) 
muestran que ese estimador también existe cuando 
hay separación en los datos. Rousseeuw y Christ-
mann (2003) proponen otro estimador cuando 
hay separación en los datos. Shen y Gao (2008) 
presentan  un estimador para resolver los proble-
mas de colinealidad y separación en los datos si-
multáneamente.

Aunque Shen y Gao (2008) proponen su estima-
dor para tratar con la colinealidad en las variables 
independientes y separación en los datos, la simu-
lación que realizan induce separación en los datos 
pero no induce colinealidad. Además, los estimado-
res Ridge se han propuesto para atenuar los efectos 
de la colinealidad, pero no han sido evaluados en 
presencia de separación de los datos, además de que 
en todos los casos tampoco se ha evaluado el condi-
cionamiento del estimador. En esta investigación se 
utiliza simulación para estudiar el efecto del nivel de 
colinealidad y el grado de traslape en los estimado-
res propuestos para 1) tratar la colinealidad  (Ridge 
iterativo), 2) la separación en los datos (de Firth, y 
de Rousseeuw y Christmann) o 3) ambos problemas 
(de Shen y Gao).

are: 1/bTb, (p+1)/bTb
2
, traza (XTVX) / bTXTVXb, 

1
2

max vj
Tβe j  where vT

j is an eigenvector of X VXT    
(Schaefer et al., 1984; Lee and Silvapulle, 1988; le 
Cessie and van Houwelingen, 1992). To calculate k 
it is necessary to know b, thus β  is used instead; 
as a consequence is that the RL estimator inherits 
the problems of the ML estimator. One form of 
determining the Ridge parameter, independently 
of β , is k=(l1-100lp)/99, where l1 and lp are the 
largest and smallest eigenvalues of XTX (Liu, 2003).

Firth (1993) proposes an estimator to reduce the 
bias by using small samples in the generalized linear 
model. Heinze and Schemper (2002) show that this 
estimator also exists when there is separation in the 
data. Rousseeuw and Christmann (2003) propose 
another estimator when there is separation in the 
data. Shen and Gao (2008) propose an estimator to 
solve the problems of collinearity and separation in 
the data simultaneously.

Although Shen and Gao (2008) propose their 
estimator to deal with collinearity in the independent 
variables and separation in the data, the simulation 
that they carry out induces separation in the data but 
does not induce collinearity. Furthermore, the Ridge 
estimators have been proposed to attenuate the effects 
of collinearity, but they have not been evaluated in 
the presence of separated data, in addition to the fact 
that in all of the cases the estimator conditioning 
has not been evaluated. In this research simulation is 
used to study the effect of the level of collinearity and 
the degree of overlap in the estimators proposed for 
1) treating collinearity (iterative Ridge), 2) separated 
data ( Firth’s, and  Rousseeuw and Christmann’s) or 
3) both problems (Shen and Gao’s).

Materials and Methods

Studied estimators

Iterative Ridge estimator

This estimator was proposed by le Cessie and van 
Houwenlingen (1992) penalizing the loglikelihood with the 
square of the norm of b. The loglikelihood function is: 

l l kRI ( ) ( )β β β= − 2

where l(b) is the loglikelihood of the logistic regression model and 
k is the Ridge parameter. The logistic iterative Ridge estimator, 
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Materiales y Métodos

Estimadores estudiados

Estimador Ridge iterativo

Este estimador fue propuesto por le Cessie y van Houwenlin-
gen (1992) penalizando la logverosimilitud con el cuadrado de la 
norma de b. La función de logverosimilitud es:

l l kRI ( ) ( )β β β= − 2

donde l(b) es la logverosimilitud del modelo de regresión logísti-
ca y k

 
es el parámetro de Ridge. El estimador Ridge iterativo lo-

gístico, β RI ,  se obtiene usando el método de Newton-Raphson:

β β β β βRI
s

RI
s T

RI
s

RI
s

RI
sX V X kI U k( ) ( ) ( ) ( ) ( )+

−
= + + −1

1
2 2e j{ } e j{ }

donde k se obtiene minimizando la media de una medida del 
error de predicción como el error de clasificación, el cuadrado del 
error o menos la logverosimilitud. En el presente estudio el pa-
rámetro Ridge se determina usando la  propuesta de Liu (2003), 
k=(l1-100lp)/99.

Estimador de Firth

Este estimador puede considerarse como un estimador pena-
lizado donde la función de penalización es la a priori invariante 
de Jeffreys. La función de logverosimilitud es:

l l IF β β βb g b g b g= +
1

2
log

donde I(b) es la matriz de información estimada del modelo de 
regresión logística. Las primeras derivadas parciales de lF(b) res-
pecto a br igualadas a cero son:

U y h xF
r i i i i ir

i

n
β π πb g b gn s= − + − =

=
∑ 1 2 0

1
/ 	 (r=0,...,p)

hi es el i-ésimo elemento en la diagonal de 

H V X X V X X VF
T

F
T

F=
−

  / /1 2 1 1 2e j , donde  V VF F= βe j . El esti-

mador de Firth, βF , se obtiene de manera iterativa usando el 
método de Newton-Raphson 

β β βF
s

F
s T

F
F

F
sX V X U

+ −
= +1 1b g e j e j( ) ( )

β RI , is obtained using the Newton-Raphson method:

β β β β βRI
s

RI
s T

RI
s

RI
s

RI
sX V X kI U k( ) ( ) ( ) ( ) ( )+

−
= + + −1

1
2 2e j{ } e j{ }

where k is obtained by minimizing the mean of a measurement 
of the prediction error as the classification error, the square of 
the error or minus the loglikelihood. In the present study the 
Ridge parameter is determined using the proposal of Liu (2003), 
k=(l1-100lp)/99.

Firth’s estimator

This estimator can be considered as a penalized estimator 
where the penalty function is the Jeffreys invariant prior. The 
loglikelihood function is:

l l IF β β βb g b g b g= +
1

2
log

where I(b) is the estimated information matrix of the logistic 
regression model. The first partial derivates of lF(b) with respect 
to br equaled to zero are:

U y h xF
r i i i i ir

i

n
β π πb g b gn s= − + − =

=
∑ 1 2 0

1
/ 	 (r=0,...,p)

hi is the i-th element in the diagonal of 

H V X X V X X VF
T

F
T

F=
−

  / /1 2 1 1 2e j , where  V VF F= βe j . The 

Firth’s estimator, βF , is obtained iteratively using the Newton-
Raphson method

β β βF
s

F
s T

F
F

F
sX V X U

+ −
= +1 1b g e j e j( ) ( )

Rousseeuw and Christmann’s estimator

Rousseeuw and Christmann (2003) propose a modification 
of the logistic regression model, which they name hidden logistic 
regression model. In this model it is assumed that the true status 
T, with values success (s) and failure (f), that cannot be observed 
due to an additional stochastic mechanism, but there is an 
observed binary variable Y that is strongly related to T. If the true 
status is T=s, Y=1 is observed with P(Y=1|T=s)=d1, therefore, a 
misclassification occurs with P(Y=0|T=s)=1-d1. Analogously, if 
the true status is T=f, Y=0 is observed with P(Y=0|T=f)=1-d0  
and a misclassification with P(Y=1|T=f)=d0. If the probability of 
observing the true status is greater than 0.5, then 0< d0 <0.5< 
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Estimador de Rousseeuw y Christmann

Rousseeuw y Christmann (2003) proponen una modifica-
ción del modelo de regresión logística al que denominan mo-
delo de regresión logística escondido. En este modelo se supone 
que el verdadero status T, con valores éxito (s) y falla (f), no se 
puede observar debido a un mecanismo estocástico adicional, 
pero existe una variable binaria observada Y fuertemente rela-
cionada con T. Si el verdadero status es T=s,  se observa Y=1 
con P(Y=1|T=s)=d1, por tanto, una clasificación incorrecta con 
P(Y=0|T=s)=1-d1. Análogamente, si el verdadero status es T=f  
se observa Y=0 con P(Y=0|T=f)=1-d0 y una clasificación in-
correcta con P(Y=1|T=f)=d0. Si la probabilidad de observar el 
verdadero status es mayor a  0.5, entonces, 0< d0 <0.5< d1<1. 
El estimador de Rousseeuw y Christmann, β RC , se obtiene 
después de estimar la verosimilitud pues depende de d0 y d1 

por lo cual los autores lo llaman estimador de máxima verosi-
militud estimada. Este estimador se obtiene  con el siguiente 
algoritmo:

1. Calcular  max ,min , ,π δ δ π= −1b gd i  donde

     π =
=
∑

1

1n
yi

i

n

 y d=0.01.

2. Calcular δ
δπ
δ

δ
δπ
δ

δ δ0 1 0 11

1

1
1=

−
=

+
−

≠ −
 

,y .

3. Calcular las pseudo-observaciones 
~
Y Y Yi i i= − +1 0 1b gδ δ .

4. Ajustar el modelo de regresión logística en el cual se sustituyen 
las observaciones por  las pseudo-observaciones.

Estimador de Shen y Gao

Para resolver simultáneamente los problemas de colinealidad 
y separación en los datos ellos usan una doble penalización de la 
logverosimilitud, una de tipo a priori no informativa de Jefreys y 
otra de tipo Ridge dada por el cuadrado de la norma de b, esto es:

l l ISG β β β λ βb g b g= + −
1

2
2

log ( )

El estimador de Shen y Gao, βSG , se obtiene usando el mé-
todo de Newton-Raphson donde el parámetro l se obtiene mi-
nimizando, mediante validación cruzada, la media del cuadrado 

del error,  MCE
n

Y

h
VC

i i

iii

n
λ

πλ

b g e j
b g

=
−

−=
∑

1

1

2

2
1


.

d1<1. The estimator of Rousseeuw and Christmann, β RC , is 
obtained after estimating the likelihood, as it depends on d0 
and d1, for which the authors call it the estimated maximum 
likelihood estimator. This estimator is obtained with the 
following algorithm:

1. Calculate  max ,min , ,π δ δ π= −1b gd i , where

     π =
=
∑

1

1n
yi

i

n

 and d=0.01.

2. Calculate δ
δπ
δ

δ
δπ
δ

δ δ0 1 0 11

1

1
1=

−
=

+
−

≠ −
 

,y .

3. Calculate the pseudo-observations 
~
Y Y Yi i i= − +1 0 1b gδ δ .

4. Fit the logistic regression model in which the observations are 
substituted for the pseudo-observations.

Estimator of Shen and Gao
 

To simultaneously solve the problems of collinearity and 
separation in the data, they use a double penalization of the 
loglikelihood, one Jeffreys non-informative prior and the other 
of Ridge type given by the square of the norm of b, that is:

l l ISG β β β λ βb g b g= + −
1

2
2

log ( )

The estimator of Shen and Gao, βSG , is obtained by using 
the Newton-Raphson method where the parameter l is obtained 
by minimizing, using cross validation, the mean squared error, 

MCE
n

Y

h
VC

i i

iii

n
λ

πλ

b g e j
b g

=
−

−=
∑

1

1

2

2
1


.

Diagnostic

     Belsley and Oldford (1986) studied the behavior of the system 
of equations y=f(w) with small changes in w and they called it 
conditioning analysis. If y has big changes when w has small 
changes, it is said that y is ill conditioned. They identify three 
types of conditioning: of the data, of the estimator and of the 
criterion.

Data conditioning. In logistic regression data conditioning is 
related with the collinearity in the independent variables and is 
diagnosed with the scaled condition number of the design matrix 
proposed by Belsey et al. (1980). The scaled condition number 
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Diagnóstico

Belsley y Oldford (1986) estudiaron el comportamiento del 
sistema de ecuaciones y=f(w) ante pequeños cambios en w y lo 
llamaron análisis de condicionamiento. Si y tiene cambios gran-
des cuando w tiene cambios pequeños se dice que y está mal 
condicionado. Ellos identifican tres tipos de condicionamiento: 
de los datos, del estimador y del criterio.

Condicionamiento de los datos. En regresión logística el con-
dicionamiento de los datos está relacionado con la colinealidad 
en las variables independientes y se diagnostica con el número 
de condición escalado de la matriz diseño propuesto por Belsley 
et al. (1980). El número de condición escalado de X se define 

por η λ λx p= +1 1
* *  donde l*

1 y l*
p+1 son el máximo y el mí-

nimo de los valores propios de XTX después de ser escalada. La 
colinealidad está presente en cualquier conjunto de variables in-
dependientes, pero no siempre afecta de manera importante la 
estimación o inferencia. Belsley et al. (1980) clasifican la colinea-
lidad en tres niveles de acuerdo a su intensidad: 1) nula (hx<10), 
2) moderada (10£hx<30) y 3) severa (hx<30).

Condicionamiento del estimador. El diagnóstico se realiza con 
el número de condición escalado de la matriz de información 

estimada, que se define por η λ λMI p= +1 1
** ** , donde l

1
** y 

l**
p+1  son los valores propios máximo y mínimo de la matriz de 

información estimada escalada. El nivel de condicionamiento de 
esta matriz medido por hMI se determina de forma similar a hx.

Condicionamiento del criterio. β  se obtiene maximizando la 
verosimilitud, Belsley y Oldford (1986) afirman que hMI permite 
valorar este tipo de condicionamiento. Por esta razón no se con-
sidera en el presente estudio.

El condicionamiento de los estimadores de MV,  de Fir-
th, de Rousseeuw y Christmann,  de Shen y Gao y Rid-
ge iterativo se miden en las matrices de información esti-
madas: X VXT  , X V XT

F
 , X V XT

RC
 , X V X IT

SG
 − 2λ  y 

X V X kIT
RI
 + 2 . El estimador de Firth  se obtiene usando el pa-

quete logistf (Ploner et al., 2010) de R Development Core Team, 
2011, y el estimador de  Rousseeuw y Christmann con el paquete 
hlr de R (Rousseeuw y Christmann, 2008).

Separación de los datos

La detección de la separación en los datos fue analizada 
por Santner y Duffy (1986) usando un procedimiento basado 
en programación lineal, el cual no fue implementado en los pa-
quetes estadísticos. En SAS se advierte al usuario cuando puede 

of X is defined by  η λ λx p= +1 1
* *  

 
where l

*
1 and l*

p+1 are the 
maximum and the minimum of the eigenvalues of XTX after 
being scaled. Collinearity is present in any set of independent 
variables, but does not always have an important effect on the 
estimation or inference. Belsely et al. (1980) classify collinearity 
in three levels according to its intensity: 1) null (hx<10), 2) 
moderate (10£hx<30) and 3) severe (hx<30).

Estimator conditioning. The diagnostic is done with the scaled 
condition number of the estimated information matrix, which 

is defined by η λ λMI p= +1 1
** ** , where l

1
** and l**

p+1 are the 
maximum and minimum eigenvalues of the scaled estimated 
information matrix. The conditioning level of this matrix 
measured by hMI 

is determined in a similar form to hx.

Criterion conditioning. β  is obtained by maximizing the 
likelihood, and Belsely and Oldford (1986) affirm that hMI  makes 
it possible to asses this type of conditioning. For this reason it is 
not considered in the present study. 

The conditioning of the ML, Firth’s, Rousseeuw and 
Christmann’s, Shen and Gao’s and iterative Ridge estimators are 
measured in the estimated information matrix:  X VXT  , 
X V XT

F
 , X V XT

RC
 , X V X IT

SG
 − 2λ  and X V X kIT

RI
 + 2 . 

The Firth’s estimator is obtained using the de R (R Development 
Core Team, 2011) logistf package (Ploner et al., 2010), and the 
Rousseeuw and Christmann’s estimator with the R hlr package 
(Rousseeuw and Christmann, 2008).

Separation of the data

The detection of the separation in the data was analyzed by 
Santner and Duffy (1986) using a procedure based on linear 
programming which was not implemented in  statistical packages. 
In SAS the user is warned when there may be separation or quasi-
separation in the data but the algorithm used is not accurate. 
Rousseeuw and Christmann (2004) propose a procedure based 
on regression depth and implemented in the noverlap package of 
R. This procedure is used in the present study and determines the 
number of observations to eliminate for there to be separation in 
the data. Konis (2009) proposes a procedure based on quadratic 
programming implemented in the safeBinaryRegression package of 
R; however, this procedure is not used because when separation is 
identified in the data, it automatically declares the non-existence of 
the ML estimator.

Simulation study

The simulation study consisted of carrying out 1500 replicates 
in each one of the scenarios generated by the combinations of the 
two factors studied: collinearity and sample size.
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haber separación o casi separación en los datos pero el algoritmo 
usado no es preciso. Rousseeuw y  Christmann (2004) proponen 
un procedimiento basado en regresión profunda e implementado 
en el paquete noverlap (Rousseeuw  and Christmann, 2004) de 
R. Este procedimiento se usa en el presente estudio y determina 
el número de observaciones a eliminar para que haya separación 
en los datos. Konis (2009) propone un procedimiento basado 
en programación cuadrática implementado en el paquete safeBi-
naryRegresion de R; sin embargo, este procedimiento no se usa 
porque al identificar separación en los datos automáticamente 
declara la no existencia del estimador de MV.

Estudio de simulación

El estudio de simulación consistió en realizar 1500 repeti-
ciones en cada uno de los escenarios generados por las combi-
naciones de los dos factores estudiados: colinealidad y tamaño 
de muestra.

Colinealidad entre las variables independientes (C). Se usa-
ron dos grados de colinealidad: 1) moderada (hx=16) y 2) severa 
(hx=32).

Tamaño de muestra (TM). Se consideraron dos tamaños de 
muestra 20 y 40.

Grado de traslape (GT). Se consideraron cuatro grados de tras-
lape que se construyeron después de generar los datos, clasifi-
cando cada caso en los grupos G0, G1, G2 y G3 de acuerdo a 
si las proporciones de observaciones traslapadas, detectadas con 
el paquete noverlap, están en los intervalos [0, 0.025], (0.025, 
0.125], (0.125, 0.225] y (0.225, 0.325] respectivamente. El aná-
lisis considera solamente los primeros tres grupos porque no en 
todos los escenarios se obtuvieron los cuatro grupos.

Generación de los datos

Variables independientes

Se usaron dos variables independientes que se construyeron  
usando dos variables con distribución uniforme en [0,1], X1 y W; 
la variable X1 fue la primer variable independientes y la segunda 
se construyó con X2=X1+cW, donde c toma valores apropiados 
para obtener los números de condición escalados hx=16 y hx=32. 

Variable respuesta

Se obtuvo con Yi=1 si pi>Ui y Yi=0 en otro caso; 

i=1,…, n; donde Ui tiene distribución uniforme en [0, 1] y 

Collinearity among the independent variables (C). Two 
degrees of collinearity were used: 1) moderate (hx=16) and 2) 
severe (hx=32). 

Sample size (TM). Two sample sizes were considered, 20 and 
40.

Degree of overlap (GT). Four degrees of overlap were considered, 
which were constructed after generating the data, classifying each 
case in the groups G0, G1, G2 and G3 according to whether 
the proportions of overlapped observations, detected with the 
program noverlap, are in the intervals [0, 0.025], (0.025, 0.125], 
(0.125, 0.225] and (0.225, 0.325] respectively. The analysis only 
considers the first three groups because the four groups were not 
obtained in all of the scenarios.

Generation of the data

Independent variables

Two independent variables were used that were constructed 
using two variables with uniform distribution in [0, 1], X1 

and W; 
the variable X1 was the first independent variable, and the second 
was constructed with X2=X1+cW, where c takes appropriate values 
for obtaining the scaled condition numbers hx=16

 
and hx=32.

Response variable

This was obtained with Yi=1
 
if pi>Ui 

and Yi=0
 
in another 

case; i=1,…, n; where Ui has uniform distribution in [0, 1] and 

π β β
i

x xe ei
T

i
T

= +F
HG

I
KJ1  where b is two times the eigenvector 

associated to the maximum eigenvalue of XTX.

Comparison of estimators

This was carried out as a function of :

1. he scaled condition number of the estimated information 
matrix: hMI.

2. The mean square error: ECM
Ri ri i

r

R~ ~
β β βe j e j= −

=
∑

1 2

1

.

3. The bias: B
Ri ri i

r

R~ ~
β β βe j e j= −

=
∑

1

1
.

where ~
β i  

is one of the estimators of bi in the r-th repetition.
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π β β
i

x xe ei
T

i
T

= +F
HG

I
KJ1  donde b es dos veces el vector propio 

asociado al valor propio mayor de XTX. 

Comparación de estimadores

Se realizó en función de:

1. El número de condición escalado de la matriz de información 
estimada: hMI.

2. El error cuadrático medio:  ECM
Ri ri i

r

R~ ~
β β βe j e j= −

=
∑

1 2

1
.

3. El sesgo: B
Ri ri i

r

R~ ~
β β βe j e j= −

=
∑

1

1

donde ~
β i  es uno de los estimadores de bi en la r-ésima repeti-

ción.

Resultados y Discusión

Se usan los términos estimadores originales para 
aludir a los estimadores de MV, de Firth (F), de 
Rousseeuw y Christmann (RC) y estimadores Ridge 
para referirse a los estimadores de Shen y Gao (SG) y 
Ridge iterativo (RI).

Efecto en el condicionamiento del estimador

Los estimadores originales fueron muy sensibles 
a la colinealidad y al grado de traslape estudiados, 
ya que  presentaron un condicionamiento severo de 
la matriz de información para cualquier tamaño de 
muestra, niveles de colinealidad y grado de traslape 
estudiados (Cuadro 1).

También se observó, como se esperaba, que el nú-
mero de condición escalado de los estimadores ori-
ginales fue mayor cuando existe colinealidad severa, 
que en moderada o con TM  20, que con TM 40 y 
con grados de traslape bajos. Los estimadores RI y de 
SG presentaron condicionamiento nulo.

Efecto en el error cuadrático medio

Los estimadores originales tuvieron mayor ECM 
que los estimadores Ridge (Cuadro 2), lo cual es de 
esperarse ya que los estimadores Ridge surgieron con 
el fin de reducir el ECM (Schaefer et al., 1984).

Cuadro 1.	 Números de condición escalados de la matriz de 
información estimada escalada de los estimado-
res.

Table 1.	 Scaled condition numbers of the scaled estimated 
information matrix of the estimators.

TM	 GT	 C	 MV	 F	 RC	 SG	 RI

40	 G0	 S	 1739634	 1474	 63743	 1	 4
	 G1		  1396	 1198	 1364	 1	 5
	 G2		  1181	 1195	 1182	 1	 7
	 G0	 M	 35403	 345	 6109	 1	 4
	 G1		  350	 281	 342	 1	 6
	 G2		  263	 269	 263	 1	 9
	 G0	 S	 83071	 5050	 71064	 1	 4
	 G1		  16857	 3600	 9511	 1	 5
20	 G2		  3666	 3419	 3651	 1	 7
	 G0	 M	 1224672	 635	 259001	 1	 5
	 G1		  3156	 521	 1880	 1	 6
	 G2		  496	 483	 495	 1	 9

Results and Discussion

The terms original estimators are used to allude to 
the ML, Firth’s (F),  Rousseeuw and Christmann’s 
(RC) estimators and Ridge estimators to refer to the 
estimators Shen and Gao’s (SG) and iterative Ridge 
(RI).

Effect on the conditioning estimator

The original estimators were highly sensitive to 
collinearity and to the degree of overlap studied, 
given that they presented a severe conditioning of 
the estimated information matrix for any sample size, 
levels of collinearity and degree of overlap studied 
(Table 1).

It was also observed, as was expected, that the 
scaled condition number of the original estimators 
was higher when there is severe collinearity than in 
moderate or with TM 20, than with TM 40 and 
with low degrees of overlap. The estimators RI and 
SG presented null conditioning.

Effect on the mean square error

The original estimators had higher MSE than the 
Ridge estimators (Table 2), which is to be expected, 
since the Ridge estimators appeared with the purpose 
of reducing the MSE (Schaefer et al., 1984).

All of the estimators studied had the highest MSE 
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Todos los estimadores estudiados tuvieron el ma-
yor ECM en G0 donde hay separación o casi separa-
ción en los datos. Al aumentar el grado de traslape se 
observó una notable disminución en el ECM de los 
estimadores originales. El comportamiento del ECM 
es diferente en los estimadores Ridge pues en ellos 
el ECM es aproximadamente igual, como en SG, o 
incrementa, como en RI.

El efecto de la colinealidad fue muy fuerte en el 
ECM de los estimadores originales lo cual fue re-
portado por Schaefer et al. (1984), le Cessie y van 
Houwenlingen (1992), Lee y Silvapulle (1988), 
Weissfeld y Sereika (1991) y Månsson y Shukur 
(2011). En colinealidad severa el ECM fue 2 a 150 
veces mayor que en colinealidad moderada, con 

Cuadro 2. Error cuadrático medio de los estimadores.
Table 2. Mean squared error of the estimators.

	 Estimadores
TM	 GT	 C	 β i
				    MV	 F	 RC	 SG	 RI

			   β1 	 233605000.00	 452.15	 41529.72	 0.96	 0.06
	 G0	 S	 β2 	

215063500.00	 420.82	 39804.42	 1.34	 0.05
			   β1 	

1547933.37	 80.60	 4746.51	 1.71	 0.06
		  M	 β2 	

1432173.55	 74.93	 4924.40	 2.00	 0.06
			   β1 	

351.26	 151.79	 325.02	 0.83	 0.10
40	 G1	 S	 β2 	

331.15	 146.24	 309.11	 1.00	 0.11
			   β1 	

78.05	 30.63	 71.46	 2.04	 0.10
		  M	 β2 	

67.91	 25.78	 62.99	 1.86	 0.13
			   β1 	

81.51	 60.36	 79.59	 0.51	 0.19
	 G2	 S	 β2 	

80.34	 59.46	 78.45	 0.87	 0.23
			   β1 	

9.16	 6.68	 8.94	 0.90	 0.13
		  M	 β2 	

8.49	 6.38	 8.31	 1.19	 0.24
			   β1 	

14244771.30	 2307.40	 231184.98	 1.01	 0.13
	 G0	 S	 β2 	

13311902.08	 2060.56	 216506.41	 1.22	 0.12
			   β1 	

167516819.58	 212.61	 86333.46	 0.71	 0.06
		  M	 β2 	

154311200.00	 214.34	 83470.89	 1.04	 0.05
			   β1 	

4691.48	 575.43	 3855.37	 0.74	 0.13
20	 G1	 S	 β2 	

4470.82	 533.48	 3650.35	 0.81	 0.14
			   β1 	

793.62	 54.33	 421.49	 0.78	 0.15
		  M	 β2 	

823.11	 60.00	 429.61	 1.45	 0.16
			   β1 	

643.85	 327.52	 621.82	 0.53	 0.20
	 G2	 S	 β2 	

570.80	 295.28	 551.66	 0.52	 0.23
			   β1 	

45.51	 24.13	 44.15	 0.81	 0.24
		  M	 β2 	

45.20	 24.99	 43.86	 1.29	 0.35

in G0 where there is separation or quasi-separation in 
the data. As the degree of overlap increased a notable 
reduction was observed in the MSE of the original 
estimators. The behavior of the MSE is different 
in the Ridge estimators, as the MSE in them is 
approximately equal, as in SG, or increases, as in RI.

The effect of collinearity was very strong in the 
MSE of the original estimators, which was reported 
by Schaefer et al. (1984), Lee and Silvapulle (1988), 
Weissfeld and Sereika (1991), le Cessie and van 
Houwenlingen (1992) and Månsson and Shukur 
(2011). In severe collinearity the MSE was 2 to 150 
times higher than in moderate collinearity, with the 
exception of ML and RC in the G0 and TM 20. 
In the Ridge estimators the observed effect was the 
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excepción de los estimadores de MV y RC en el G0 y 
TM 20. En los estimadores Ridge el efecto observado 
fue al revés; en general; el ECM fue mayor en coli-
nealidad moderada que en colinealidad severa.

En general, el ECM de los estimadores originales 
fue afectado de forma severa por el tamaño de mues-
tra ya que su valor fue 2.64 a 130.58 veces más gran-
de en TM 20 que en TM 40. Aunque también los 
estimadores Ridge tuvieron mayor ECM con TM 20 
que en TM 40, esto fue menos frecuente y el incre-
mento fue menor.

Entre los estimadores originales tuvo mejor 
desempeño el estimador F, aún en  G0 donde hay 
separación y casi separación, y el estimador de peor 

Cuadro 3. Sesgo de los estimadores estudiados.
Table 3. Bias of the estimators studied.

	 Estimadores
TM	 GT	 C	 β i
				    MV	 F	 RC	 SG	 RI

			   β1 	
-928.41	 -2.01	 -9.45	 -0.12	 -0.13

	 G0	 S	 β2 	
1450.15	 2.61	 14.85	 0.07	 -0.12

			   β1 	
70.46	 -0.46	 5.77	 -0.23	 -0.15

		  M	 β2 	
35.65	 0.54	 2.68	 -0.10	 -0.15

			   β1 	
1.26	 0.18	 1.15	 -0.20	 -0.23

40	 G1	 S	 β2 	
-0.79	 -0.32	 -0.74	 -0.24	 -0.25

			   β1 	
-0.19	 -0.23	 -0.21	 -0.24	 -0.22

		  M	 β2 	
0.72	 0.05	 0.66	 -0.27	 -0.28

			   β1 	
-0.37	 -0.59	 -0.38	 -0.33	 -0.38

	 G2	 S	 β2 	
-0.13	 -0.09	 -0.13	 -0.52	 -0.42

			   β1 	
0.29	 0.10	 0.28	 -0.25	 -0.33

		  M	 β2 	
-0.60	 -0.61	 -0.61	 -0.54	 -0.46

			   β1 	
-699.99	 -0.53	 -107.32	 -0.22	 0.00

	 G0	 S	 β2 	
799.98	 1.39	 116.22	 0.01	 -0.01

			   β1 	
-4223.99	 -0.19	 -25.93	 -0.09	 -0.04

		  M	 β2 	
4661.87	 1.90	 62.08	 -0.37	 -0.07

			   β1 	
-6.71	 1.37	 -6.30	 -0.40	 -0.21

20	 G1	 S	 β2 	
5.91	 -1.76	 5.54	 -0.34	 -0.23

			   β1 	
-1.12	 0.03	 -0.41	 -0.38	 -0.26

		  M	 β2 	
2.17	 -0.71	 1.35	 -0.68	 -0.32

			   β1 	
0.41	 1.45	 0.40	 -0.38	 -0.34

	 G2	 S	 β2 	
-0.79	 -1.94	 -0.80	 -0.45	 -0.39

			   β1 	
0.09	 0.08	 0.08	 -0.35	 -0.38

		  M	 β2 	
-0.37	 -0.94	 -0.38	 -0.77	 -0.53

opposite; in general, the MSE was higher in moderate 
than in severe collinearity.

In general, the MSE of the original estimators 
was affected severely by the sample size, given that its 
value was 2.64 to 130.58 times larger in TM 20 than 
in TM 40. Although the Ridge estimators also had 
higher MSE with TM 20 than in TM 40, it was less 
frequent and the increment was lower.

Among the original estimators, the F estimator 
had a better performance, even in G0 where there 
is separation and quasi-separation, and the ML 
estimator had the worst performance. In the Ridge 
estimators, the RI had the lowest MSE followed by 
the SG estimator.
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desempeño fue el de MV. En los estimadores Ridge,  
el RI tuvo el menor ECM seguido del estimador de 
SG.

Efecto en el sesgo

Los estimadores originales tuvieron mayor sesgo 
que los estimadores Ridge en los tres grados de tras-
lape al usar TM de 20, pero con TM 40 solamente 
ocurrió en G0 (Cuadro 3). Los estimadores originales 
tuvieron mayor sesgo en G0, donde hay separación 
o casi separación en los datos, y disminuyó en G1 
y G2. Por el contrario, los estimadores Ridge gene-
ralmente tuvieron menor sesgo en G0 y al aumentar 
el porcentaje de traslape incrementó ligeramente el 
sesgo. 

El efecto de la colinealidad fue fuerte en el sesgo 
de los estimadores originales. El mayor sesgo se obtu-
vo en colinealidad severa y disminuyó al incrementar 
el grado de traslape. En los estimadores Ridge se ob-
servó un comportamiento opuesto, pues en general 
fue mayor el sesgo en colinealidad moderada que en 
colinealidad severa. Es interesante notar que en los 
estimadores Ridge el sesgo, aunque pequeño, siem-
pre fue negativo. 

Schaefer (1983) y Ramírez-Valverde y Rice (1995) 
muestran que el sesgo de β  es aproximadamente 
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por lo cual el sesgo del estimador de MV es afectado 
por ambos problemas, el de colinealidad en las varia-
bles independientes (matriz X) y el de la cercanía a la 
separación (matriz V).

Ramírez-Valverde y Rice (1995), aunque sola-
mente estudiaron el efecto de la colinealidad, tam-
bién muestran que el sesgo del estimador de MV es 
mayor que el sesgo del estimador Ridge de un paso. 
En la literatura revisada, no se encontraron investi-
gaciones acerca del efecto del grado de traslape en 
el sesgo de los estimadores evaluados en el presente 
estudio.

El TM afectó fuertemente el sesgo de los estima-
dores originales. El sesgo en valor absoluto fue, gene-
ralmente, entre 1.05 y 130.77 veces mayor con TM  
20 que con TM 40. Por el contrario, los estimadores 
Ridge tuvieron mayor sesgo con TM 40 que con TM 
20. Entre los estimadores originales el estimador F 

Effect on the bias

The original estimators had greater bias than the 
Ridge estimators in the three degrees of overlap using 
TM of 20, but with TM 40 it only occurred in G0 
(Table 3). The original estimators had greater bias in 
G0, where there is separation or quasi-separation in 
the data, and it decreased in G1 and G2. In contrast, 
the Ridge estimators generally had lower bias in G0 
and as the percentage of overlap increased the bias 
increased slightly.

The effect of collinearity was strong in the bias 
of the original estimators. The greatest bias was 
obtained in severe collineariity and decreased as the 
degree of overlap increased. In the Ridge estimators 
the opposite behavior was observed, as in general 
the bias was greater in moderate collinearity than 
in severe collinearity. It is interesting to note that in 
the Ridge estimators, the bias, although small, was 
always negative.
     Schaefer (1983) and Ramírez-Valverde and Rice 
(1995) show that the bias of β  is approximately 
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therefore, the bias of the ML estimator is affected by 
both problems, that of collinearity in the independent 
variables (matrix X) and that of proximity to 
separation (matrix V).

Ramírez-Valverde and Rice (1995), although 
they only studied the effect of collinearity, also show 
that the bias of the ML estimator is higher than the 
bias of the one step Ridge estimator. In the revised 
literature, no investigations were found of the effect 
of the degree of overlap in the bias of the estimators 
evaluated in the present study.

The TM strongly affected the bias of the original 
estimators. The bias in absolute value was, generally, 
1.05 to 130.77 times higher with TM 20 than 
with TM 40. In contrast, the Ridge estimators had 
higher bias with TM 40 than with TM 20. Among 
the original estimators the F estimator had the best 
performance, even in the G0 where there is less 
overlap, while the ML estimator was notoriously 
bad. The estimators RI and SG had the lowest bias 
among the Ridge estimators, especially the first. The 
Ridge estimators in logistic regression, in contrast to 
the Ridge estimators in linear regression, present less 
bias than the ML estimator.
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Cuadro 4. Estimaciones usando las variables S, B y D.
Table 4. Estimates using variables S, B and D.

	 Estimadores

	 MV	 F	 RC	 RI	 SG

Intercepto	 99422.90	 250.00	 523.01	 0.00 	 6.58
B	 688.70 	 0.80	 2.30	 0.00	 2.34 
D	 -751.80	 -1.83	 -3.88	 -0.00	 -0.20
hMI	 21299311	 11125352	 15352304	 2	 1

tuvo el mejor desempeño, aun en el G0 donde hay 
menor traslape, mientras que el estimador de MV 
fue notoriamente malo. Los estimadores  RI y  SG 
tuvieron el menor sesgo entre los estimadores Rid-
ge, especialmente el primero. Los estimadores Ridge 
en regresión logística, al contrario de los estimadores 
Ridge en regresión lineal, presentan menos sesgo que 
el estimador de MV.

Los resultados de este estudio coincidieron con 
los de Shen y Gao (2008) quienes también encon-
traron que el estimador F y SG son mejores que el 
de MV cuando se compararon en función del ECM. 
Además, el estimador SG fue mejor que F bajo el 
mismo criterio, pero en esta simulación se destaca 
que el estimador RI resultó mejor que F y que SG en 
términos del ECM.

Ejemplo

Para mostrar las diferencias entre los estimadores 
evaluados en el presente estudio, se analizó un ejem-
plo presentado por Riedwyl en 1997 y citado por 
Rousseeuw y Christmann (2004). Las 200 observa-
ciones corresponden a siete variables medidas en bi-
lletes suizos. La variable respuesta Status (S) es 1 si el  
billete es falso y 0 si es genuino; las variables indepen-
dientes son longitud del billete (L), ancho del borde 
izquierdo (LE), ancho del borde derecho (R), ancho 
del margen inferior (B), ancho del margen superior  
(T) y longitud diagonal de la imagen (D), medidas 
en milímetros.

Usando D y B para modelar la probabilidad de 
S=1 se presenta el problema de separación en los 
datos. Los estimadores estudiados fueron valorados 
con tamaños de muestra de 20 y 40, que fueron 10 
y 5 veces menores que el tamaño de este conjunto de 
datos. Sin embargo, se consideró pertinente valorar 
su desempeño por la presencia de colinealidad severa 
(hx=388) y separación en los datos. Los estimadores 
de MV, F y RC tienen condicionamiento severo y los 
estimadores RI y SG tienen condicionamiento nulo 
(Cuadro 4). Las estimaciones de MV son muy gran-
des lo que hace difícil su interpretación ya sea como 
incremento en el logaritmo de la razón de momios o 
como momios. Aunque no se conocen los paráme-
tros, de acuerdo con los resultados obtenidos se espe-
ra que las estimaciones más cercanas a las verdaderas 
sean las de los estimadores SG y RI.

The results of this study coincided with those 
of Shen and Gao (2008), who also found that the 
F and SG estimators are better than the ML when 
they were compared using the MSE. Furthermore, 
the SG estimator was better than F under the same 
criterion, but in this simulation it is notable that the 
RI estimator was better than F and SG estimators in 
terms of the MSE.

Example

To show the differences among the estimators 
evaluated in this study, an example was analyzed 
presented by Riedwyl in 1997 and cited by 
Rousseeuw and Christmann (2004). The 200 
observations correspond to seven variables measured 
in Swiss bills. The response variable Status (S) is 1 if 
the bill is false and 0 if it is genuine; the independent 
variables are length of the bill (L), width of the left 
edge (LE), width of the right edge (R), width of the 
lower margin (B), width of the upper margin (T) 
and diagonal length of the image (D), measured in 
millimeters.
     Using D and B to model the probability of S=1 
the problem of separation in the data appears. The 
estimators studied were valuated with sample sizes 
of 20 and 40, which were 10 and 5 times smaller 
than the size of this data set. However, it was 
considered pertinent to assess their performance 
due to the presence of severe collinearity (hx=388) 
and separation in the data. The ML, F and RC 
estimators have severe conditioning and the RI and 
SG estimators present null conditioning (Table 4). 
The ML estimations are very large, which makes 
interpretation difficult, whether as increment in the 
logarithm of the odds ratio or as odds. Although the 
parameters are unknown, according to the results 



AGROCIENCIA, 16 de mayo - 30 de junio, 2012

VOLUMEN 46, NÚMERO 4424

Conclusiones

Es una ventaja que los estimadores de Firth y de 
Rousseeuw y Christmann existan cuando hay separa-
ción en los datos, pero son fuertemente afectados por 
el nivel de colinealidad entre las variables indepen-
dientes y por bajos grados de traslape en los datos, 
efectos que son mayores cuando el tamaño de mues-
tra es pequeño. Los estimadores Ridge iterativo y de 
Shen y Gao son mejores, en términos de error cua-
drático medio y de sesgo, cuando se presentan simul-
táneamente los problemas de colinealidad, poco tras-
lape en los datos y el tamaño de muestra sea pequeño. 
Aunque las diferencias fueron pequeñas, el estimador 
Ridge iterativo tuvo un mejor comportamiento que 
el estimador de Shen y Gao.

Respecto a los estimadores Ridge iterativo y de 
Shen y Gao hace falta investigación para proponer 
intervalos de confianza de los parámetros estimados; 
así como considerar un número mayor de variables 
en las que haya más de una relación de colinealidad. 
También merece atención proponer formas para de-
terminar el parámetro de Ridge que tomen en cuenta 
el nivel de colinealidad, el número de relaciones de 
colinealidad y el grado de traslape en los datos.
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obtained it is expected that the estimations closest to 
the true ones are those of the SG and RI estimators.     

Conclusions

It is an advantage that the Firth’s and Rousseeuw 
and Christmann’s estimators exist when there is 
separation in the data, but they are strongly affected 
by the level of collinearity among the independent 
variables and by low degrees of overlap in the data, 
effects that are greater when the sample size is small. 
The iterative Ridge and Shen and Gao’s estimators 
are better, in terms of mean square error and of bias, 
when the problems of collinearity, scant overlap 
appear simultaneously in the data and the sample 
size is small. Although the differences were small, the 
iterative Ridge estimator had a better behavior than 
the Shen and Gao’s estimator.

With respect to the iterative Ridge and Shen and 
Gao’s estimators, there is a need for investigation 
to propose confidence intervals of the estimated 
parameters; as well as to consider a higher number of 
variables in which there is more than one relationship 
of collinearity. It is also important to propose forms 
to determine the Ridge parameter that take into 
consideration the level of collinearity, the number of 
relationships of collinearity and the degree of overlap 
in the data.
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