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Resumen

En la producción de hortalizas en invernadero es importante 
optimizar y controlar el manejo del ambiente usando mode-
los dinámicos. El desarrollo y uso de modelos mecanicistas es 
costoso y requiere mucho tiempo. Los modelos de caja negra, 
basados en mediciones de entradas y salidas, son un enfoque 
prometedor para estudiar sistemas complejos y no-lineales. 
En la presente investigación se estudiaron y generaron mo-
delos neuro-difusos para predecir el comportamiento de la 
temperatura y la humedad relativa del aire dentro de dos in-
vernaderos. Las variables de entrada fueron: la temperatura, 
la humedad relativa, la radiación solar global y la velocidad 
y dirección del viento, medidas fuera del invernadero. Las 
variables de salida fueron la temperatura y la humedad del 
aire medidas dentro del invernadero. El tiempo de muestreo 
fue cada minuto. Se generaron varios modelos neuro-difusos 
para la temperatura y la humedad, usando el modelo neuro-
difuso ANFIS (Adaptive Neuro-Fuzzy training of Sugeno-type 
Inference System), disponible en el Fuzzy Logic Toolbox de 
Matlab. Los métodos de partición de rejilla y agrupamiento 
sustractivo se usaron para generar el sistema de inferencia di-
fuso. Se analizaron varias particiones empíricas de los datos, 
tres tipos de funciones de membresía (Gaussiana, Campana 
generalizada y Trapezoidal), así como las funciones de mem-
bresía de salida constante y lineal. Además se probaron varias 
épocas de entrenamiento. Se usaron dos conjuntos de datos 
recolectados en dos invernaderos con ventilación natural, lo-
calizados en la Universidad Autónoma Chapingo y la Univer-
sidad Autónoma de Querétaro. El análisis de los resultados 
mostró que los modelos neuro-difusos predicen aceptable-
mente el comportamiento del clima dentro del invernadero.
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Abstract

In greenhouse vegetable production it is important to 
optimize and control the environmental management using 
dynamic models. The development and use of mechanistic 
models is expensive and time consuming. Black box models 
based on measurements of inputs and outputs are a promising 
approach for studying complex and nonlinear systems. In 
this work we have studied and generated neuro-fuzzy models 
to predict the behavior of temperature and relative humidity 
in two greenhouses. Input variables were: temperature, 
relative humidity, global solar radiation and wind speed 
and direction, measured outside the greenhouse. The output 
variables were temperature and humidity measured inside 
the greenhouse. The sampling time was every minute. Several 
neuro-fuzzy models for temperature and humidity were 
evaluated, using the neuro-fuzzy model ANFIS (Adaptive 
Neuro-Fuzzy training of Sugeno-type Inference System), 
available in the Fuzzy Logic Toolbox of Matlab. The methods 
of grid partition and subtractive clustering were used to 
generate the fuzzy inference system. Several empirical 
partitions of data were analyzed, as well as three types of 
membership functions (Gaussian, generalized Bell and 
Trapezoidal) and the constant and linear output membership 
functions. Also several training times were tested. Two sets of 
data were used, which were collected in two greenhouses with 
natural ventilation, located at the Universidad Autónoma 
de Chapingo and Universidad Autónoma de Querétaro. 
The analysis of the results showed that the neuro-fuzzy 
models acceptably predict the weather behavior inside the 
greenhouse.

Key words: ANFIS, controlled environment, optimal control, 
black box models.
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Introducción

Para optimizar y controlar el ambiente de un 
invernadero se requieren modelos matemáti-
cos precisos (López-Cruz et al., 2007; Leal-Iga 

et al., 2008). Varios enfoques han sido exitosos para 
describir el comportamiento de la temperatura, la 
humedad y la concentración de dióxido de carbono 
dentro de un invernadero (Castañeda-Miranda et al., 
2007; Guzmán-Cruz et al., 2009, Fitz-Rodríguez et 
al., 2010). Sin embargo, la generación de modelos 
mecanicistas demanda mucho tiempo y es costosa. 
Asi, para grandes cantidades de datos experimenta-
les que describan el comportamiento de variables de 
entrada y salida del sistema, los modelos de caja ne-
gra, como el enfoque difuso (Salgado y Cunha, 2005; 
Fitz-Rodríguez, 2008; Fitz-Rodríguez y Giacomelli, 
2009), el enfoque basado en redes neuronales (Linker 
et al., 1998; Fitz-Rodríguez, 2008; Fitz-Rodríguez y 
Giacomelli, 2009)  y  el enfoque neuro-difuso (Tien, 
1997; Jang et al., 1997; Babuška y Verbruggen, 
2003), pueden ser una alternativa atractiva. Tien y 
Van Straten (1998) desarrollaron el sistema neuro-
difuso NUFZY para predecir sistemas no lineales, y 
muestran que este enfoque puede predecir aceptable-
mente el crecimiento de la lechuga (Lactuca sativa L.) 
y la temperatura del invernadero  en los Países Bajos. 
Sin embargo, los modelos neuro-difusos no se han 
usado para estudiar el clima de invernaderos con ven-
tilación natural, como los prevalecientes en México. 
El enfoque neuro-difuso fue aplicado para modelar la 
evapotranspiración instantánea de una planta de jito-
mate (Lycopersicon esculentum, Mill) en invernadero 
(Ramos et al., 2010) y también un sistema neuro-
difuso se usó para predecir el comportamiento de la 
humedad relativa  (Gamboa et al., 2005) con infor-
mación de estaciones meteorológicas.

La hipótesis de esta investigación fue que los mo-
delos neuro-difusos al combinar ventajas de las redes 
neuronales y de los sistemas difusos pueden mostrar 
un desempeño superior, especialmente en el caso de 
sistemas complejos y no-lineales como los presentes 
en el ambiente invernadero. Los objetivos fueron: 1) 
desarrollar un modelo neuro-difuso para predecir la 
temperatura del aire dentro de un invernadero con-
siderando como variables de entrada la temperatura, 

Introduction

To optimize and control the environment of 
a greenhouse, accurate mathematical models 
are required (López-Cruz et al., 2007, Leal-

Iga et al., 2008). Several approaches have succeeded 
in describing the behavior of temperature, humidity 
and the concentration of carbon dioxide within 
a greenhouse (Castañeda-Miranda et al., 2007, 
Guzmán-Cruz et al., 2009, Fitz-Rodríguez et al., 
2010). However, the generation of mechanistic 
models is time consuming and costly. So an attractive 
alternative may be the development of black box 
models, such as the fuzzy approach (Salgado and 
Cunha, 2005, Fitz-Rodríguez, 2008, Fitz- Rodriguez 
and Giacomelli, 2009), the neural network approach 
(Linker et al., 1998, Fitz-Rodríguez, 2008, Fitz-
Rodríguez and Giacomelli, 2009) and the neuro-fuzzy 
approach (Tien, 1997; Jang et al. , 1997; Babuska 
and Verbruggen, 2003) based on large amounts of 
experimental data that describe the behavior of input 
and output variables of the system. Tien and Van 
Straten (1998) developed the neuro-fuzzy system 
NUFZY to predict nonlinear systems, and showed 
that this approach can acceptably predict the growth 
of lettuce (Lactuca sativa L.) and the  greenhouse 
temperature in the Netherlands. However, neuro-
fuzzy models have not been used to study the climate 
of greenhouses with natural ventilation, like those 
prevailing in México. The neuro-fuzzy approach was 
applied to model the instantaneous evapotranspiration 
of a tomato (Lycopersicon esculentum, Mill) plant 
under greenhouse conditions (Ramos et al., 2010), 
and a neuro-fuzzy system was used to predict the 
behavior of relative humidity (Gamboa et al., 2005) 
with information from weather stations.

The hypothesis of this research was that when the 
neuro-fuzzy models combine the advantages of neural 
networks and fuzzy systems they may have a better 
performance, especially in the case of complex and 
nonlinear systems, as those present in the greenhouse 
environment. The objectives were: 1) to develop 
a neuro-fuzzy model in order to predict the air 
temperature inside a greenhouse considering as input 
variables the temperature, relative humidity, global 
solar radiation, wind speed and direction, measured 
outside the greenhouse; 2) to develop and evaluate 
the performance of a neuro-fuzzy model to predict 
relative humidity inside a greenhouse; 3) to analyze 
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humedad relativa, radiación solar global, velocidad 
y dirección del viento medidas fuera del invernade-
ro; 2) desarrollar y evaluar el comportamiento de un 
modelo neuro-difuso para predecir la humedad rela-
tiva dentro de un invernadero; 3) analizar  el com-
portamiento de ambos modelos en dos invernaderos 
con ventilación natural.

Materiales y Métodos

Estructura del sistema adaptable 
de inferencia (ANFIS)

El modelo ANFIS (Jang, 1993; Jang et al., 1997) consta de 
variables de entrada-salida, un conjunto de reglas SI-ENTON-
CES tipo Takagi-Sugeno (Takagi y Sugeno, 1985) y un sistema 
de inferencia difuso (Figura 1). En la capa 1, cada nodo cuadrado 
i tiene una función de membresía O1

i = mAi (x), que especifica el 
grado para el cual x satisface Ai . En este modelo mAi(x) es una 
campana generalizada:
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o una función Gaussiana:
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donde ai, bi, ci son parámetros de premisa.

En la capa 2 cada nodo efectúa la operación: wi = mAi (x) × mBi 

Figura 1. Arquitectura ANFIS para el sistema de inferencia Takagi y Sugeno (1985).
Figure 1. ANFIS architecture for the Takagi and Sugeno inference system (1985). 
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the behavior of both models in two greenhouses with 
natural ventilation.

Materials and Methods 

Structure of the adaptive inference 
system (ANFIS)

The ANFIS model (Jang, 1993 Jang et al., 1997) consists 
of input-output variables, a set of IF-THEN rules of the 
Takagi-Sugeno type (Takagi and Sugeno, 1985) and a fuzzy 
inference system (Figure 1 .) In layer 1, each square node i has 
a membership function O1

i = mAi (x), which specifies the degree 
to which x satisfies Ai. In this model mAi(x) is a generalized bell: 
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or a Gaussian function:                          
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where ai, bi, ci are parameters of premise.
 

In layer 2 each node performs the operation: wi = mAi (x) × 
mBi (y), i=12. In layer 3, the  i-th node calculates the ratio of 
the trigger force of the i-th rule to the sum of all shot forces 

using: w
w

w wi
i
1 2

 , i=1, 2. In layer 4 each node i has a 
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(y), i=12. En la capa 3, el i-ésimo nodo calcula la proporción de la 
fuerza de disparo de la i-ésima regla a la suma de todas las fuerzas 

de disparo, usando: w
w

w wi
i
1 2

, i=1, 2. En la capa 4 cada 

nodo i tiene una función O4
i = w

_
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_
i (pi x + qi y +ri), donde w

_
i 

es la salida de la capa 3, y {pi, qi, ri} es el conjunto de parámetros 
conocidos como parámetros consecuentes. En la capa 5 se calcu-

la una suma total: O w f
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La reglas difusas en ANFIS son del tipo siguiente:

Regla 1: Si x es A1 y y es B1, entonces f1 = p1x+q1 y+r1

Regla 2: Si x es A2 y y es B2, entonces f2 = p2x+q2 y+r2

	

(4)

El sistema de inferencia se muestra en la Figura 2.
ANFIS usa un algoritmo de aprendizaje híbrido con dos pa-

sos, uno hacia delante y otro hacia atrás. En el paso hacia delante 
los parámetros de consecuencia son identificados por el estima-
dor de mínimos cuadrados. En el paso hacia atrás los índices 
de error se propagan hacia atrás y los parámetros de premisa se 
actualizan por el método del gradiente descendiente. Este en-
foque híbrido converge más rápidamente que el método retro-
propagación usado en el entrenamiento de redes neuronales.

Figura 2. Razonamiento difuso (Jang, 1993; Jang et al., 1997).
Figure 2. Fuzzy reasoning (Jang, 1993; Jang et al., 1997).
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of layer 3, and {pi, qi, ri} is the set of parameters known as 
consequent parameters. In layer 5 a total sum is calculated: 
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The fuzzy rules in ANFIS are of the following type:
 
Rule 1: If x is A1 and y is B1, then f1 = p1x+q1y+r1 
Rule 2: If x es A2 and y is B2, then f2 = p2x+q2y+r2	 (4)

The inference system is shown in Figure 2.
The ANFIS uses a hybrid learning algorithm with two 

steps, one forward and one backward. In the step forward 
the consequence parameters are identified by the least square 
estimator. In the step backward error rates propagate backward 
and the premise parameters are updated by the descent gradient 
method. This hybrid approach converges faster than the retro-
propagation method used in training neural networks. 

Data acquisition

Data acquisition was performed in an Arched type greenhouse 
located in the Agricultural Experiment Station Tlapeaxco of the 
Universidad Autónoma de Chapingo, Mexico, 19 ° 29’ N, 98° 
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Adquisición de datos

La adquisición de datos se efectuó en un invernadero de tipo 
cenital ubicado en el Campo Agrícola Experimental Tlapeaxco 
de la Universidad Autónoma Chapingo, México, a 19° 29’ N, 
98° 54’ O y altitud de 2244 m. El invernadero (Figura 3) tiene 
un área de 1080 m2, 170 m2 de área de ventilación lateral y 60 
m2 de área de ventilación cenital; su área total está dividida en 
tres naves. El tiempo de muestreo fue de 1 min del 24 al 30 de 
enero del 2007 (Figura 4). El invernadero estuvo libre de cultivo 
durante el periodo de toma de datos.

Las variables de entrada fueron la radiación solar global (Ro, 
W m-2), humedad relativa (RHo, %), velocidad del viento (WS, 
m s-1), dirección del viento (WD, f) y temperatura (To, °C), 
medidas fuera del invernadero. Las variables de salida fueron la 
temperatura (Ti, °C) y la humedad relativa (RHi, %), medidas 
dentro del invernadero. Se usaron 10080 mediciones.

Otro conjunto de datos se recolectó en un invernadero de la  
Universidad Autónoma de Querétaro, México, a 20° 36’ N, 100° 
24’ O y una altitud 1820 m. El invernadero es tipo capilla (Fi-
gura 5). Presenta ventanas laterales con 2.5 m de alto por 25 m 
de largo, frontales de 2.5 m de alto por 20 m de largo, ventanas 
cenitales de 0.8 m de alto por 20 m de largo, área de ventilación 
total de 257 m2,  con apertura y cierre automático de ventanas.

Figura 3.	Diagrama de sección del invernadero localizado en 
Chapingo, México.

Figure 3.	 Section diagram of the greenhouse located in 
Chapingo, México. 

Figura 4. Variables meteorológicas  en Chapingo, México, del 24 al 30 de enero de 2007.
Figure 4. Meteorological variables in Chapingo, México, January 24-30, 2007.
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El tiempo de muestreo fue de 1 min, del 9 junio al 22 de 
julio del 2008 (Figura 6). Se usaron 54662 observaciones. Las 
variables de entrada fueron las mismas que para el primer inver-
nadero, excepto ráfagas de viento (GS, m s-1). Durante la toma 
de datos el invernadero estuvo ocupado por un cultivo de jito-
mate con un índice de área foliar cercano a la unidad.  En ambos 
invernaderos la cubierta es de plástico de 180 mm de grosor con 
tratamiento ultravioleta y se usaron dos estaciones HOBO® Wea-
ther Station Data Logger Modelo H21-001 (Onset Computers 
Corporation, USA) para medir las variables meteorológicas.

Procedimiento

Subconjuntos de datos para generación y validación del modelo

Ambos conjuntos de datos fueron divididos en dos subcon-
juntos y uno fue usado para la generación del modelo y otro para 
su validación. Se probaron las particiones: 50 %:50 %; 60 %:40 %; 
65 %:35 %; 70 %:30 %; 75 %:25 %; y 80 %:20 %; para la tem-
peratura y la humedad relativa del aire dentro del invernadero. 

Generación del Sistema de Inferencia Difuso Inicial

Para generar el sistema de inferencia difuso (Jang et al., 1997; 
Babuška y Verbruggen, 2003) se usó el método de partición de 

Figura 6. Variables meteorológicas del invernadero en Querétaro,  del 9 de junio al 22 de  julio de 2008.
Figure 6. Meteorological variables of the greenhouse in Querétaro, June 9 - July 22, 2008.

direction (WD, f) and temperature (To , ° C), measured outside 
the greenhouse. The output variables were temperature (Ti, ° C) 
and relative humidity (Rhi, %), measured inside the greenhouse; 
10080 measurements were used.

Another set of data was collected in a greenhouse of the 
Universidad Autónoma de Querétaro, México, 20° 36’ N, 100° 
24’ W and an altitude of 1820 m. The greenhouse is Venlo type 
(Figure 5). It has side windows 2.5 m high by 25 m long; front 
windows of 2.5 m high by 20 m long; windows on the roof 0.8 m 

Figura 5.	 Diagrama de sección del invernadero localizado en 
Querétaro, México.

Figure 5.	 Section diagram of the greenhouse located in 
Querétaro, México.
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rejilla (The Mathworks Inc., 1995-2005), el cual está programa-
do en la función genfis1.m de Matlab. En este método el espacio 
de las entradas se divide en una malla dependiendo del número 
de funciones de membresía. El sistema de Inferencia Difuso tipo 
Sugeno se generó también mediante la función genfis1.m. Se 
evaluó el agrupamiento sustractivo (The Mathworks Inc., 1995-
2005) usando la función genfis2.m de Matlab. En este caso los 
vectores de datos son candidatos a centros de grupos de acuerdo 
a su similitud (Jang et al., 1997; Babuška y Verbruggen, 2003). 
Las funciones de membresía evaluadas fueron: gausiana, campa-
na generalizada y trapezoidal. Para cada variable de entrada se 
evaluaron dos y tres funciones de membresía.

Entrenamiento del sistema neuro-difuso

Todos los sistemas neuro-difusos fueron entrenados median-
te ANFIS como ésta programado en la función anfis.m de Fuzzy 
Logic Toolbox de Matlab (The Mathworks Inc, 1995-2005). El 
método de optimización usado fue el híbrido, el cual combina 
el estimador mínimos cuadrados con retro-propagación de los 
errores. La función “evalfis.m” se usó para obtener la calidad de 
predicción de los modelos.

Calidad de predicción de los modelos

Para evaluar el desempeño de los modelos neuro-difusos se 
usó la raíz del error cuadrático medio (RMSE), el coeficiente de 
determinación (R2), la gráfica de dispersión entre mediciones y 
predicciones, así como la ecuación de regresión lineal simple en-
tre las mediciones y predicciones de los modelos.

Resultados y Discusión

Estructura de los modelos

En la  Figura 7 se muestra la estructura de los 
modelos neuro-difusos generados usando la partición 
de rejilla y entrenado con ANFIS, para temperatura y 
humedad relativa. Sus características son: dos funcio-
nes de membresía en cada entrada, 32 reglas difusas, 
92 nodos, 32 parámetros lineales, 30 parámetros no-
lineales y una función de membresía de salida ya sea 
constante o lineal.

La estructura de los modelos neuro-difusos para 
la temperatura y la humedad relativa, generados me-
diante agrupamiento sustractivo y entrenados con 
ANFIS, se muestra en las Figuras 8 y 9. Las propie-
dades del modelo neuro-difuso obtenido mediante 
agrupamiento sustractivo para la temperatura (Figura 
8) son: seis funciones de membresía en cada entrada, 

high by 20 m long; a total ventilation area of 257 m2, with 
automatic opening and  closing of windows.

The sampling time was 1 min, from June 9 to July 22, 
2008 (Figure 6); 54662 observations were used. Input 
variables were the same used in the first greenhouse, 
except wind gusts (GS, m s-1). During data collection the 
greenhouse was occupied by a crop of tomatoes with a leaf 
area index close to unity. In both greenhouses the cover is 
plastic of 180 mm thick with ultraviolet treatment and two 
stations HOBO® Weather Station Data Logger Model H21-
001 (Onset Computers Corporation, USA) were used to 
measure meteorological variables.

Procedure

Subsets of data for model generation and validation

Both data sets were divided into two subsets and one was 
used for model generation and the other for validation. The 
partitions tested were: 50 %: 50 %; 60 %: 40 %; 65 %: 35 %; 70 %: 
30 %; 75 %: 25 %; and 80 %: 20 %, for air temperature and 
relative humidity inside the greenhouse.

Generation of the Initial Fuzzy Inference System 

To generate the fuzzy inference system (Jang et al., 
1997, Babuska and Verbruggen, 2003) the grid partitioning 
method (The Mathworks Inc., 1995-2005) was used, which 
is implemented in the function genfis1.m of Matlab. In 
this method the input space is divided in a grid depending 
on the number of membership functions. The Sugeno type 
Fuzzy Inference System was also generated by using the 
genfis1.m function. Subtractive clustering was evaluated (The 
Mathworks Inc., 1995-2005) by using the genfis2.m function 
of Matlab. In this case, the data vectors are candidates for 
centers of clusters according to their similarity (Jang et al., 
1997; Babuška and Verbruggen, 2003). The membership 
functions evaluated were: Gaussian, generalized bell and 
trapezoid. For each input variable two and three membership 
functions were assessed. 

Training of the neuro-fuzzy system

All neuro-fuzzy systems were trained using ANFIS, as 
programmed in the function anfis.m of Fuzzy Logic Toolbox 
of Matlab (The Mathworks Inc, 1995-2005). The optimization 
method used was the hybrid, which combines the least squares 
estimator with the retro-propagation of errors. The “evalfis.m” 
function was used to obtain prediction quality models was 
used.
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80 nodos, 36 parámetros lineales, 60 parámetros no-
lineales y seis reglas difusas.

Las propiedades de la estructura mostrada en la 
Figura 9 son: cuatro funciones de membresía en cada 

Figura 8. Estructura de los modelos neuro-difusos para 
la temperatura (Ti), obtenidos con agrupamiento sus-
tractivo y ANFIS.

Figure 8. Structure of the neuro-fuzzy models for 
temperature (Ti), obtained by subtractive clustering and 
ANFIS.

Figura 9. Estructura de los modelos neuro-difusos de 
humedad relativa (HRi), obtenidos con agrupamiento 
sustractivo y ANFIS.

Figure 9. Structure of the relative humidity neuro-fuzzy 
models (HRi), obtained using subtractive clustering 
and ANFIS.
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Prediction quality of the models

To evaluate the performance of the neuro-fuzzy models 
the root mean square error (RMSE) was used, as well as the 

Figura 7.	Estructura de los modelos neuro-difusos de la 
temperatura (Ti) y humedad relativa (HRi) obtenidos 
por partición en rejilla y entrenados con ANFIS.

Figure 7. Structure of the neuro-fuzzy models of 
temperature (Ti) and relative humidity (HRi), obtained 
by grid partitioning and trained with ANFIS.
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entrada, 56 nodos, 24 parámetros lineales, 40 pará-
metros no-lineales y cuatro reglas difusas. Compa-
rando las Figuras 7 contra las Figuras 8 y 9 es claro 
que el agrupamiento sustractivo fue mejor ya que los 
modelos fueron menos complejos. Es notable además 
que aparentemente se pueda modelar la humedad re-
lativa con un modelo neuro-difuso menos complejo 
que en el caso de la temperatura dentro de un inver-
nadero.

Evaluación de los modelos neuro-difusos 
para la temperatura

En el Cuadro 1 se muestra los mejores valores 
de RMSE y R2 obtenidos usando partición de reji-
lla y agrupamiento sustractivo para el entrenamiento 
de ANFIS y el tipo de función de membresía que 
tuvo mejor desempeño. Sólo se muestran los mejo-
res modelos. La mejor partición fue la que usó 80 % 
de datos para generar el modelo y 20 % para valida-
ción. También se observa un mejor comportamiento 
cuando se usó agrupamiento sustractivo.

Los resultados obtenidos para el invernadero de 
Querétaro se muestran en el Cuadro 2. Nuevamente, 
las diferencias en el comportamiento de los mode-
los para las particiones de datos de entrenamiento y 
prueba fueron pequeñas. Ambas estadísticas fueron 
mejores en el caso de uso de agrupamiento sustrac-
tivo.

Cuadro 1.	Valores estadísticos como medidas del desempeño de los modelos de temperatura obtenidos con partición de rejilla y 
agrupamiento sustractivo, utilizados para entrenar el sistema ANFIS para el invernadero de Chapingo, México.

Table 1.	Table 1. Statistical values as measures of performance of the models of temperature obtained with grid partitioning and 
subtractive clustering, used to train the ANFIS system for the greenhouse of Chapingo, México.

	 R2	 RMSE
Partición	 FM§ entrada	 NE††	 FM salida
		  	 	 EÞ	 P¤	 E	 P

	 2:campana		  Lineal	 0.97	 0.86	 1.08	 3.52
PR† (65:35)		  450
	 gen.		  Const.	 0.95	 0.95	 1.68	 2.10

	 2:campana		  Lineal	 0.96	 0.89	 1.42	 2.99
PR(80:20)		  450
	 gen.		  Const.	 0.95	 0.95	 1.73	 2.10
	
AS¶ (65:35)	 Radio:0.48	 450   ---		  0.95	 0.94	 1.63	 2.25
AS (80:20)	 Radio:0.53	 450   ---		  0.95	 0.95	 1.76	 1.96

†Partición de rejilla; ¶Agrupamiento sustractivo; § Función de membresía; ÞEntrenamiento;  ¤Prueba; ††Número de épocas v †Grid parti-
tioning; ¶Substractive clustering; §Membership function; ÞTraining; ¤Test; ††Number of times.

coefficient of determination (R2), the scatterplot between 
measurements and predictions, and the simple linear 
regression equation between measurements and model 
predictions.

Results and Discussion 

Structure of models 

In Figure 7 it is shown the structure of neuro-
fuzzy models generated using grid partitioning and 
trained with ANFIS for temperature and relative 
humidity. Its features include two membership 
functions in each input, 32 fuzzy rules, 92 nodes, 
32 linear parameters, 30 non-linear parameters and 
an output membership function, either constant or 
linear.

The structure of neuro-fuzzy models for 
temperature and relative humidity generated by 
subtractive clustering and trained with ANFIS is 
shown in Figures 8 and 9. The properties of the neuro-
fuzzy model obtained by subtractive clustering for 
temperature (Figure 8) are: six membership functions 
on each input, 80 nodes, 36 linear parameters, 60 
non-linear parameters and six fuzzy rules.

The properties of the structure shown in Figure 
9 are: six membership functions for each input, 56 
nodes, 24 linear parameters, 40 nonlinear parameters 
and four fuzzy rules. When comparing Figure 7 with 
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Evaluación de los modelos neuro-difusos 
para humedad relativa

Los resultados de los modelos neuro-difusos eva-
luados para el caso de la variable humedad relativa, 
para los dos conjuntos de datos se muestran en los 
Cuadros 3 y 4. En ambos casos se obtuvo un mejor 
desempeño de los modelos, en términos de R2 y de 
RMSE, para los datos de estimación y los de  valida-
ción cuando se usó el agrupamiento sustractivo.

Calidad de predicción de los modelos neuro-
difusos para temperatura

En la Figura 10 se muestra la comparación en-
tre las predicciones del modelo neuro-difuso para la 

Cuadro 3.	Valores estadísticos como medidas del desempeño de los modelos para la humedad relativa obtenidos con partición de 
rejilla y agrupamiento sustractivo, usados para entrenar el sistema ANFIS para el invernadero de Chapingo, México.

Table 3.	 Statistical values as measures of performance of the models for relative humidity obtained with grid partitioning and 
subtractive clustering, used to train the ANFIS system for the greenhouse of Chapingo, México.

	 R2	

Patición						      RMSE	 ANFIS
	 FM§ entrada	 NE††	 FM salida	 EÞ	 P	 E	 P

PR† (70:30)	 2:campana gen.	 450	 Const.	 0.95	 0.93	 5.04	 6.24
	 2:Gauss	 450	 Lineal	 0.97	 0.90	 3.65	 7.48
PR(75:25)	 2:campana gen.	 450	 Const.	 0.95	 0.92	 4.85	 6.84
	 2:Gauss	 450	 Lineal	 0.97	 0.90	 3.54	 7.95
PR(80:20)	 2:campana gen.	 450	 Lineal 	 0.97	 0.91	 3.56	 7.46
		  450	 Const.	 0.95	 0.93	 4.88	 6.99
AS¶ (70:30)	 Radio:0.68	 450	 --	 0.95	 0.94	 4.83	 5.41
AS(75:25)	 Radio:0.52	 450	 --	 0.95	 0.94	 4.65	 5.92
AS(80:20)	 Radio:0.73	 450	 --	 0.95	 0.95	 4.62	 5.80

†Partición de rejilla; ¶Agrupamiento sustractivo; §Función de membresía; ÞEntrenamiento; ¤Prueba; ††Número de épocas v †Grid 
partitioning; ¶Subtractive clustering; §Membership function; ÞTraining; ¤Test; ††Number of times.

Figures 8 and 9 it is clear that subtractive clustering 
was better since the models were less complex.  It is 
also notable that relative humidity can be apparently 
modeled with a neuro-fuzzy model less complex than 
in the case of temperature inside a greenhouse.

Evaluation of neuro-fuzzy models for 
temperature

In Table 1 it is shown the best RMSE and 
R2 values obtained using grid partitioning and 
subtractive clustering for training with ANFIS and 
the type of membership function that recorded the 
best performance. Only the best models are shown. 
The best partition was the one using 80 % of data 
to generate the model and 20 % for validation. Also 

Cuadro 2.	Valores estadísticos como medidas del desempeño de los modelos de temperatura obtenidos con partición de rejilla y 
agrupamiento sustractivo, utilizados para entrenar el sistema ANFIS para el invernadero de Querétaro, México.

Table 2.	Statistical values as measures of performance of the models of temperature obtained with grid partitioning and subtractive 
clustering, used to train the ANFIS system for the greenhouse of Querétaro, México.

	 R2	

Patición						      RMSE	 ANFIS
	 FM§ entrada	 NE††	 FM salida	 EÞ	 P	 E	 P

PR† (65:35)	 2:campana gen.	 450	 Const.	 0.96	 0.95	 1.35	 1.69
PR(80:20)	 2:campana gen.	 450	 Const.	 0.96	 0.96	 1.42	 1.44
AS¶ (65:35)	 Radio:0.5	 450	 ---	 0.96	 0.95	 1.29	 1.63
AS(80:20)	 Radio:0.53	 450	 ---	 0.96	 0.97	 1.39	 1.42

†Partición de rejilla; ¶Agrupamiento sustractivo; §Función de membresía; ÞEntrenamiento; ¤Prueba; ††Número de épocas v †Grid parti-
tioning; ¶Subtractive clustering; §Membership function: ÞTraining; ¤Test; ††Number of times.
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Cuadro 4.	Valores estadísticos como medidas del desempeño para los modelos de humedad relativa obtenidos con partición de 
rejilla y agrupamiento sustractivo, usados para entrenar el sistema ANFIS para el invernadero de Querétaro, México.

Table 4.	Statistical values as measures of performance of the models for relative humidity obtained with grid partitioning and 
subtractive clustering, used to train the ANFIS system for the greenhouse of Querétaro, México.

	 R2	

Patición						      RMSE	 ANFIS
	 FM§ entrada	 NE††	 FM salida	 EÞ	 P	 E	 P

PR† (65:35)	 2:campana gen.	 450	 Const.	 0.96	 0.95	 1.35	 1.69
PR(80:20)	 2:campana gen.	 450	 Const.	 0.96	 0.96	 1.42	 1.44
AS¶ (65:35)	 Radio:0.5	 450	 --	 0.96	 0.95	 1.29	 1.63
AS(80:20)	 Radio:0.53	 450	 --	 0.96	 0.97	 1.39	 1.42

†Partición de rejilla; ¶Agrupamiento sustractivo; §Función de membresía; ÞEntrenamiento; ¤Prueba; ††Número de épocas v †Grid 
partitioning; ¶Subtractive clustering; § Membership function; ÞTraining; ¤Test; ††Number of times.

Figura 10. Comparación de las predicciones de los modelos neuro-difusos, contra mediciones de la temperatura (Ti). A) Conjun-
to de entrenamiento. B) Conjunto de prueba.

Figure 10.	Comparison of the predictions of neuro-fuzzy models with measurements of temperature (Ti). A) Set of training. 
B) Test set.

temperatura usando agrupamiento sustractivo, 80 % 
de datos para generar el modelo y 20 % para valida-
ción, para los dos invernaderos estudiados. Las grá-
ficas muestran que las predicciones de los modelos 

a better performance was observed when subtractive 
clustering was used.

The results of the Querétaro greenhouse are 
shown in Table 2. Again, the differences in the 
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siguen la tendencia de las mediciones de la tempe-
ratura.

Las gráficas de dispersión y ecuaciones de regre-
sión correspondientes a las mediciones y predicciones 
de los modelos se muestran en la Figura 11. Tanto las 
gráficas 1:1 como los coeficientes de regresión confir-
man un alto ajuste de las predicciones de los modelos 
a las mediciones. Además estos resultados corroboran 
los reportados para la temperatura en invernaderos  
tipo Venlo con cubierta de vidrio y con un cultivo de 
jitomate de los Países Bajos durante el otoño (Tien, 
1997; Tien y Van Straten, 1998).

Pero a diferencia de modelo NUFZY donde se 
usaron menos de 1500 datos y no se incluyó como 
variable de entrada la velocidad del viento, en el pre-
sente estudio el modelo neuro-difuso para la tempe-
ratura de los invernaderos con ventilación natural 
presentó una mejor calidad de predicción porque se 
usó un mayor número de datos y se incluyeron más 
variables climáticas en el modelo. De hecho, la velo-
cidad y dirección del viento son variables de entrada 
fundamentales en invernaderos donde la ventilación 
natural es la más relevante para el manejo de las va-
riables climáticas dentro de ese ambiente.

Figura 11. Gráficas 1:1 y ecuaciones de regresión entre las mediciones y predicciones de los modelos neuro-difusos para la tem-
peratura (Ti). A) Conjunto de entrenamiento. B) Conjunto de prueba.

Figure 11.	Graphs 1:1 and regression equations among measurements and predictions of the neuro-fuzzy models for tempeFigure 
12. Comparison of neuro-fuzzy models predictions with measurements of relative humidity (HRi). A) Set of training. 
B) Test set. 

behavior of the models for the partitions of training 
and test data were small. Both statistics were better 
when  subtractive clustering was used.

Evaluation of neuro-fuzzy models 
for relative humidity

The results of neuro-fuzzy models evaluated for 
the relative humidity variable, in both sets of data 
are shown in Tables 3 and 4. In both cases a better 
performance of the models was obtained in relation to 
R2 and RMSE for both the estimation and validation 
data when subtractive clustering was used.

Prediction quality of neuro-fuzzy 
models for temperature

In Figure 10 it is shown the comparison between 
the predictions of neuro-fuzzy model for temperature 
using subtractive clustering, 80 % of data to generate 
the model and 20 % of data for validation, for the 
two greenhouses studied. The graphs show that the 
model predictions follow the trend of the temperature 
measurements.
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Calidad de predicción de los modelos neuro-
difusos para humedad relativa

En la Figura 12 se muestra la comparación  entre 
las predicciones del modelo neuro-difuso generado 
para la humedad relativa usando agrupamiento sus-
tractivo, 80 % de datos para generar el modelo y 
20 % para la validación en ambos invernaderos. Las 
simulaciones muestran que las predicciones siguen 
en forma precisa el comportamiento de las medicio-
nes de la humedad en ambos invernaderos.

Es notable que el desempeño de los modelos 
neuro-difusos para humedad fuera similar en ambos 
invernaderos a pesar de las diferencias de clima, tipo 
de invernadero y condiciones de cultivo. Esto signi-
fica que los  modelos neuro-difusos pueden modelar  
procesos no lineales (Tien y Van Straten, 1998) con 
precisión y, además, que son bastante robustos (Tien, 
1997).

Figura 12.	 Comparación de las predicciones de los modelos neuro-difusos, contra mediciones de la humedad relativa (HRi). A) 
Conjunto de entrenamiento. B) Conjunto de prueba.

Figure 12.	 Comparison of prediction from neuro-fuzzy models, against measurements of relative humidity (HRi), A) Set of tra-
ining. B) Test set.

The scatterplots and regression equations for the 
model measurements and predictions are shown in 
Figure 11. Both the graphs 1:1 and the regression 
coefficients confirm a high adjustment of the model 
predictions to measurements. Besides, these results 
corroborate those reported for temperature in the 
Venlo-type greenhouses, with a glass cover and the 
cultivation of tomatoes (Lycopersicum esculentum 
Mill) from the Netherlands during the autumn 
(Tien, 1997; Tien and Van Straten, 1998).

But unlike the NUFZY model in which less than 
1500 data were used and wind speed was not included 
as an input variable, in the present study the neuro-
fuzzy model for temperature of the greenhouses with 
natural ventilation had a higher quality prediction, 
since more data were used and more climate variables 
were included in the model. In fact, wind speed and 
direction are key input variables in a greenhouse 
where natural ventilation is the most important for 
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Las gráficas de dispersión y ecuaciones de regre-
sión correspondientes a las mediciones y prediccio-
nes de los modelos se muestra en la Figura 13. Tanto 
las gráficas 1:1, como los coeficientes de regresión 
reflejan un alto ajuste de los modelos neuro-difusos 
a las mediciones. Estos resultados son similares a los 
reportados por Gamboa et al. (2005) para la predic-
ción de la humedad relativa fuera del invernadero, en 
el estado de Jalisco, México.

Conclusiones

Los modelos neuro-difusos generados para la 
temperatura y humedad relativa de  dos invernaderos 
con ventilación natural, con y sin presencia de culti-
vo, presentaron un buen desempeño cuando se usó 
el método de partición de agrupamiento sustractivo 
de los datos, combinado con 80 % de los datos para 
generar el modelo y 20 % de la información para 
validación. Dado que se estudiaron dos invernaderos 
con ventilación natural en condiciones climáticas di-
ferentes y durante estaciones contrastantes (invierno 
y verano), aparentemente los modelos neuro-difusos 

the management of climatic variables within such 
environment.

Prediction quality of neuro-fuzzy 
models for relative humidity

In Figure 12 it is shown the comparison between 
the predictions of the neuro-fuzzy model developed 
for  relative humidity using subtractive clustering, 80 % 
of data to generate the model and 20 % of data for 
validation in both greenhouses. The simulations show 
that the predictions follow accurately the behavior of 
humidity measurements in both greenhouses.

It is remarkable that the performance of neuro-
fuzzy models for humidity was similar in both 
greenhouses despite differences in climate, type 
of greenhouse and cultivation conditions. This 
means that neuro-fuzzy models can model nonlinear 
processes (Van Tien and Straten, 1998) accurately 
and are in addition quite robust (Tien, 1997).

The scatterplots and regression equations for the 
model measurements and predictions are shown 
in Figure 13. Both graphs 1:1 and the regression 

Figura 13.	Gráficas 1:1 y ecuaciones de regresión entre las mediciones y predicciones de los modelos neuro-difusos para la hume-
dad relativa (HRi). A) Conjunto de entrenamiento. B) Conjunto de prueba.

Figure 13.	Plots 1:1 and regression equations among measurements and predictions of the neuro-fuzzy models for relative 
humidity (HRi). A) Training set. B) Test set.
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y=0.96 * HR+3.62
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son una opción para generar modelos para el clima 
del invernadero con propósitos de optimización y 
control.
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coefficients reflect a high adjustment of neuro-
fuzzy models to the measurements. These results are 
similar to those reported by Gamboa et al. (2005) 
for the prediction of  relative humidity outside the 
greenhouse, in the state of Jalisco, México.


Conclusions 

The neuro-fuzzy models generated for temperature 
and relative humidity of two greenhouses with 
natural ventilation, with and without the presence of 
crop, showed a good performance when the method 
of subtractive clustering partition of the data was 
used, combined with 80 % of data to build the model 
and 20 % of data for validation. After studying two 
naturally ventilated greenhouses under different 
climatic conditions and during contrasting seasons 
(winter and summer), the neuro-fuzzy models seem 
to be an option to generate models for greenhouse 
climate for control and optimization purposes. 

—End of the English version—
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