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Resumen

La modelación de la relación precipitación-escurrimiento directo 

es un requerimiento básico en la gestión de cuencas hidrográ-

ficas, particularmente bajo condiciones de información escasa. 

Un modelo simple de esta relación es muy atractivo para las 

aplicaciones hidrológicas. En este trabajo se analizan las hipó-

tesis intrínsecas en el método simple del número de curva (NC) 

del Soil Conservation Service / Natural Resources Conservation 

Service del USDA. La formulación básica entre la precipitación 

y el escurrimiento directo del método del NC es revisada en 

cuanto a sus implicaciones, concluyéndose que no tiene bases 

hidrológicas.

Palabras clave: Hipótesis intrínsecas, método del número de curva, 

relación precipitación-escurrimiento

Introducción

La búsqueda de una relación simple entre la pre-
cipitación (P) y el escurrimiento (Q) directo ha 
sido una de las tareas básicas de los modelado-

res de los procesos hidrológicos en cuencas o en par-
celas experimentales. Este trabajo es particularmente 
crítico cuando la información de precipitación dispo-
nible en la mayoría de las cuencas hidrográficas sólo 
existe a nivel diario. Así, el SCS (Soil Conservation 
Service del U. S. Department of Agriculture; actual-
mente llamado NRCS o Natural Resources Conser-
vation Service) planteó en la década de los cuarenta 
(Mockus, 1949) una aproximación práctica a la rela-
ción entre la precipitación y el escurrimiento directo. 
De estos desarrollos emergió el denominado método 
del número de curva (NC) del SCS (1972), que actual-
mente es usado por el NRCS (2004) y muchas otras 
instituciones nacionales e internacionales. Las bases 
históricas del método del NC se pueden revisar en la 
página del NRCS (2007)[1].

1 http://www.wsi.nrcs.usda.gov/products/W2Q/H&H/tech_refs/CNarchive.html, consultada el 8 de diciembre de 2007.

Abstract

The modeling of the rainfall-direct runoff relationship is a basic 

requirement in the dynamics of watersheds, especially when 

information is scarce. A simple model of this relationship is very 

attractive in hydrological applications. In this paper an analysis 

is made of the hypotheses intrinsic to the simple method of the 

curve number (NC) of the USDA Soil Conservation Service / 

Natural Resources Conservation Service. The basic formulation 

of the rainfall-direct runoff relationship of the NC method is 

revised with a focus on its implications, coming to the conclusion 

that it has no hydrological support.

Key words: Intrinsic hypotheses, curve number method, rainfall-

runoff relationship.

Introduction

The search of a simple relationship between rainfall 
(P) and direct runoff (Q) has been one of the basic 
tasks of those modeling hydrological processes 

in watersheds or experimental plots. This approach 
is particularly critical when precipitation information 
available in most watersheds is only on a daily basis. 
Thus, the  SCS (Soil Conservation Service of the U. S. 
Department of Agriculture; currently called NRCS or 
Natural Resources Conservation Service) put forward 
in the 40s (Mockus, 1949) a practical approximation 
to the relationship between rainfall and direct runoff. 
From these developments the curve number method 
(NC) of SCS (1972) emerged, that is currently used by 
NRCS (2004) and many other national and international 
institutions. The historical foundations of the NC method 
are described on the NRCS (2007)[1].
	 The NC model establishes an empirical relationship 
between direct runoff Q (mm) and rainfall P (mm), at 
a daily scale, like:
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	 El modelo del NC establece una relación empírica 
entre el escurrimiento directo Q (mm) y la precipita-
ción P (mm), a escala diaria, como:
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 de otra forma  	 (1)

donde, Ia (mm) es la abstracción inicial antes del es-
currimiento (almacenamientos superficiales, intercep-
ción por la vegetación, evapotranspiración, infiltra-
ción antes de la saturación del suelo y otros factores) 
y S (mm) es un parámetro de retención, el cual varía 
espacialmente por cambios en el tipo y uso del suelo, 
manejo y pendiente; así como por cambios temporales 
en la humedad del suelo.

	 El parámetro Ia generalmente se expresa en fun-
ción de S:

	 Ia  kS	 (2)

donde, el valor de k es puesto generalmente como 0.2 
(SCS, 1972; NRCS, 2004) y S es estimado como:
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donde, NC (0 a 100), adimensional, es función de 
la humedad antecedente del suelo, la pendiente del 
terreno, el uso del suelo y sus prácticas de manejo, 
principalmente.

	 La Ecuación 1 permite establecer una relación fun-
cional entre P y Q que se utilizan en forma práctica, ya 
que depende sólo de NC que se puede estimar a partir 
de información disponible (mapas temáticos del Insti-
tuto Nacional de Estadística, Geografía e Informática, 
por ejemplo), aunque no actualizada, en las cuencas 
hidrográficas; con excepción del uso de la tecnología 
de los sensores remotos. Esta ecuación da una falsa 
apariencia de funcionalidad, particularmente cuando 
se tiene el soporte institucional del SCS/NRCS. En el 
apartado siguiente se revisan sus hipótesis intrínsecas, 
esto bajo una argumentación estrictamente matemática, 
para evitar caer en discusiones estériles relacionadas 
con los ajustes de datos experimentales a una ecuación 
matemática. La línea de discusión es muy simple y 
pragmática, si la ecuación usada para realizar ajustes 
experimentales no tiene sustento hidrológico, entonces 
no tiene sentido seguir usándola y hay que buscar otra 
ecuación que sí lo tenga.

where, Ia (mm) is the initial abstraction before 
runoff (surface storages, interception by vegetation, 
evapotranspiration, infiltration before soil saturation 
and other factors) and S (mm) is a retention parameter 
which varies spatially due to changes in the type of soil 
and soil use, management and slope; and to seasonal 
changes in soil moisture. 

	 The Ia parameter is generally expressed according 
to S:

	 Ia  kS	 (2)

where, the value of k is generally set at 0.2 (SCS, 
1972; NRCS, 2004) and S is estimated as:
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where, NC (0 to 100) is dimensionless, depends mostly 
on the soil previous moisture, the land slope, soil use 
and management practices.

	 Equation 1 allows to establish a functional 
relationship between P and Q which is used in practice 
as it depends only on NC that can be estimated upon 
the basis of available information (thematic maps of 
the National Statistics, Geography and Informatics 
Institute, INEGI, for example), though not updated 
in the watersheds, with the exception of the use of 
the remote sensing technology. This equation gives 
a false appearance of being functional, especially 
when having the institutional support of SCS/NRCS. 
In the following section its intrinsic hypotheses are 
examined under a strict mathematical argumentation 
to prevent futile discussion related to the adjustments 
of experimental data to a mathematical equation. 
The line of discussion is very simple and pragmatic. 
If the equation used to carry out the experimental 
adjustments has no hydrological support it is pointless 
to continue using it, so it is necessary to find another 
one having it.

Intrinsic hypotheses 
of the curve number method

	 To clarify the implications of Equation 1, Figure 1 
presents two scenarios for the P-Q relationship.
	 The basic hypothesis put forward in the NC 
method is that insofar as the amount of rainfall 
increases, the soil will rapidly get saturated and will 
then run off (Q = P); this is represented by the dotted 
line that goes through the origin in Figure 1. In this 
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Figura 1.	 Esquematización de las relaciones entre P y Q, caso 
de Ia  0.

Figure 1. 	Schematization of the P and Q relationships, the case 
of Ia = 0.

Hipótesis intrínsecas del método 
del número de curva

     Para aclarar las implicaciones de la Ecuación 1, en 
la Figura 1 se presentan dos escenarios de la relación 
P-Q.
	 La hipótesis básica planteada en el método del NC 
es que a medida que la intensidad de la precipitación 
es mayor, entonces el suelo se saturará rápidamente y 
todo lo que se precipita escurrirá (Q  P), representa-
do por la línea punteada que pasa por el origen en la 
Figura 1. En la misma figura se presenta una curva, 
con línea sólida, que tiene una fase no lineal y después 
una lineal que intersecta el eje P en S y es paralela a la 
línea Q  P (pendiente unitaria). Así, sin pérdida de 
generalidad, se puede suponer que la relación P-Q está 
compuesta de dos fases: una no-lineal inicial y después 
una lineal, cuya transición está dada por el punto (PT, 
QT). La fase lineal se presenta en forma completa, 
más allá de la transición suavizada, a partir del punto 
(PL, QL). De la Figura 1, resulta aparentemente claro 
que el método del NC aproxima el patrón mostrado de 
alguna forma la relación no lineal (en sus dos fases). 
	 En esencia, el método del NC parte de la idea de 
que la relación no-lineal deberá tender a una línea 
que cumpla la condición Q  P cuando P sea grande 
(saturación del suelo). Esto puede formularse arbitra-
riamente como:
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donde, la segunda relación se obtuvo de la ecuación 
de la línea recta (fase lineal) mostrada en la Figura 1. 
El planteamiento de las relaciones (4) se puede gene-
ralizar para cualquier pendiente , donde   1 es un 
caso cualquiera. La argumentación siguiente es válida 
para cualquier valor de , usando P  P.

	 La obtención de la Ecuación 1, caso de Ia  0, es 
simplemente producto de igualar las dos relaciones en 
(4):
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	 El caso general dado por Ia > 0, implica sólo un 
desplazamiento sobre el eje P del origen de la Figura 
1 al nuevo definido por (Ia, 0). En este caso, la preci-
pitación se interpreta como una precipitación efectiva 
Pe  PIa. La relación (1) se obtiene del cambio de 
P por Pe en la relación (5).

same figure a curve drawn with a continuous line is 
presented, which has a non linear phase and then one 
linear that intersects axis P in S and is parallel to line 
Q = P (unitary slope). Therefore it is possible to 
assume that the P-Q relationship is made up of two 
phases: an initial non linear one and then one linear 
whose transition is given by the point (PT, QT). The 
linear phase is presented in full, beyond the gradual 
transition, as of the point (PL, QL). Figure 1 shows 
that the NC method approximates to a certain extent 
the exhibited pattern to the non linear relationship (in 
its two phases).
	 In essence, the NC methods starts from the notion 
that the non linear relationship should tend to a line 
fulfilling the condition Q = P when P gets large 
(soil saturation). This can be arbitrarily expressed as 
follows: 
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where, the second relationship was obtained from 
the straight line equation (linear phase) shown in 
Figure 1. The enouncement about relations (4) can be 
generalized and applied to any slope , where  = 1 
is just any case. The following argumentation is valid 
for any value of , using P = P.

	 Obtaining Equation 1, the case of Ia = 0, is simply 
the result of balancing the two relationships in (4):
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2 http://www.wsi.nrcs.usda.gov/products/W2Q/H&G/tech_info/mockus.html. Consultada en Octubre 13 del 2007.

	 En el aspecto de las aplicaciones empíricas del mé-
todo del NC, es interesante señalar que su autor prin-
cipal Mockus, en una entrevista con Victor Ponce[2] 
señalo que la relación implicada en el método del NC, 
(PQ)/S  Q/P, fue utilizada después de probar mu-
chas relaciones empíricas y los resultados obtenidos 
en el ajuste a los datos experimentales fueron satisfac-
torios. Este argumento puramente empírico es circu-
lar, ya que la relación utilizada tiene ambas variables 
de los dos lados de la ecuación, por lo que se obtienen 
resultados estadísticos mejores en forma artificial que 
las relaciones en formato normal.

Implicaciones del método del número de curva

	 El desarrollo mostrado anteriormente para obtener 
el método del NC implica:

a)	 La relación (1) no busca aproximar el comporta-
miento no-lineal de P-Q y sólo es consecuencia 
de la hipótesis de suponer una pendiente unitaria 
cuando P es grande. De hecho, el método del NC 
no supone nada sobre la fase no lineal de la rela-
ción entre P y Q, Figura 1.

b)	 La hipótesis definida por la relación (5) sólo se sa-
tisface cuando P tiende a infinito (es decir, nunca, 
ya que ésta es indeterminada y el límite supuesto 
sólo es un artefacto matemático) y aproxima algo 
la relación entre P y Q cuando P es muy grande 
(Mishra et al., 2005). La forma simple de decir lo 
mismo es que S y Ia tienden a cero en la Ecuación 
1.

c)	 El método del NC no permite obtener PT o PL, ya 
que estos puntos no están definidos (PT y PL tien-
den a infinito).

Hacia una mejor 
aproximación matemática

	 El uso de funciones matemáticas para relacionar 
P con Q es sin duda un problema abierto cuando no 
se utiliza conocimiento hidrológico. Como primera 
aproximación, en lo siguiente se presenta un esque-
ma de modelación que puede justificarse en términos 
teóricos, además de que se obtienen excelentes ajustes 
empíricos a los datos experimentales (no mostrados).
	 Tal como se muestra en forma esquemática en 
la línea continua de la Figura 1, el patrón entre la 
precipitación y el escurrimiento puede aproximarse 
como compuesta de dos fases: una exponencial y una 
lineal.
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	 The general case given by Ia > 0 implies only a 
displacement on the axis P from the origin of Figure 1 
to the new one defined by (Ia, 0). In this case, rainfall 
is interpreted as an effective rainfall Pe  PIa. The 
relationship (1) is obtained from the change of P for 
Pe in the relationship (5).
	 In the empirical applications of the NC method it 
is worth pointing out that its main author Mockus, 
in an interview with Victor Ponce[2], said that the 
relationship implied in the NC method, (PQ)/S 
= Q/P, was utilized after testing many empirical 
relationships and the results obtained from the 
adjustment to experimental data were satisfactory. 
This purely empirical argument is circular since the 
relationship used has both variables from the two sides 
of the equation; hence the statistical results obtained 
in this artificial way are better than the relationships 
under a normal format.

Implications of the curve number method

	 The development shown above to obtain the NC 
method entails that:

a) 	The relationship (1) does not seek to approximate 
the non linear behavior of  P-Q and is only a 
consequence of the hypothesis of assuming a unitary 
slope when P is large. In fact, the NC method does 
not assume anything about the non linear phase of 
the relationship between P and Q, Figure 1.

b) 	The hypothesis defined by the relationship (5) is 
met only when P tends to infinity (that is, never, 
as it is undetermined and the assumed limit is only 
a mathematical artifact) and approximates to some 
extent the relationship between P and Q when P 
is very large (Mishra et al., 2005). A simple form 
of saying the same is that S and Ia tend to zero in 
Equation 1.

c) 	The NC method does not allow to obtain PT or PL, 
since these points are not defined (PT and PL tend 
to infinity).

Towards a better 
mathematical approximation

	 The use of mathematical functions to relate P to Q 
is undoubtedly an unresolved issue when hydrological 
knowledge is not used. As a first approximation, a 
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Figura 2. Tasas de cambio del modelo expo-lineal.
Figure 2. Rates of change of the expo-linear model.

• Crecimiento exponencial:
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• Crecimiento lineal:
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donde, r es una tasa relativa de cambio, C es la tasa 
máxima de cambio y Pb ( S en la Figura 1) es el 
tiempo cuando P  0 (proyectado) en la fase lineal de 
la relación P-Q.

	 La relación (6) muestra que los cambios instantá-
neos de escurrimiento por cambios instantáneos en la 
precipitación son función del escurrimiento previo.
	 La relación (7) muestra una fase posterior a la 
exponencial de tipo lineal y representa la situación 
donde se ha alcanzado la tasa de cambio máxima 
y la relación P-Q mantiene una pendiente constante 
(que puede ser menor a 1.0). El modelo expo-lineal 
propuesto tiene como solución el patrón exponencial 
y el lineal como únicos, por lo que puede reproducir 
comportamientos exponenciales, lineales y expo-li-
neales. Eso le da una gran versatilidad en los ajustes 
a datos experimentales.
	 Las dos fases planteadas pueden ser analizadas en 
forma independiente haciéndolas compatibles en los 
puntos de transición (Figura 2) o se puede generar un 
modelo con una transición gradual entre ambos tipos 
de patrones. En el último caso, en el momento de la 

modeling scheme is presented below, which can be 
justified in theoretical terms, in addition to obtaining 
excellent empirical adjustments of experimental data 
(not shown).
	 As shown graphically in the continuous line of 
Figure 1, the pattern between rainfall and runoff 
can be approximated as made up of two phases: one 
exponential and one linear.

• Exponential growth:

	

dQ
dP

rQ

Q t Q rP



( ) ( ) exp( )0  	 (6)

• Linear growth:

	

dQ
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C
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where, r is a relative rate of change,  C is the maximum 
rate of change and Pb (= S in Figure 1) is the time 
when P = 0 (projected) in the linear phase of the P-Q 
relationship.

	 Relationship (6) shows that the instantaneous 
changes of runoff due to instant changes in precipitation 
depend on a previous runoff. 
	 Relationship (7) shows a phase subsequent to the 
exponential one of linear type and it is here when the 
maximum rate of change has been reached, and the 
P-Q relationship keeps a constant slope (that can be 
less than 1.0). The expo-linear model proposed has 
the exponential and linear patterns as its sole solution; 
hence it can reproduce exponential, linear and expo-
linear behaviors. This makes it versatile to adjustments 
to experimental data. 
	 The two phases presented here can be analyzed 
independently making them compatible at the transition 
points (Figure 2) or a model can be developed with 
a gradual transition between both types of patterns. 
In the last case, at the moment of transition from 
the exponential pattern to the linear one, the rates of 
change must be the same:

	 rQ C  	 (8)

	 The expo-linear model is simply the solution of 
the two types of patterns represented by the former 
differential equations subject to the condition given by 
the relationship of equality of rates of change (adapted 
from Goudriaan and van Lar, 1994):
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 	 (9)

With the following characteristics:
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where, PT  is rainfall where condition (8) is fulfilled. 
The Q  (dQ/dP) relationship is a symmetric sigmoid 
for the expo-linear model:
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	 A simple justification of the expo-linear model 
proposed can be made considering the use of fractional 
hydrological responses in a watershed in relation to 
the maximum response (Q = P). Steenhuis et al. 
(1995) proposed that the hypothesis of variable area 
hydrology where the precipitation falling on a non 
saturated soil infiltrates increasing the soil moisture 
until the soil profile saturates and the additional 
rainfall turns into runoff (Hewlett and Hibbert, 1967; 
Dunne and Black, 1970; Boughton, 1987), can be put 
forward as:

	

dQ
dP

Af
 	 (12)

where, Af (C in equation 7) is the area fraction of 
the watershed or experimental plot that contributes to 
runoff (soil saturated area fraction of the total area). 
This fraction has a temporary gradual behavior of 
saturation until reaching its maximum level for a given 
precipitation event, and entails a non linear and linear 
relationship (compound) like the one displayed with a 
continuous line on Figure 1. 

Conclusions

	 From the previous discussion it is possible to 
conclude that the NC method, relationship (1), is a 
consequence of the absurd hypothesis of equaling two 
straight lines (Q = P and Q = P  S, Figure 1; 
where P can be the effective precipitation), that by 
definition do no converge. This hypothesis is valid 
only when S tends to zero and P tends to infinity 
(reductio ad absurdum). This is a mathematical limit 

transición del patrón exponencial al lineal las tasas de 
cambio deben ser iguales:

	 rQ C  	 (8)

	 El modelo expo-lineal es simplemente la solución 
de los dos tipos de patrones representados por las 
ecuaciones diferenciales anteriores sujeta a la condi-
ción dada por la relación de igualdad de las tasas de 
cambio (adaptado de Goudriaan y van Lar, 1994):
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 	 (9)

Con las siguientes características:
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donde, PT es la precipitación donde la condición (8) 
se cumple. La relación Q  (dQ/dP) es un sigmoideo 
simétrico para el modelo expo-lineal:
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	 Una justificación simple del modelo expo-lineal 
propuesto puede realizarse usando consideración de 
respuestas hidrológicas fraccionales en una cuenca, en 
relación a la respuesta máxima (Q  P). Steenhuis 
et al. (1995) plantearon que la hipótesis de la hidro-
logía de área variable, donde la precipitación que cae 
sobre un suelo no saturado se infiltra incrementando 
el contenido de humedad del suelo hasta que el per-
fil del suelo se satura y la precipitación adicional se 
convierte en escurrimiento (Hewlett y Hibbert, 1967; 
Dunne y Black, 1970; Boughton, 1987), puede plan-
tearse como: 

	

dQ
dP

Af
 	 (12)

donde, Af (C en la ecuación 7) es la fracción de área 
de la cuenca o parcela experimental que contribuye 
al escurrimiento (fracción de área saturada de suelo 
del área total). Esta fracción tiene un comportamien-
to temporal gradual de saturación, hasta alcanzar 
su máximo para un evento de precipitación dado e 
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implica una relación no-lineal y lineal (compuesta) 
como la mostrada con línea continua en la Figura 1.

Conclusiones

	 De la discusión anterior se puede concluir con toda 
certeza que el método del NC, relación (1), es conse-
cuencia de la hipótesis absurda de igualar dos líneas 
rectas (Q  P y Q  P  S, Figura 1; donde P puede 
ser la precipitación efectiva), que por definición no 
convergen entre sí. Esta hipótesis sólo es válida cuan-
do S tiende a cero y P tiende a infinito (reductio ad 
absurdum); esto es un límite matemático que puede 
interpretarse como que dos líneas rectas nunca serán 
iguales, a menos que tengan un origen común. Más 
allá de este intento sin sustento hidrológico, el método 
del NC no tiene ninguna base teórica o de otro tipo, 
más allá de su facilidad de aplicación y el argumento 
de hacerlo operacional a través del uso de la relación 
entre S y el NC.
	 La argumentación del uso del método del NC para 
valores intermedios de P está sesgada por las hipótesis 
usadas. El caso extremo, base del método, de que Q 
 P nunca se cumple por la sencilla razón de que dos 
líneas rectas paralelas con orígenes distintos jamás se 
juntan. Los otros casos no extremos están definidos en 
forma arbitraria y pueden o no pueden generar buenos 
ajustes experimentales.
	 Después de 35 años de uso del método del NC 
de forma indiscriminada (validada muy pocas veces; 
y, cuando esto es así, sólo se comporta bien cuando 
P es muy grande), es imperativa una formulación 
hidrológicamente sólida entre P y Q, en un esquema 
simple similar al formato del NC. El seguir buscando 
darle solidez al método a través de relaciones empí-
ricas o adecuaciones ad hoc (Mishra et al., 2005), 
parte de hacer viable un absurdo sin bases teóricas.
	 En el sentido propositivo de esta contribución, se 
ha planteado un modelo alterno al método del núme-
ro de curva que tiene un sustento hidrológico sólido, 
dentro del contexto de modelos simples y operacio-
nales. El modelo expo-lineal propuesto requiere tres 
parámetros para su caracterización. En trabajos pos-
teriores, usando un esquema de simplificación simi-
lar al desarrollado para el número de curva (tipo de 
suelo y condición de la cobertura de vegetación), se 
plantea la reducción de los parámetros del modelo 
expo-lineal a solo uno, volviéndose atractivo como 
un sustituto operacional del método del NC.
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establishing that two straight lines will never be equal, 
unless they have a common origin. In addition to this 
attempt with no hydrological support, the NC method 
has no theoretical foundation or of any other kind; 
only that it is easy to apply and can be operational 
when using the relationship between S and NC.
	 The argument in favor of using the NC method for 
P intermediate values is biased by the hypotheses used. 
The extreme case —the core of the method— that Q  
P , is not fulfilled for the simple reason that two parallel 
straight lines of different origin never converge. Other 
non extreme cases are arbitrarily defined and may or 
may not generate good experimental results. 
	 After 35 years of indiscriminate use of the NC 
method (rarely validated; and it has worked only when 
P is very large), it is imperative to develop a solid 
formulation in hydrological terms between P and Q, 
following a simple scheme, similar to the NC format. 
Trying to demonstrate the soundness of this method 
through empirical relationships or ad hoc adjustments 
(Mishra et al., 2005) has proven fruitless and lacking 
in theoretical foundations.
	 An alternative model to the curve number method 
with a solid hydrological support has been put forward, 
in the framework of simple and operational models. The 
expo-linear model proposed requires three parameters 
for its characterization. In subsequent papers, using a 
simplification scheme similar to that used for the curve 
number (type of soil and condition of the vegetation 
cover), the proposal made is to reduce the parameters 
of the expo-linear model to only one, which makes 
it attractive as an operational replacement of the NC 
method.

—End of the English version—
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