
57

Recibido: Mayo, 2005. Aprobado: Noviembre, 2006.
Publicado como ENSAYO en Agrociencia 41: 57-73. 2007.

RESUMEN

Los procedimientos estándar para construir mapas de loci de

caracteres cuantitativos (QTL o QuantitativeTrait Loci, por sus

siglas en inglés) se basan en la estimación por máxima verosimi-

litud o mínimos cuadrados de los parámetros biométricos del

QTL y generalmente requieren métodos numéricos y software

especial, ya que no producen estimadores explícitos. El objetivo

del presente trabajo fue derivar estimadores explícitos de los

parámetros biométricos de un QTL en una población F2. La

derivación se basó en tres combinaciones lineales de variables

aleatorias con distribución normal mezclada y un marcador

molecular. Para cada combinación lineal se determinaron su media

y varianza y, con éstas, se derivaron estimadores del efecto adi-

tivo y del efecto de dominancia del QTL, además de la frecuen-

cia de recombinación entre éste y el marcador. Los estimadores

explícitos aquí obtenidos fueron asintóticamente consistentes e

insesgados y no requieren software especial para su evaluación.

Palabras clave: Caracteres cuantitativos, distribuciones mezcladas,

frecuencia de recombinación, marcadores moleculares, perfil de

verosimilitud.

INTRODUCCIÓN

Un método para identificar loci de caracteres
cuantitativos (QTL, por sus siglas en inglés)
es el método Marcador-QTL-Marcador

(MQM) o mapeo por intervalos simples propuesto por
Lander y Botstein (1989) y más tarde generalizado por
Jasen (1993, 1996, 2003) y Zeng (1994) como “mapeo
por intervalos compuestos (composite interval mapping
o CIM, por sus siglas en inglés)”. MQM considera
dos marcadores moleculares (MM) adyacentes al QTL
y recurre al método de máxima verosimilitud. Desde
entonces se han publicado varios artículos (Wright y
Mowers, 1994; Whittaker et al., 1996; Xu, 1998; Xu
y Volg, 2000) que describen metodologías que preten-
den facilitar la estimación de los parámetros biométricos:
medias y varianzas del carácter cuantitativo (QT, por
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ABSTRACT

The standard procedures for constructing maps of Quantitative

Trait Loci (QTL) are based on the estimation by maximum

likelihood or minimum squares of the QTL biometrics parameters

and generally require numerical methods and special software,

given that they do not produce explicit estimators. The objective

of the present study was to derive explicit estimators of the

biometrics parameters of a QTL in an F2 population. The

derivation was based on three linear combinations of random

variables with mixed normal distribution and a molecular marker.

For each linear combination, its mean and variance were

determined, with which estimators were derived of the additive

effect and dominance effect of the QTL, as well as the frequency

of recombination between the QTL and the marker. The explicit

estimators obtained here were asyntotically consistent and

unbiased, and do not require special software for their evaluation.

Key words: Quantitative traits, mixed distributions, recombination

frequency, molecular markers, likelihood profile.

INTRODUCTION

One method of identifying quantitative trait loci
(QTL) is the Marker-QTL-Marker (MQM)
method or simple intervals mapping proposed

by Lander and Botstein (1989), later generalized by
Jasen (1993, 1996, 2003) and Zeng (1994) as composite
interval mapping or CIM. MQM considers two
molecular markers (MM) adjacent to the QTL and
recurs to the maximum likelihood method. Since then,
various articles have been published (Wright and
Mowers, 1994; Whittaker et al., 1996; Xu, 1998; Xu
and Volg, 2000) that describe methodologies which
intend to facilitate the estimation of the biometric
parameters: means and variances of the quantitative
traits (QT), the additive effect and the dominance effect
of the QTL, the frequencies of recombination between
the QTL and the pair of MMs adjacent to it, along
with the evaluation of the test statistic to identify linkage.
MQM require numerical methods for the evaluation of
the test statistic and do not provide explicit estimators
of the biometrics parameters of the QTL.
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sus siglas en inglés), el efecto aditivo y de dominancia
del QTL, las frecuencias de recombinación entre éste
y el par de MM’s adyacentes a él, así como la evalua-
ción del estadístico de prueba para identificar ligamiento.
MQM requiere métodos numéricos para la evaluación
del estadístico de prueba y no proporciona estimadores
explícitos de los parámetros biométricos del QTL.

Haley y Knott (1992) y Martínez y Curnow (1992)
propusieron utilizar la regresión lineal para identificar
el ligamiento entre el QTL y los MM’s, y el método de
mínimos cuadrados para estimar los parámetros
biométricos y la frecuencia de recombinación. Sin
embargo, aunque es posible implementar el procedi-
miento en una computadora personal los residuos no
tienen distribución normal, y, consecuentemente, se
disminuye la potencia de la prueba (Xu, 1998). Kearsey
y Hyne (1994) y Hyne y Kearsey (1995) desarrollaron
un método ligeramente diferente al de Haley y Knott
(1992) y Martínez y Curnow (1992): en vez de consi-
derar las observaciones de los caracteres cuantitativos
de manera individual, utilizaron las diferencias de las
medias de las poblaciones definidas por los genotipos
de los MM’s para identificar y localizar el QTL. El
procedimiento puede implementarse en una computa-
dora personal sin dificultad alguna y es uno de los más
potentes para la identificación de QTL. Desafor-
tunadamente, no proporciona estimadores explícitos de
los parámetros biométricos del QTL y de la frecuencia
de recombinación entre éste y los MM’s.

El método de regresión está disponible en el paque-
te SAS pero es inadecuado en el contexto del análisis
de QTL ya que en él se confunde el efecto del QTL
con la frecuencia de recombinación. Por ello Lander et
al. (1987) desarrollaron MAPMAKER y Knapp et al.
(1990) GENEMAP, aunque Darvasi et al. (1993) han
utilizado el algoritmo Newton-Raphson, el cual está
implementado en SAS, para estimar las frecuencias de
recombinación y los parámetros biométricos del QTL.
Varios investigadores han desarrollado software esta-
dístico adicional para la identificación de QTL (ver
Cuadro A.1 del Apéndice A).

Los procedimientos de análisis referidos están dise-
ñados para poblaciones endogámicas. La ventaja de
tales poblaciones radica en la posibilidad de conocer
con certeza los genotipos parentales y la fase de
ligamiento. Además, los datos de estas poblaciones
pueden considerarse provenientes de una sola familia,
ya que toda la progenie comparte los mismos genotipos
parentales (Xu y Atchley, 1995). Sin embargo, las
metodologías de análisis señaladas no permiten anali-
zar los datos de poblaciones no endogámicas ya que en
éstas los genotipos parentales generalmente son desco-
nocidos y provienen de familias diferentes, lo que sig-
nifica que las probabilidades para la identificación de

Haley and Knott (1992) and Martínez and Curnow
(1992) proposed the utilization of linear regression to
identify the linkage between the QTL and the MMs,
and the minimum squares method to estimate the
biometrics parameters and recombination frequency.
However, although it is possible to implement the
procedure in a personal computer, the residues do
not have normal distribution, and consequently, the
power of the test is reduced (Xu, 1998). Kearsey and
Hyne (1994) and Hyne and Kearsey (1995) developed
a method that was slightly different from that of Haley
and Knott (1992) and Martínez and Curnow (1992):
instead of considering the observations of the
quantitative traits individually, they utilized the
differences of the means of the populations defined
by the genotypes of the MMs to identify and locate
the QTL. The procedure can be implemented without
difficulty in a personal computer and is one of the
most powerful for the identification of the QTL.
Unfortunately, it does not provide explicit estimators
of the biometrics parameters of the QTL and of the
frequency of recombination between it and the MMs.

The regression method is available in the SAS
package, but it is inadequate in the context of the QTL
analysis, because the effect of the QTL is confused
with the recombination frequency. For this reason
Lander et al. (1987) developed MAPMAKER and
Knapp et al. (1990) GENEMAP, although Darvasi et
al. (1993) have used the Newton-Raphson algorithm,
which is implemented in SAS, to estimate the
recombination frequencies and the QTL biometrics
parameters. Various investigators have developed
additional statistical software for the identification of
the QTL (see Table A.1 of Appendix A).

The analysis procedures referred to are designed
for endogamic populations. The advantage of such
populations lies in the possibility of knowing with
certainty the parental genotypes and the linkage phase.
Furthermore, the data of these populations can be
considered to come from a single family, given that all
of the progeny share the same parental genotypes (Xu
and Atchley, 1995). However, the above mentioned
analysis methodologies do not permit the analysis of
data of non-endogamic populations, because the parental
genotypes in these populations are generally unknown
and proceed from different families, which means that
the probabilities for QTL identification, given the
information of the markers, varies from one family to
another. In addition, the linkage phase of the parents is
difficult to know and the number of individuals which
comprise a family is generally small, which hinders
the estimation of the parameters of interest. For this
reason, various investigators recur to the variance
components model for the analysis of this type of data
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QTL, dada la información de los marcadores, es dife-
rente de familia en familia. Además, la fase de
ligamiento de los progenitores es difícil de conocer y
el número de individuos que conforman una familia es
generalmente pequeño, lo que dificulta la estimación
de los parámetros de interés. Por esto, varios investi-
gadores recurren al modelo de componentes de varianza
para el análisis de este tipo de datos (Xu y Atchley,
1995; Williams, 1998; Blangero et al., 2001; Elston y
Cordell, 2001). Adicionalmente, se ha aplicado la es-
tadística bayesiana en la identificación de QTL en po-
blaciones endogámicas y no endogámicas (Hoeschele
y van-Raden, 1993a, 1993b; George et al., 1995;
Sillanpää y Arjas, 1998, 1999; Hoeschele, 2003). Sin
embargo, como sucede en el caso MQM, tanto la esta-
dística bayesiana como las metodologías utilizadas en
poblaciones no endogámicas requieren métodos numé-
ricos y no proporcionan estimadores explícitos de los
parámetros biométricos del QTL.

El objetivo del presente trabajo fue derivar un mé-
todo para construir estimadores explícitos de los
parámetros biométricos: medias del QT; del efecto
aditivo y de dominancia de un QTL, y de la frecuencia
de recombinación entre éste y un MM.

MÉTODOS Y MARCO TEÓRICO

En la derivación de los estimadores explícitos se hicieron los

siguientes supuestos: 1) el QTL y los MM’s son dialélicos; 2) los

alelos de los MM’s son codominantes, sus genotipos observables y

no afectan el fenotipo del QT; 3) las poblaciones definidas a partir

de los genotipos de los MM’s son una mezcla de distribuciones

normales de los fenotipos asociados a varios QTL (Weller, 1992;

Zeng, 1994).

Para la población F1 de la cruza de dos progenitores homocigotos

P1 y P2 cuyos genotipos respectivos son Ai1Ai1Q1Q1 y Ai2Ai2Q2Q2,

considérese un par de cromosomas homólogos con k MM’s

heterocigotos (Ai1Ai2, i=1, 2,.., k) genotípicamente distinguibles y

supóngase que la frecuencia de recombinación entre un QTL y el

MM i-ésimo (Mi) es r. En la población F2 los genotipos de Mi:

Ai1Ai1, Ai1Ai2 y Ai2Ai2 serán distinguibles y observables; sin embar-

go, los genotipos correspondientes al QTL no se observarán y sólo

será posible clasificar las observaciones fenotípicas del QT de acuer-

do con el genotipo marcador al que están asociadas. Esto genera,

para cada genotipo marcador, una mezcla de tres distribuciones

fenotípicas normales, correspondientes a los tres genotipos del QTL

(Cuadro 1).

Variables aleatorias y distribuciones mezcladas

Sean x1j, x2j y x3j, j=1, 2,..., nit, las j-ésimas expresiones

fenotípicas de los genotipos Q1Q1, Q1Q2 y Q2Q2 del QTL (nit es el

número de observaciones del QT en la población definida por el t-

ésimo genotipo del i-ésimo MM (Mi), t=1, 2, 3; t representa el

Cuadro 1. Población mezclada F2 para cada genotipo del MM
Mi ligado a un QTL con frecuencia de recombinación
r. La distribución del valor fenotípico (Xq) asociada al
q-ésimo genotipo del QTL es fq(x) (q=1, 2, 3, repre-
senta a los genotipos Q1Q1, Q1Q2 y Q2Q2).

Table 1. Mixed F2 population for each genotype of the MM Mi
linked to a QTL with recombination frequency r. The
distribution of the phenotypic value (Xq) associated to
the q-th genotype of the QTL is fq(x) (q=1,2,3,
represents the genotypes Q1Q1, Q1Q2 and Q2Q2.

Genotipos Genotipos del QTL
del marcador
(Mi) Q1Q1 Q1Q2 Q2Q2

Ai1Ai1 (1−r)2 f1(x) 2r(1−r) f2(x) r2 f3(x)
Ai1Ai2 r(1−r) f1(x) [1−2r(1−r)] f2(x) r(1−r) f3(x)
Ai2Ai2 r2 f1(x) 2r(1−r) f2(x) (1−r)2 f3(x)

(Xu and Atchley, 1995; Williams, 1998; Blangero et
al., 2001; Elston and Cordell, 2001). In addition,
Bayesian statistics has been applied in the identification
of the QTL in endogamic and non-endogamic
populations (Hoeschele and van-Raden, 1993a, 1993b;
George et al., 1995; Sillanpää and Arjas, 1998, 1999;
Hoeschele, 2003). However, as in the case of MQM,
both the Bayesian statistic and the methodologies used
in non-endogamic populations require numerical
methods and do not provide explicit estimators of the
QTL biometrics parameters.

The objective of the present study was to derive a
method for constructing explicit estimators of the
biometrics parameters: means of the QT; of the additive
and the dominance effect of a QTL, and of the frequency
of recombination between it and an MM.

METHODS AND THEORETICAL FRAMEWORK

In the derivation of the explicit estimators, the following

assumptions were made: 1) the QTL and the MMs are diallelic; 2)

the alleles of the MMs are co-dominant, these genotypes are

observable and do not affect the phenotype of the QT; 3) the

populations defined from the genotypes of the MMs are a mixture of

normal distributions of the phenotypes associated to various QTL

(Weller, 1992; Zeng, 1994).

For the F1 population of the cross of two P1 and P2 homozygote

parents whose respective genotypes are Ai1Ai1Q1Q1 and Ai2Ai2Q2Q2,

consider a pair of homologous chromosomes with k MMs

heterozygotes (Ai1Ai2, i=1, 2,.., k) that are genotypically

distinguishable and assume that the frequency of recombination

between a QTL and the i-th MM (Mi) is r. In the F2 population the

genotypes of Mi: Ai1Ai1, Ai1Ai2 and Ai2Ai2 will be distinguishable

and observable; however, the genotypes corresponding to the QTL

will not be observed and it will only be possible to classify the

phenotypic observations of the QT according to the marker genotype

to which it they are associated. This generates, for each marker

genotype, a mixture of three normal phenotypic distributions,
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genotipo del MM. Así, t=1 indica el genotipo Ai1Ai1, t=2 el genotipo

Ai1Ai2, etc.). Además, supóngase que las variables aleatorias X1, X2

y X3 [con medias E(Xq)=µq y varianzas Var(Xq)=σ2
q, q=1, 2, 3]

denotan los posibles valores fenotípicos asociados a los genotipos

del QTL (Q1Q1, Q1Q2 y Q2Q2, respectivamente); son independientes

y tienen distribución normal. Para el i-ésimo MM pueden definirse

las tres variables aleatorias mezcladas (correspondientes a los tres

genotipos del MM) siguientes:

Zi1=θ1X1+2θ2X2+θ3X3,    Zi2=θ2X1+(1−2θ2)X2+θ2X3

y

Zi3=θ3X1+2θ2X2+θ1X3 (1)

donde, θ1=(1−r)2, θ2=r(1−r) y θ3=r2; r se definió anterior-

mente. Las distribuciones mezcladas respectivas de Zi1, Zi2 y Zi3

son:

gi1(zj)=θ1 f1(xj)+2θ2  f2(xj)+θ3  f3(xj),

gi2(zj)=θ2 f1(xj)+(1−2θ2)  f2(xj)+θ2  f3(xj)     y

gi3(zj)=θ3 f1(xj)+2θ2  f2(xj)+θ1  f3(xj) (2)

mientras que fq(x), q=1, 2, 3, es igual a

f x xq j
q q

j qc h c h= − −
R
S|
T|

U
V|
W|

1

2

1

2 2

2

σ π σ
µexp . Por las Ecuaciones 1 y
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Identificación de ligamiento

Como µ1=µ+α, µ2=µ+δ y µ3=µ+α son las medias de las

variables fenotípicas X1, X2 y X3 correspondientes a los genotipos

Q1Q1, Q1Q2 y Q2Q2 del QTL, µ es la media poblacional del QT;

α=0.5(µ1−µ3) y δ=0.5(2µ2−µ1−µ3) son el efecto aditivo y la des-

viación de dominancia del QTL (Liu, 1998a), es posible escribir las

medias (mit) de las Zit (i=1, 2,..., k; t=1, 2, 3) de la manera si-

guiente:

mi1=µ+α(1−2r)+2δr (1−r),

mi2=µ+δ(1−2r+2r2)              y

mi3=µ−α(1−2r)+2δr (1−r) (5)

corresponding to the three genotypes of the three genotypes of the

QTL (Table 1).

Random variables and mixed distributions

Let x1j, x2j and x3j, j=1, 2, …, nit, be the j-th phenotypic

expressions of the genotypes Q1Q1, Q1Q2, and Q2Q2 of the QTL (nit

is the number of observations of the QT in the population defined by

the t-th genotype of the i-th MM (Mi), t=1, 2, 3; t represents the

genotype of the MM. Thus, t=1 indicates the genotype Ai1Ai1, t=2

the genotype Ai1Ai2, etc.). Furthermore, assume that the random

variables X1, X2 and X3, and [with means E(Xq=µq and variances

Var(Xq)=σ2
q, q=1,2,3] denote the possible phenotypic values

associated to the genotypes of the QTL (Q1Q1, Q1Q2, and Q2Q2,

respectively); are independent and have normal distribution. For the

i-th MM, the three mixed random variables (corresponding to the

three genotypes of the MM) can be defined as follows:

Zi1=θ1X1+2θ2X2+θ3X3,    Zi2=θ2X1+(1−2θ2)X2+θ2X3

and

Zi3=θ3X1+2θ2X2+θ1X3 (1)

where, θ1= (1−r)2, θ2= r(1−r) and θ3= r2; r was defined previously.

The respective mixed distributions of Zi1, Zi2 and Zi3 are as follows:

gi1(zj)=θ1 f1(xj)+2θ2  f2(xj)+θ3  f3(xj),

gi2(zj)=θ2 f1(xj)+(1−2θ2)  f2(xj)+θ2  f3(xj)    and

gi3(zj)=θ3 f1(xj)+2θ2  f2(xj)+θ1  f3(xj) (2)

whereas fq(x), q=1, 2, 3, is equal to

f x xq j
q q

j qc h c h= − −
R
S|
T|

U
V|
W|

1

2

1

2 2

2

σ π σ
µexp . For Equations 1 and

2, the means (mit) and variances (s
2
it) of the Zit are:

mi1=θ1 µ1+2θ2 µ2+θ3 µ3,

mi2=θ2 µ1+(1−2θ2) µ2+θ2 µ3     and

mi3=θ3 µ1+2θ2 µ2+θ1 µ3 (3)

s2
i1 = θ2

1 σ
2
1+ 4θ2

2 σ
2
2 + θ2

3 σ
2
3,

s2
i2 = θ2

2 σ
2
1+(1−2θ2)

2
 σ

2
2 + θ2

2 σ
2
3      and

s2
i3 = θ2

3 σ
2
1+ 4θ2

2 σ
2
2 + θ2

1 σ
2
3 (4a)

The covariances (sitt,) among the Zit’s described in (1) are as

follows:

si12=θ2  θ1 σ
2
1 + 2(1−2θ2) σ

2
2 + θ3 σ

2
3 ,

si13=θ3 θ1 (σ
2
3 + σ2

1) + 4 θ2
2 + σ

2
2                 and

si23=θ2  θ3 σ
2
1 + 2(1−2θ2) σ

2
2 + θ1 σ

2
3 (4b)

Identification of linkage

As µ1=µ+α, µ2=µ+δ and µ3=µ+α are the means of the

phenotypic values X1, X2 and X3 corresponding to the genotypes
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Los contrastes mi1−mi3=2α(1−2r) y 2mi2−(mi3+mi1)=2δ(1−2r)2

pueden definirse a partir de las Ecuaciones 5. A éstos se asocian,

respectivamente, las hipótesis nulas: H0: mi1=mi3 y H0:

2mi2=mi1+mi3. Con la prueba de cualquiera de éstas es posible iden-

tificar ligamiento entre el QTL y el MM ya que si H0: mi1=mi3 es

verdadera, r=0.5; lo que se significa que el QTL y el MM están en

cromosomas diferentes. La argumentación es válida ya que se traba-

ja bajo el supuesto: µ1>µ3. Esto asegura que α>0, lo que se garan-

tiza eligiendo líneas contrastantes respecto al QT bajo estudio (por

ejemplo, si el QT es altura de planta, se eligen dos líneas con altura

media diferente).

De acuerdo con el último párrafo, la identificación de ligamiento

entre el QTL y el MM, Mi, se reduce a la comparación de las

medias de dos poblaciones. Supóngase los tamaños de muestra (cu-

yos individuos tienen genotipos marcadores, Ai1Ai1, Ai1Ai2 y Ai2Ai2):

ni1, ni2 y ni3; y que $ , $ , $ , $ , $ , $m m m s s si i i i i i1 2 3 1
2

2
2

3
2y  son estimaciones

insesgadas de las medias y varianzas de Zi1j, Zi2j y Zi3j (Ecuaciones 3

y 4a). Para probar la hipótesis H0:mi1=mi3, un estadístico de prueba

adecuado es (Liu, 1998a):

T
m m

n n
n n

s
i

i i

i i

i i
ip

=
−

+

$ $

$

1 3

1 3

1 3

2 (6)

donde, s
n s n s

n nip
i i i i n

i i

2 1 1
2

3 3
2

1 3

1 1

2
=

− + −

+ −

a f a f$ $
 es el estimador de la

varianza de la diferencia ; Ti se distribuye como la t−Student con

ni1+ni3−2 grados de libertad. Si Ti>tni1+ni3−2, λ/2 (tni1+ni3−2, λ/2 es

un valor de la distribución t−Student tal que P{Ti>tni1+ni3−2, λ/2}=

λ; λ es el nivel de significancia de la prueba) existirá evidencia

estadística de la presencia de, al menos, un QTL ligado al marca-

dor.

Para ubicar el QTL sobre el cromosoma se construye un perfil

de verosimilitud (Lander y Botstein, 1989) graficando el valor co-

rrespondiente de Ti vs la posición de cada marcador sobre el

cromosoma bajo estudio. El máximo absoluto de la gráfica indica la

posición más probable del QTL sobre el cromosoma.

Combinaciones lineales

Una vez identificado el QTL, el problema siguiente es estimar

su posición sobre el cromosoma y la proporción con que contribuye

a la variabilidad fenotípica total del QT. Para ello es necesario

estimar las medias del QT: µ1, µ2, µ3 y la frecuencia de

recombinación, r, entre el marcador y el QTL. Esto se hará recu-

rriendo a combinaciones lineales de las variables aleatorias mezcla-

das. Las medias y varianzas de tales combinaciones permiten encon-

trar estimadores de los parámetros biométricos indicados. Considé-

rense las variables aleatorias del sistema de Ecuaciones 1 que per-

miten formular las combinaciones lineales siguientes:

U=Zi1+2Zi2+Zi3=X1+2X2+X3,

Q1Q1, Q1Q2 and Q2Q2 of the QTL, µ is the population mean of the

QT; α=0.5(µ1−µ3) and δ=0.5(2µ2−µ1−µ3) are the additive effect

and the deviation of dominance of the QTL (Liu, 1998a), it is possible

to write the means (mit) of the Zit (i=1, 2, …, k; t=1, 2, 3) as

follows:

mi1=µ+α(1−2r)+2δr (1−r),

mi2=µ+δ(1−2r+2r2)              and

mi3=µ−α(1−2r)+2δr (1−r) (5)

The contrasts mi1−mi3=2α(1−2r) and 2mi2−(mi3+mi1)=2δ(1−2r)2

can be defined from Equations 5. Associated to these are, respectively,

the null hypotheses: H0: mi1=mi3 and H0: 2mi2=mi1+mi3. With the

proof of any one of these it is possible to identify linkage between

the QTL and the MM, given that if H0: mi1=mi3 is true, then r=0.5;

which means that the QTL and the MM are in different chromosomes.

The argumentation is valid, given that it falls under the assumption:

µ1>µ3. This insures that α>0, which is guaranteed by selecting

contrasting lines with respect to the QTL under study (for example,

if the QTL is plant height, two lines with different mean height are

selected).

According to the previous paragraph, the identification of linkage

between the QTL and the MM, Mi, is reduced to the comparison of

the means of the two populations. Suppose that the sample sizes

(whose individuals have marker genotypes, Ai1Ai1, Ai1Ai2 and Ai2Ai2):

ni1, ni2 and ni3, and that $ , $ , $ , $ , $ , $m m m s s si i i i i i1 2 3 1
2

2
2

3
2y   are unbiased

estimations of the means and variances of Zi1j, Zi2j and Zi3j (Equations

3 and 4a). To test the hypothesis H0:mi1=mi3, an adequate test statistic

is (Liu, 1998a):

T
m m

n n
n n

s
i

i i

i i

i i
ip

=
−

+

$ $

$

1 3

1 3

1 3

2 (6)

where, s
n s n s

n nip
i i i i n

i i

2 1 1
2

3 3
2

1 3

1 1

2
=

− + −

+ −

a f a f$ $
 is the estimator of the

variance of the difference ; Ti is distributed as the t−Student with

ni1+ni3−2 degrees of freedom. If Ti>tni1+ni3−2, λ/2 (tni1+ni3−2, λ/2 is a

value of the distribution t−Student so that P{Ti>tni1+ni3−2, λ/2}=λ;

λ is the level of significance of the test), there will be statistical

evidence of the presence of at least one QTL linked to the marker.

To locate the QTL on the chromosome, a likelihood profile

(Lander and Botstein, 1989) is constructed, graphing the corresponding

value of Ti vs the position of each marker on the chromosome under

study. The absolute maximum of the graph indicates the most likely

position of the QTL on the

chromosome.

Linear combinations

Once the QTL has been identified, the next problem is to estimate

its position on the chromosome and the proportion with which it
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V=Zi1−2Zi2+Zi3=(1−2r)2 (X1−2X2+X3)       y

W=Zi1−Zi3=(1−2r)(X1−X3) (7)

Las medias de U, V y W son:

E(U)=µ1+2µ2+µ3=mu,

E(V)=(1−2r)2 (µ1−2µ2+µ3)=mv        y

E(W)=(1−2r)(µ1−µ3)=mw (8)

En tanto que sus varianzas se expresan como:
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y sus covarianzas son: s ruv = − − +1 2 22
1
2

2
2

3
3a f d iσ σ σ ,

s ruw = − −1 2 1
2

3
2a fd iσ σ  y s rvw = − −1 2 3

1
2

3
2a f d iσ σ . Como U, V

y W son combinaciones lineales de variables aleatorias con distribu-

ción normal, su distribución también será normal. Además, bajo el

supuesto: σ2
1=σ2

2=σ2
3, U, V y W serán independientes.

RESULTADOS

Estimadores de los parámetros
biométricos

Con las Ecuaciones 3, 4a, 4b, 5 y 9 se derivan
estimadores para la frecuencia de recombinación, r, y
para las medias: µ1, µ2 y µ3. Éstos, a su vez, permiten
estimar el efecto aditivo (α) y de dominancia (δ) del
QTL. Un estimador insesgado de r se obtiene del co-

ciente 
s
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Este estimador (Apéndice B) es:

(10)
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13 12 234 2 2 2b g
y

En  ŝ v  y  ŝ u el símbolo  se utiliza para expresar
el valor absoluto de las estimaciones de las covarianzas.
Esto asegura que 0≤r̂≤1/2.

contributes the total phenotypic variability of the QT. For this purpose

it is necessary to estimate the means of the QT: µ1, µ2, µ3 and the

frequency of recombination, r, between the marker and the QTL.

This will be done by recurring to linear combinations of the mixed

random variables. The means and variances of these combinations

make it possible to find estimators of the indicated biometrics

parameters. Consider the random variables of the system of Equations

1 which permit the formulation of the following linear combinations:

U=Zi1+2Zi2+Zi3=X1+2X2+X3,

V=Zi1−2Zi2+Zi3=(1−2r)2 (X1−2X2+X3)       and

W=Zi1−Zi3=(1−2r)(X1−X3) (7)

The means of U, V and W are as follows:

E(U)=µ1+2µ2+µ3=mu,

E(V)=(1−2r)2 (µ1−2µ2+µ3)=mv        and

E(W)=(1−2r)(µ1−µ3)=mw (8)

Whereas their variances are expressed as:

(9)

and their covariances are: s ruv = − − +1 2 22
1
2

2
2

3
3a f d iσ σ σ ,

s ruw = − −1 2 1
2

3
2a fd iσ σ  and s rvw = − −1 2 3

1
2

3
2a f d iσ σ . Because

U, V and W are linear combinations of random variables with normal

distribution, their distribution will also be normal. In addition, under

the assumption: σ2
1=σ2

2=σ2
3, U, V and W will be independent.

RESULTS

Estimators of the biometrics parameters

With Equations 3, 4a, 4b, 5 and 9, estimators re
derived for the frequency of recombination, r, and for
the means: µ1, µ2 and µ3. These in turn make it possible
to estimate the additive effect (α) and the dominance
effect (δ) of the QTL. An unbiased estimator of r is
obtained from the quotient
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estimator (Appendix B) is:
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Los estimadores de las medias de las distribuciones
fenotípicas asociadas a los genotipos de un QTL se
obtienen a partir de las Ecuaciones 8. De éstas resulta:
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Lo anterior permite obtener los estimadores de µ1,
µ2 y µ3 siguientes:
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donde,
$ $ $ $ , $ $ $ $m m m m m m m mu i i i v i i i= + + = − +1 2 3 1 2 32 2 y

$ $ $m m mw i i= −1 3 .

Con los estimadores $ , $ $µ µ µ1 2 3y , el efecto aditi-

vo (α), la desviación de dominancia (δ) y la varianza
genotípica (σ2

G) del QTL tienen, respectivamente, como
estimadores:

$ . $ $ , $ . $ $ $α µ µ δ µ µ µ= − = − −0 5 0 5 21 3 2 1 3a f a f y

$ $ $σ α δG
2 2 21

2
1
4

= + (12)

En el Apéndice B se exponen con detalle las pro-
piedades muestrales de los estimadores:

$ , $ , $ , $, $ $µ µ µ α δ σ1 2 3
2y G  (Ecuaciones 11 y 12).
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In ŝ v  and  ŝ u   the symbol is used to express
the absolute value of the estimations of the covariances.
This insures that 

0 1 2≤ ≤$ /r

.
The estimators of the means of the phenotypic

distributions associated to the genotypes of a QTL are
obtained from Equations 8. From these the following
is obtained:
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The above makes it possible to obtain the following
estimators of µ1, µ2 and µ3:
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where,
$ $ $ $ , $ $ $ $m m m m m m m mu i i i v i i i= + + = − +1 2 3 1 2 32 2  and

$ $ $m m mw i i= −1 3 .

With the estimators $ , $ $µ µ µ1 2 3and , the additive effect
(α), the deviation of dominance (δ) and the genotypic
variance (σ2

G) of the QTL have respectively as
estimators:
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Construcción del perfil de verosimilitud

Kearsey y Hyne (1994) estudiaron el caso hipotéti-
co de un QTL ubicado a 50 centi-Morgans (cM) del
primer marcador en un cromosoma de 100 cM con
seis marcadores ubicados (de izquierda a derecha so-
bre el cromosoma) a 0, 20, 40, 60, 80 y 100 cM;
supusieron los valores α=1.0, δ=0.5 y una variabili-
dad fenotípica total de 5.0. En el Cuadro 2 se mues-
tran las estimaciones de las medias fenotípicas y de las
posiciones de los marcadores obtenidos por estos auto-
res. Para construir el perfil de verosimilitud que per-
mita identificar el QTL sobre el cromosoma es necesa-
rio calcular el valor del estadístico de prueba (EP) para
cada marcador.

Para poder evaluar el EP es necesario contar con
estimaciones de dos medias, $mi1 y $mi3 , y de dos

varianzas muestrales: $si1
2  y $si3

2 . Las primeras apare-

cen en el Cuadro 2. Los valores de $si1
2  y $si3

2  fueron
estimados, en ambos casos (para los seis marcadores),
por Kearsey y Hyne (1994) en 4.031; el tamaño de las
muestras fue ni1=ni3=75. Para el primero y segundo
marcador se tendrá (Ecuación 6):

T1
23 5669 22 5475
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148
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y

$ . $ $ , $ . $ $ $α µ µ δ µ µ µ= − = − −0 5 0 5 21 3 2 1 3a f a f y
$ $ $σ α δG

2 2 21
2

1
4

= + (12)

In Appendix B the sampling properties are exposed
in detail of the estimators:  (Equations 10, 11 and 12).

Construction of the likelihood profile

Kearsey and Hyne (1994) studied the hypothetical
case of a QTL located at 50 centi-Morgans (cM) from
the first marker in a chromosome of 100 cM with six
markers located (from left to right on the chromosome)
at 0, 20, 40, 60, 80 and 100 cM; assumed the values
α=1.0, δ=0.5 and a total phenotypic variability of
5.0. The estimations of the phenotypic means and of
the positions of the markers obtained by these authors
are shown in Table 2. To construct the likelihood profile
that permits the identification of the QTL on the
chromosome, it is necessary to calculate the value of
the test statistic (TS) for each marker.

In order to evaluate the TS, it is necessary to have
estimations of two means, $mi1  and $mi3 , and of two

sampling variances: $si1
2  and $si3

2 . The first appear in

Table 2. The values of $si1
2  and $si3

2  were estimated, in
both cases (for the six markers), by Kearsey and Hyne
(1994) in 4.031; the size of the samples was ni1=ni3

=75. For the first and second marker, we have the
following (Equation 6):
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148
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. .

.
.

and

T2
23 9616 22 3639

150
5625

2 74 4 031
148

4 842=
−

( )( )L
NM

O
QP

=
. .

.
.

The values of the TS for the remaining MMs were
calculated in a similar way. This made it possible to
construct the likelihood profile (Figure 1) where the
maximum value indicates that, very probably (Lander
and Botstein, 1989), the QTL is between marker 3
and 4.

Estimation of the biometrics parameters

The basic information of the four QTL located in
different hypothetical chromosomes in a population

Cuadro 2. Estimaciones de las tres medias fenotípicas de las
subpoblaciones de una F2 correspondientes a cada
uno de seis marcadores moleculares (Mi) ubicados a
0, 20, 40, 60, 80 y 100 centi-Morgans (cM). Se consi-
deró un QTL ubicado a 50 cM de Mi y los valores:
ααααα=1.0, δδδδδ=0.5 y h2=0.1 ( Kearsey y Hyne, 1994).

Table 2. Estimations of the three phenotypic means of the
subpopulations of an F2 corresponding to each of the
six molecular markers (Mi) located at 0, 20, 40, 60, 80
and 100 centi-Morgans (cM). A QTL was considered
located at 50 cM from Mi and the values: ααααα=1.0, δδδδδ=0.5
and h2=0.1 (Kearsey and Hyne, 1994).

Posición del marcador Mi Medias estimadas
de las poblaciones mezcladas

Marcador asignada estimada
(Mi) (cM) (cM) m̂i1 m̂i2 m̂i3

1 0.0 0.0 23.566 22.883 22.547
2 20.0 20.6 23.961 22.865 22.363
3 40.0 45.2 23.899 23.077 21.675
4 60.0 64.5 24.028 23.086 21.676
5 80.0 82.5 23.617 23.038 22.121
6 100.0 103.7 23.166 23.027 22.591
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T2
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De manera similar se calcularon los valores de los
EP’s para los MM’s restantes. Esto permitió construir
el perfil del verosimilitud (Figura 1) donde el valor
máximo indica que, muy probablemente (Lander y
Botstein, 1989), el QTL está entre el marcador 3 y 4.

Estimación de los parámetros biométricos

En el Cuadro 3 se muestra la información básica de
cuatro QTL ubicados en diferentes cromosomas hipo-
téticos en un estudio de simulación para una población
F2 (Romero-Padilla et al., 2004). En éste los parámetros
del QTL se estimaron utilizando el paquete estadístico
MAPMAKER (Lander et al., 1987). Tales estimacio-
nes se muestran en el Cuadro 4 junto con las estima-
ciones obtenidas con el método derivado en el presente
trabajo. Excepto por el primer caso, no existen dife-
rencias significativas entre los resultados obtenidos por
ambos métodos. Sin embargo, en el trabajo de Rome-
ro-Padilla et al. (2004) se utilizó más información para
la estimación, ya que se consideraron dos marcadores
adyacentes al QTL de manera simultánea.

Podría pensarse que la diferencia observada en el
primer caso se debe a que la distancia mapa entre el
MM y el QTL es 23.45 cM mientras que en los restan-
tes la distancia indicada es menor o igual a 10.0 cM.
Esto parece una limitante, sin embargo no es así, ya que
Darvasi et al. (1993) demostraron que para identificar

simulation study F2 (Romero-Padilla et al., 2004) is
shown in Table 3. In this study, the parameters of the
QTL were estimated using the MAPMAKER statistical
package (Lander et al., 1987). These estimations are
shown in Table 4 along with the estimations obtained
with the method derived in the present study. Except
for the first case, there are no significant differences
between the results obtained for both methods.
However, in the work of Romero-Padilla et al. (2004),
more information was used for the estimation, as they
considered two markers adjacent to the QTL
simultaneously.

It could be considered that the difference observed
in the first case is due to the fact that the map distance
between the MM and the QTL is 23.45 cM, whereas
in the rest, the indicated distance is less than or equal
to 10.0 c,. This appears to be a limitation, however,
this is not the case, given that Darvasi et al. (1993)
demonstrated that to identify a QTL, the optimum
distance between the MM and the QTL is precisely
10 cM.

Figura 1. Perfil de verosimilitud para identificar un QTL ubica-
do entre los marcadores 3 y 4 en un cromosoma de 100
cM.

Figure 1. Profile of likelihood to identify a QTL located between
markers 3 and 4 on a chromosome of 100 cM.
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Cuadro 4. Estimaciones de los parámetros biométricos de cua-
tro QTL (Cuadro 3) con MAPMAKER y con el pro-
cedimiento derivado en el presente trabajo.

Table 4. Estimations of the biometrics parameters of four QTL
(Table 3) with MAPMAKER and with the procedure
derived in the present study.

Con MAPMAKER Con el método propuesto
QTL

α̂ δ̂ σ̂2
g α̂ δ̂ r̂ σ̂2

g

1 1.12 0.20 0.65 0.86 0.10 0.03 0.37
2 0.71 0.12 0.26 0.67 −0.13 0.03 0.23
3 −0.99 −0.60 0.60 −1.00 0.63 0.04 0.62
5 0.65 0.34 0.24 0.64 −0.40 0.02 0.24

Cuadro 3. Efectos asignados a cuatro QTL; marcadores entre los
que se encuentra cada QTL y valores hipotéticos de la
frecuencia de recombinación entre el primer MM (en
este caso el izquierdo) y el QTL en una población F2
(Romero-Padilla et al., 2004).

Table 3. Effects assigned to four QTL; markers among which
each QTL is found and hypothetical values of the
recombination frequency between the first MM (in this
case the left) and the QTL in an F2 population (Romero-
Padilla et al., 2004).

Efecto del
Marcadores Frecuencia de recom-

QTL entre los que binación entre el MMQTL
está el QTL y el QTL (r)

1 1.13 1-2 0.16
2 0.62 3-4 0.02
3 −0.98 5-6 0.03
5 0.76 9-10 0.03
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un QTL la distancia óptima entre el MM y el QTL es,
precisamente, 10 cM.

DISCUSIÓN

El procedimiento para la identificación de QTL li-
gados a MM’s en el que se analiza un MM y un QTL
a la vez (MQTL) proporciona toda la información ne-
cesaria en la investigación de QTL. Sus desventajas
son: a) el método no permite determinar si el marca-
dor está ligado a uno o más QTL; b) requiere un tama-
ño de muestra relativamente grande para que las prue-
bas sean estadísticamente significativas; c) el criterio
de decisión con el nivel de significancia estándar (0.05)
pasa por alto el hecho de que varios marcadores se
incluyen en la prueba; así, mientras la probabilidad de
cometer un error tipo uno (ETI) en cualquier marcador
es sólo 5%, la probabilidad de que al menos un ETI
ocurra en una de las varias hipótesis que se prueban
sobre el genoma completo es mucho mayor (Lander y
Botstein, 1989); d) confunde la fracción de
recombinación con el efecto del QTL, lo que conduce
a subestimar el efecto del QTL. Sin embargo, el argu-
mento del punto (c) no es privativo del método MQTL,
sino que es un problema asociado a la búsqueda de
QTL sin importar el método utilizado (Van Ooijen,
1999; Cheverud, 2001). Respecto al punto (d) el argu-
mento es válido sólo en el contexto de la regresión
lineal. En el presente trabajo se ha demostrado
(Ecuaciones 10, 11 y 12) que el efecto del QTL y el de
la frecuencia de recombinación pueden estimarse por
separado.

El método MQM y mapeo por intervalos compues-
tos (CIM) tienen también problemas asociados; algu-
nos de ellos son: 1) la identificación de ligamiento no
es una prueba de intervalo, i.e., una prueba que per-
mita distinguir si existe o no un QTL en el intervalo
definido por los MM’s y que no se vea afectada por
QTL fuera de él; 2) si varios QTL sobre el mismo
cromosoma afectan al QT de interés, los estimadores
de las posiciones de los QTL y sus efectos están sesgados
(Whittaker et al., 1996); 3) la estimación de los
parámetros biométricos, y de las frecuencias de
recombinación, sólo es posible por métodos numéri-
cos; 4) no se conoce la distribución asintótica del esta-
dístico de prueba para identificar ligamiento, lo que
dificulta la determinación del nivel de significancia de
la prueba. Esto último se debe a que las hipótesis no
están apropiadamente anidadas (Churchill y Doerge,
1995), i.e., las hipótesis bajo prueba comparan una
distribución mezclada bajo la hipótesis alternativa con
una distribución no mezclada bajo la hipótesis nula.
Haley y Knott (1992) estudiaron las propiedades del
estadístico de MQM y concluyeron que la aproximación

DISCUSSION

The procedure for the identification of QTLs linked
to MMs in which an MM and a QTL are analyzed at
the same time (MQTL) provides all of the necessary
information in the investigation of a QTL. Its
disadvantages are: a) the method does not allow the
determination of whether the marker is linked to one
or more QTL; b) it requires a relatively large size
sample for the tests to be statistically significant; c)
the criteria of decision with the standard level of
significance (0.05) overlooks the fact that various
markers are included in the test; thus, whereas the
likelihood of committing a type one error (ETI) in
any marker is only 5%, the likelihood of at least one
ETI occurring in one of the various hypotheses that
are being tested on the complete genome is much
higher (Lander and Botstein, 1989); d) the fraction of
recombination is confused with the effect of the QTL,
which leads to a sub-estimation of the effect of the
QTL. However, the argument of point (c) is not
restricted to the MQTL method, but rather, it is a
problem associated to the search of QTL regardless
of the method used (Van Ooijen, 1999; Cheverud,
2001). With respect to point (d), the argument is valid
only in the context of the linear regression. In the
present study, it has been demonstrated (Equations
10, 11 and 12) that the effect of the QTL and that of
the recombination frequency can be estimated
separately.

The MQM method and composed intervals mapping
(CIM) also have associated problems; some of them
are: 1) the identification of linkage is not a proof of
interval, i.e., a test that makes it possible to distinguish
whether or not a QTL exists in the interval defined by
the MMs and that is not affected by QTL outside of it;
2) if various QTL on the same chromosome affect the
QT of interest, the estimators of the positions of the
QTL and their effects are biased (Whittaker et al.,
1996); 3) the estimation of the biometrics parameters,
and of the recombination frequencies, is only possible
by numerical methods; 4) the asyntotic distribution is
not known of the test statistic for identifying linkage,
which makes it difficult to determine the significance
level of the test. This is due to the fact that the
hypotheses are not appropriately clustered (Churchill
and Doerge, 1995), i.e., the hypotheses being tested
compare a mixed distribution under the alternative
hypothesis with an unmixed distribution under the null
hypothesis. Haley and Knott (1992) studied the
properties of the MQM statistic and concluded that the
approximation to the chi-squared as an asyntotic
distribution is not reliable in many cases and is at least
questionable in others.
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a la chi-cuadrada como una distribución asintótica no
es confiable en muchos casos y es al menos cuestiona-
ble en algunos.

CONCLUSIONES

Las estimaciones derivadas en este trabajo con base
en las combinaciones lineales de variables aleatorias
con distribución normal mezclada para estimar los efec-
tos aditivos y de dominancia del QTL y la frecuencia
de recombinación entre éste y el MM resultaron con-
sistentes e insesgadas. Para un caso reportado en la
literatura, sus resultados se compararon con los que se
obtienen utilizando MAPMAKER y se mostró que son
muy similares. Sin embargo, el procedimiento aquí
derivado tiene la ventaja de la simplicidad y sencillez
algebraica, lo que facilita la comprensión de las ideas
fundamentales subyacentes en la construcción de ma-
pas de QTL’s.
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APÉNDICE B

Análisis de los estimadores

Las propiedades de los estimadores (Ecuaciones 10,
11 y 12) se determinaron considerando el resultado
siguiente respecto a la esperanza y a la varianza de un
cociente de variables aleatorias (Lynch y Walsh, 1998):
si U y V son variables aleatorias independientes (U y
V no necesariamente son las definidas en las Ecuaciones
7), entonces, la esperanza y varianza de U/V, son,
aproximadamente:
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Considérese el estimador r̂  (Ecuación 10a); se de-
mostrará que éste es asintóticamente insesgado.
Supóngase que n=nu=nv [nu y nv son, respectivamen-
te, los tamaños de muestra de U y V (Ecuaciones 7)] y
que ŝ v y ŝ u son independientes. La esperanza de r̂  es
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APÉNDICE A

Cuadro A.1. Direcciones de internet donde hay software estadístico para el análisis de QTL (Liu, 1998b).
Table A.1. Internet addresses where there is statistical software for QTL analysis (Liu, 1998b).

Nombre del programa Dirección en internet Nombre de quien creó el programa

MAPMAKER/QTL. mapmaker @genome.wi.mit.edu Eric Lander
QTLSTAT sknapp @ helix.css.orst.edu Steve Knapp
PGRI benliu @ unity.ncsu.edu. Ben Liu
QTL Cartographer basten @ esssjp.stat.ncsu.edu Christopher Basten
MAPQTL J.W.vanOOIJEN @ cpro.dlo.nl Johan Van Ooijen
Map Manager QTL kmanly @ mcbio.med.bufflo.edu Kenneth Manly
QGENE jcn 5 @ cornell.edu James C. Nelson

APPENDIX B

Analysis of the estimators

The properties of the estimators (Equations 10, 11
and 12) were determined considering the following
result with respect to the expectation and the variance
of a quotient of random variables (Lynch and Walsh,
1998): if U and V they are independent random variables
(U and V not necessarily those defined in Equations
7), then the expectation and variance of U/V are
approximately:
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Consider the r̂  estimator (Equation 10a); it will be
demonstrated that it is asyntotically unbiased. Suppose
that n=nu=nu and nv [nu and nv are, respectively, the
sample sizes of U and V (Equations 7)] and that ŝ v and
ŝ u  are independent. The expectation of r̂  is:
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Para determinar las esperanzas: E sv$d i  y ,

y la varianza , se utiliza el método delta

(Lynch y Walsh, 1998). Éste se basa en la esperanza y
varianza de la expansión de una serie de Taylor alrede-
dor de una constante arbitraria, c. Así, supóngase que
f es una función de x, entonces,

donde f(c) es la función, f, evaluada en x=c. La pri-
mera y segunda derivada de f son suficientes para ob-
tener resultados muy aproximados a los esperados

(Lynch y Walsh, 1998). Supóngase que f sv= $ ; la

primera y segunda derivadas de f respecto a ŝ v serán,

respectivamente, 
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Con c E sv= $a f ,

Como la esperanza y varianza de la desviación
estándar muestral (ŝ ) y la esperanza y varianza de la
varianza muestral (ŝ 2) de variables con distribución
normal, desviación estándar, σ, y varianza, σ2, son,
respectivamente (Lynch y Walsh,1998): E(ŝ )=σ,
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y, puesto que U y V tienen distribución normal,

(B.4)

To determine the expectations: E sv$d i , and

 the variance , the delta method is

used (Lynch and Walsh, 1998). This is based on the
expectation and variance of the expansion of a Taylor
series around an arbitrary constant, c. Thus, supposing
that f is a function of x, then,

where f(c) is the function, f, evaluated in x=c. The
first and second derivate of f are sufficient to obtain
results that are very close to those expected (Lynch

and Walsh, 1998). Suppose that f sv= $ ; the first

and second derivates of f with respect to ŝ v will be,
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As the expectation and variance of the sample
standard deviation (ŝ ) and the expectation and variance
of the sample variance (ŝ2) of variables with normal
distribution, standard deviation, σ, and variance, σ2,
are, respectively (Lynch and Walsh, 1998): E(ŝ )=σ;

Var s
n

( $) =
+( )

σ2
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and, given that U and V have normal distribution,
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Un procedimiento similar al anterior permite en-

contrar la varianza de 

f sv= $

. Ésta es
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Por los resultados (B.4) y (B.5) la Ecuación B.3 es:
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8 2 , de donde es evidente

que el estimador de r̂  (Ecuación 10) es insesgado.
Similarmente, con el método delta se derivaron los

resultados (asintóticos) siguientes respecto a r̂ , (1−2 r̂ )
y (1−2r̂ )2:

Var r
r

n
Var r

r

n
$ , $a f a f=

−( )

+( )
− =

−( )

+( )
1 2

16 2
1 2

1 2

4 2

2 2

y

Var r
r

n
1 2

2 1 2

2
2

4

− =
−( )

+( )
$a f (B.6)

1 2
8 2

8 2 1
− =

+( )

+( )+
$

$

$
r

n

n
s
s
v

u
a f  es un estimador insesgado

de (1−2r); (B.7)

1 2
2 2 1

2 2
2

− =
+( )+

+( )
$

$

$
r

n

n
s
s
v

u

a f , es un estimador

insesgado de (1−2r)2 (B.8)

Con el método delta y las Ecuaciones B.6 a B.8 se
demostró que los estimadores: µ̂1, µ̂2 y µ̂3 (Ecuaciones
11) son consistentes e insesgados asintóticamente. Por
ejemplo, considérese el sistema de Ecuaciones 11, la
esperanza de µ̂1 es:
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A procedure similar to the above makes it possible

to find the variance of f sv= $ . This is:
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From the results (B.4) and (B.5), Equation B.3 is:
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8 2 , from which it is

evident that the estimator of r̂  (Equation 10) is unbiased.
Similarly, with the delta method, the following

results (asyntotic) were derived with respect to r̂ ,
(1−2 r̂ ) and (1−2r̂ )2:
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With the delta method and Equations B.6 to B.8, it
was demonstrated that the estimators: µ̂1, µ̂2 and µ̂3

(Equations 11) are consistent and asyntotically unbiased.
For example, consider the system of Equations 11, the
expectation of  µ̂1 is:
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De la Ecuación B.1 resulta que:
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Las Ecuaciones 8 permiten escribir E(µ̂1) como:
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De manera similar a la anterior se encontró la
varianza de µ̂1:
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Las esperanzas y varianzas de µ̂2 y µ̂3 se obtienen
de manera similar y de ello resulta que µ̂2 y µ̂3 son
estimadores insesgados y consistentes.

Con el método delta se determinaron, también, las
propiedades de los estimadores α̂, δ̂ y σ̂2

G (Ecuaciones
12). Éstas son, respectivamente:
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From Equation B.1, the result is that:
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Equations 8 make it possible to write E(µ̂1) as
follows:
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In a way similar to the above, the variance of µ̂1

was found:

Var E
m m

r

m
r

E

n n n

n

u v w$
$ $

$

$

$
$µ µ

σ σ σ µ µ µ

µ µ

1 2 1

2

2
2

1
2

3
2

1 2 3
2

1 3
2

4 4 1 2 2 1 2

2

3

8

2

8 2

4 2

a f a f a f a f

c h a f

a f

= +
−

+
−

−
L
N
MM

O
Q
PP

R
S|
T|

U
V|
W|

≅ +
+

+
− +

+( )

+
−

+( )

The expectations and variances of  µ̂2 and µ̂3 are
obtained in a similar way, and as a result, µ̂2 and µ̂3

are unbiased and consistent estimators.
With the delta method, the properties of the

estimators  α̂, δ̂ and σ̂2
G (Equations 12) were also

determined. These are, respectively,
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The last six results were obtained under the
assumption that  α̂ δ̂, σ̂2

G , µ̂1, µ̂2 and µ̂3  are independent.
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Los seis últimos resultados se obtuvieron bajo el
supuesto de que α̂ δ̂, σ̂2

G , µ̂1, µ̂2 y µ̂3 son independien-
tes.


