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Nuevos conceptos en la fisiopatología de la hipertensión 
arterial. Receptores purinérgicos
New concepts in the physiopathology of hypertension. Purinergic receptors
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ARTÍCULO DE REVISIÓN

Resumen
La hipertensión arterial descontrolada es un factor de riesgo muy relevante para el desarrollo de complicaciones cardiovasculares 
graves. A pesar de los recursos disponibles en la actualidad, el control de la hipertensión arterial y sus complicaciones dista 
mucho de lograrse. Por ello, sus secuelas continúan siendo catastróficas, como la insuficiencia renal crónica. De ahí la 
relevancia de reconocer factores que pudieran modificarse para evitar esta complicación. Recientemente se ha propuesto 
que los receptores purinérgicos contribuyen en forma importante en las alteraciones renales que ocurren en la hipertensión 
arterial; en esta revisión se resume brevemente su papel. En varios estudios se ha demostrado que cuando existen 
concentraciones elevadas de ATP en el intersticio renal, la activación de los receptores purinérgicos constituye una vía 
fundamental en la generación y la persistencia de hipertensión arterial. Las concentraciones elevadas de ATP alteran 
mecanismos fundamentales asociados en el control de la presión arterial, como el mecanismo de natriuresis de presión, la 
autorregulación del flujo renal y la filtración glomerular, así como el aumento en la sensibilidad del mecanismo de 
retroalimentación tubuloglomerular. La alteración de estos mecanismos contribuye a la disminución de la excreción urinaria 
de sodio. Además, se modifica la expresión de receptores de ATP (purinérgicos). Bajo la influencia de alteraciones genéticas, 
el ATP estimula la producción de compuestos vasoactivos y en conjunto producen una disminución de la función renal y 
lesión tubulointersticial antes de que se lesione el glomérulo. Al mismo tiempo, la interacción de la angiotensina II y los 
receptores purinérgicos favorece la progresión del daño renal.
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Abstract
Hypertension is a major risk of morbidity and mortality in patients when it is uncontrolled. In spite of improved therapies 
currently available for blood pressure control, their complications are far away from being accomplished. Therefore, chronic 
renal failure is frequently observed in hypertensive patients. Thus, insights on mechanisms that may contribute to arterial 
pressure control should be studied to prevent life-threatening cardiovascular disorders. Purinergic receptors have been 
recognized in the physiopathology of hypertension; this review summarizes their participation in the renal abnormalities of the 
kidney in hypertension. Several studies have suggested the activation of renal purinergic receptors under an elevated interstitial 
ATP milieu as a fundamental pathway that leads to generation and maintained hypertension. Elevated ATP concentration 
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Introducción
Durante el siglo xx, los avances en la fisiopatología 

y el tratamiento de la hipertensión arterial fueron nota-
bles; el descubrimiento de la angiotensina, así como 
de los inhibidores de la enzima convertidora de la 
angiotensina, cambiaron en forma radical el futuro de 
la hipertensión arterial1-4. Sin embargo, a pesar de ello, 
el control de la hipertensión arterial y sus complicacio-
nes dista mucho de lograrse, por lo que las consecuen-
cias de la hipertensión mal controlada continúan siendo 
catastróficas, como lo es la insuficiencia renal crónica 
en fase terminal5.

La lesión renal en la hipertensión arterial se ha atri-
buido a mecanismos fisiopatológicos heterogéneos. Ini-
cialmente se interpretó que la transmisión de la presión 
sistémica al glomérulo era la causa de la lesión glo-
merular; la hipertrofia de la arteriola aferente en res-
puesta a la hipertensión arterial era insuficiente para 
prevenir la lesión renal. El aumento de presión dañaba 
los capilares peritubulares, con salida de plasma y 
células al intersticio, que ocasionaban el desarrollo de 
inflamación tubulointersticial. Sin embargo, la lesión 
inflamatoria se observa desde el inicio y es fundamen-
tal para el desarrollo de alteraciones glomerulares que 
llevan a enfermedad renal terminal6-8.

Es importante mencionar que una lesión tubulointers-
ticial leve puede inducir disfunción renal, así como 
retención de sodio y agua, que pueden progresar a 
hipertensión persistente9,10. Además, la activación de 
receptores purinérgicos parece tener una participación 
muy importante en el desarrollo de la sensibilidad a sal, 
ya que pueden estimular la producción de mediadores 
vasoactivos, como la endotelina-1, exacerbar la infla-
mación tubulointersticial y disminuir la excreción de 
sodio10,11.

Receptores purinérgicos
El trifosfato de adenosina (ATP) es una de las molé-

culas más importante del organismo, pues provee la 
energía necesaria para el funcionamiento de procesos 

celulares múltiples; sin embargo, posee un sistema de 
receptores de membrana para nada relacionados con 
la producción de energía. Los efectos del ATP extrace-
lular están mediados por la activación de los receptores 
purinérgicos P212. Los receptores purinérgicos están 
distribuidos por todo el organismo y pueden ser media-
dores de inflamación y de muerte celular. El sistema 
de los receptores purinérgicos es heterogéneo y se han 
clasificado en dos tipos: los P1, que son activados por 
la adenosina, y los P2, que responden a ATP. A su vez, 
los receptores a ATP se subdividen en dos familias, los 
P2X (1 a 7) y los P2Y (1 a 6, 12 y 13). Las diferencias 
entre ellos consisten en que los receptores P2X se 
caracterizan por ser canales de la membrana celular 
acoplados a ligandos, en tanto que los receptores P2Y 
tienen siete dominios transmembranales y están aco-
plados a proteínas G12-14.

En el riñón, el ATP regula la resistencia vascular, de 
tal manera que cuando su concentración aumenta en 
el espacio extracelular también se eleva en el líquido 
intersticial renal, y aumenta la presión de perfusión al 
riñón15,16. Por otra parte, la estimulación de las células 
endoteliales produce ATP en respuesta al estrés por 
flujo, por activación de los receptores P2X417,18. Ade-
más, la elevación constante del ATP modifica la distri-
bución de los receptores purinérgicos, que se 
sobreexpresan en sitios donde existe hipoxia17-19.

Los receptores purinérgicos en la 
hipertensión arterial

La activación de los receptores purinérgicos P2X 
puede producir hipertensión arterial, pues estimula el 
tono simpático y el sistema renina-angiotensina que 
regula la excreción de sodio, y puede producir vaso-
constricción de las arteriolas pre-  y posglomerulares. 
Sin embargo, los receptores P2 también se encuentran 
sobreexpresados en la hipertensión ya establecida20, 
así como en la hipertensión dependiente de la angio-
tensina II21. Al respecto, se ha demostrado una sobre-
expresión de receptores P2X7 en el glomérulo de ratas 

alters fundamental mechanisms involved in the long-term control of blood pressure such as pressure natriuresis, autoregulation 
of glomerular filtration rate and renal blood flow, as well as increased tubule-glomerular feedback responses, overall, these 
alterations decrease sodium excretion; in addition, the expression of ATP receptors is modified. Under a genetical background, 
ATP induces the production of vasoactive compounds, decreases renal function and induces tubulointerstitial injury before 
glomerular damage. Simultaneously, a deleterious interaction between angiotensin II and purinergic receptors lead to the 
progression of renal damage.

Keywords: Hypertension. Angiotensin II. ATP. Purinergic receptors.
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hipertensas transgénicas para renina22, así como en 
ratas Dahl sensibles a la sal20. También se ha demos-
trado un aumento en la expresión de los receptores 
P2X1, P2X4, P2X7 y P2Y1 en los vasos intrarrenales, 
en la arteriola aferente y en la mácula densa23,24. La 
trascendencia de los receptores P2 renales radica en 
que participan en la regulación de varios mecanismos 
relacionados con el control de la presión arterial25-27, 
como son la natriuresis de presión25, la autorregulación 
de la filtración glomerular y del flujo sanguíneo renal26,27, 
el mecanismo de retroalimentación tubuloglomerular, y 
la excreción urinaria de sodio28-31. En estudios en ratas 
con hipertensión dependiente de la angiotensina II se 
ha demostrado que los receptores purinérgicos partici-
pan en la progresión de la lesión renal por la hiperten-
sión. En efecto, en la hipertensión arterial se altera la 
microcirculación glomerular; se produce una elevación 
de las resistencias aferente y eferente, así como de la 
presión capilar glomerular; el flujo sanguíneo glomeru-
lar disminuye, al igual que el coeficiente de ultrafiltra-
ción, y en consecuencia se produce una disminución 
de la filtración glomerular total y por nefrona21,23.

La liberación de ATP en forma continua, como se ha 
encontrado en la hipertensión arterial, es un estímulo 
para la proliferación de células musculares lisas que 
afecta a los vasos renales produciendo hipertrofia e 
hiperplasia32,33; en estas condiciones, se producen infil-
tración de linfocitos y macrófagos, proliferación de célu-
las mesangiales, expresión de miofibroblastos, 
rarefacción capilar e hipertrofia de la arteriola afe-
rente34,35. Estos cambios son mediados esencialmente 
por la activación de receptores purinérgicos P2X y AT1 
de la angiotensina36,37.

Efecto del bloqueo de los receptores 
purinérgicos en la microcirculación renal 
en la hipertensión arterial

Los receptores P2X1 y P2X7 estimulan la liberación 
de sustancias vasoactivas y citocinas proinflamatorias, 
por lo se les han atribuido efectos adversos sobre la 
microcirculación renal38,39. El receptor P2X7 es el más 
activo en cuanto a liberación de citocinas (interleucina 
[IL] 1β, IL-18, factor de necrosis tumoral alfa [TNF-α] y 
proteína quimiotáctica de monocitos 1 (MPC 1) que 
pueden estimular vías de señalización asociadas con 
vasoconstricción18,39-41. Los receptores P2X7 se 
encuentran sobreexpresados en el músculo liso de los 
vasos intrarrenales de las ratas hipertensas21; en cam-
bio, el receptor P2X1 se encuentra tanto en las células 
endoteliales como en el músculo liso vascular42. Por 

consiguiente, bloquear la vasoconstricción con antago-
nistas de los receptores purinérgicos tiene efectos favo-
rables en la microcirculación renal en caso de 
hipertensión. En el modelo de hipertensión dependiente 
de la angiotensina II, cuando se administró en forma 
aguda PPADS (pyridoxalphosphate-6-azophen-
yl-2’,4’-disulfonic acid), un bloqueador específico de los 
receptores P2X y P2Y de ATP, disminuyeron las resis-
tencias aferente y eferente, y aumentaron el flujo plas-
mático glomerular, el coeficiente de ultrafiltración y la 
filtración glomerular a valores similares a los controles 
(Fig.  1)36. Graciano et al.35 administraron al mismo 
tiempo la angiotensina II y el antagonista PPADS 
(14 días), y se evitó el desarrollo de las lesiones indu-
cidas por la angiotensina II, como son la infiltración 
tubulointersticial y la hipertrofia de la arteriola aferente, 
sin que se modificaran la hipertensión arterial ni las 
concentraciones de angiotensina II.

Receptores purinérgicos e inflamación
El ATP intracelular se libera a través de canales de 

la membrana celular llamados panexinas y conexinas, 
lo que permite un aumento en la concentración del 
nucleótido en el espacio intersticial43-45, donde funciona 
como una señal quimiotáctica, ya que las células infla-
matorias poseen receptores P2X y P2Y46. Por ello, el 
ATP constituye uno de los promotores más importantes 
de la inflamación, que se asocian a isquemia e hipoxia, 
así como a producción de radicales libres de oxígeno 
y procesos de necrosis y apoptosis47,48.

Durante la resolución de un proceso inflamatorio, la 
concentración local de ATP generalmente se reduce 
por acción de ectoenzimas como la apirasa, la ATPasa, 
la fosfatasa alcalina, las ectonucleotidasas, etc., que 
metabolizan el ATP a ADP y a adenosina49,50. Sin 
embargo, en la hipertensión arterial experimental se ha 
encontrado que la ectoadenosina desaminasa dismi-
nuye, lo que permite el aumento de la adenosina inters-
ticial51, y esto es importante porque se puede producir 
una pérdida del balance de los receptores vasodilata-
dores y vasoconstrictores  mediado por la adenosina, 
ya que sus receptores tienen efectos vasoactivos. 
Cabe señalar que las células  inflamatorias tienen la 
capacidad de producir una liberación inespecífica de 
ATP ante estímulos nocivos, que estimulan la libera-
ción de citocinas y de factores quimiotácticos49,50. Al 
respecto, la elevación intersticial de ATP modifica la 
expresión y la distribución de receptores purinérgicos. 
Por otra parte, la liberación constante de nucleótidos 
intrarrenales, así como la reacción inflamatoria, 
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permiten el ensamble del inflamasoma NLRP350-53, que 
es un paso esencial para el inicio de una reacción pro-
liferativa y el desarrollo de fibrosis cuando la hiperten-
sión es sostenida.

La activación de los receptores P2X7 se ha relacio-
nado con el ensamble del inflamasoma NLRP3. Sin 
embargo, el mecanismo implicado en el acoplamiento 
por los receptores P2X solo se conoce parcialmente. 
A este respecto, el ATP extracelular induce la fosfori-
lación de paxilina, que facilita la interacción del com-
plejo P2X7-paxilina-NLRP345. Esta proteína modula la 
ubiquitinación y activa el inflamasoma NLRP3 ante ele-
vaciones del ATP, así como la secreción de IL-1β y 
caspasa-1 en macrófagos y células dendríticas54-56. Por 
otra parte, el ATP también participa en la reparación 
tisular por su capacidad de atraer fagocitos y células 
dendríticas57.

Es relevante mencionar que los inmunosupresores 
como el micofenolato de mofetilo, los antiinflamatorios 
no esteroideos (polisulfato de pentosano) y las mani-
pulaciones genéticas se han asociado a una reducción 
de la inflamación tubulointersticial y del daño renal58. 
Esto se debe a que el tratamiento reduce la acumula-
ción renal de macrófagos que producen factor nuclear 
kappa B y citocinas inflamatorias (IL-1β, TNF-α) que 
participan en el ensamble del inflamosoma NLRP359. 
El tratamiento con inmunosupresores puede prevenir la 
elevación de la presión arterial; por ejemplo, la infusión 
de angiotensina II durante 14 días, seguida por una 
dieta alta en sal durante 5 semanas, produce hiperten-
sión arterial grave asociada con una considerable vaso-
constricción renal60. Sin embargo, cuando además de 
la angiotensina II se administra micofenolato de mofe-
tilo al mismo tiempo, la hipertensión que se desarrolla 
con la dieta alta en sodio es limítrofe y en la 

Figura 1. Hemodinámica renal en ratas que recibieron 14 días de infusión de angiotensina II (Ang II), así como PPADS 
(un antagonista específico de los receptores P2X y P2Y de ATP) en forma aguda. Los grupos que recibieron PPADS 
tuvieron una disminución de las resistencias aferente y eferente, lo que permitió un aumento del flujo sanguíneo renal. 
Como consecuencia, la filtración glomerular por nefrona aumentó a valores similares a los normales. Estos resultados 
demuestran claramente que en la hipertensión inducida por Ang II, la vasoconstricción provocada por la Ang II puede 
ser revertida con un antagonista específico de ATP, lo que sugiere una importante contribución de los receptores 
de ATP.
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hemodinámica glomerular solo se observa una eleva-
ción moderada de las resistencias renales; el flujo san-
guíneo y la filtración glomerular por nefrona se 
mantienen en valores cercanos a lo normal, y estos 
cambios se asociaron a una disminución significativa 
del infiltrado intersticial60.

El desarrollo de hipertensión arterial, sensibilidad a 
la sal y receptores purinérgicos se puede simplificar de 
la siguiente manera. Ante una hiperactividad del sis-
tema nervioso simpático, una excesiva estimulación del 
sistema renina-angiotensina o bien una susceptibilidad 
genética, ciertas situaciones de estrés pueden producir 
una elevación transitoria de la presión arterial8,9,61,62. 
Cuando esta elevación sobrepasa los límites de la 
autorregulación renal, puede inducir un aumento en la 
concentración de ATP del líquido intersticial renal, oca-
sionando una lesión intersticial leve. La transmisión de 

la presión arterial elevada a los capilares peritubulares 
lesiona sus paredes, permitiendo la salida de plasma y 
de leucocitos al túbulo-intersticio; los leucocitos pro-
mueven la inflamación local y aumentan la gravedad 
de la lesión microvascular y tubulointersticial63,64. Estas 
alteraciones producen isquemia focal, liberación de 
citocinas, regulación al alta de moléculas de adhesión 
y rarefacción capilar, prolongando la respuesta inflama-
toria8,9. Bajo estas condiciones, los efectos de la angio-
tensina II, la elevación del ATP y la inflamación 
tubulointersticial son factores críticos para la progresión 
de la lesión renal21,34; estos factores, a su vez, aumen-
tan la sensibilidad de los mecanismos renales que 
regulan la presión arterial y la excreción de sal y agua, 
con lo que se desarrolla retención de sodio (Fig. 2)65.

A medida que la presión arterial aumenta, la perfu-
sión glomerular mejora, ya que disminuyen la hipoxia 

Figura 2. Mecanismo para explicar el efecto de la infusión de angiotensina II (Ang II) durante 14 días y la vasoconstricción 
inducida por los receptores P2X1 y P2X7. La infusión de Ang II produce vasoconstricción e hipertensión sistémica, así 
como aumento del ATP en el líquido intersticial renal. Las células musculares de las arteriolas poseen receptores P2X1 
y P2X7, que al activarse aumentan las resistencias aferente (RA) y eferente (RE). La contracción de las células 
mesangiales produce una disminución del coeficiente de ultrafiltración (Kf). Esto conduce a una caída en la filtración 
glomerular (FG) por nefrona. De forma concomitante, las células inflamatorias del intersticio tubular producen una 
mayor elevación de ATP y una sobreexpresión de los receptores P2X en las arteriolas y en las células inflamatorias. 
Colectivamente, estos cambios inducen la producción de citocinas y factores de crecimiento y quimiotácticos; 
sustancias que exacerban la infiltración por células inflamatorias e intensifican la vasoconstricción renal. La isquemia 
renal induce estrés oxidativo, con aumento de la producción local de adenosina (ADO), de Ang II (SRA) y del tono 
simpático (SNS), con disminución del óxido nítrico (NO), y estas alteraciones modifican la excreción de sodio esperable 
ante la elevación de la presión arterial. FSR: flujo sanguíneo renal.
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y la isquemia tubular, con lo que la oxigenación y la 
perfusión del riñón regresan a valores cercanos a lo 
normal26. Al mismo tiempo, la elevación del flujo san-
guíneo renal estimula la producción de óxido nítrico, 
con lo que se incrementa la excreción de sodio27; la 
presión arterial permanece elevada como resultado de 
las alteraciones tubulointersticiales mencionadas, pero 
se requiere de esta elevación para mantener una 
excreción normal de sodio65. Entonces se desarrolla 
hipertensión sensible a la sal y se restablece la homeos-
tasis, pero a expensas de la hipertensión26,27. Por con-
siguiente, la lesión tubulointersticial sin lesión glomerular 
es una condición frecuente en etapas tempranas de la 
hipertensión. La resistencia vascular, que aumenta ini-
cialmente en respuesta a la hipertensión, produce 
hipertrofia de la arteriola aferente. A  pesar de estos 
cambios adaptativos, después de cierto tiempo se 
desarrollan hiperperfusión e hipertensión glomerular, 
así como daño a los capilares glomerulares, con la 
subsecuente disminución en la excreción de sodio63,65,66.

Conclusión
Para que se desarrolle hipertensión arterial se requiere 

una combinación particular de factores renales, tales 
como aumento de ATP extracelular y concentraciones 
elevadas de angiotensina II intersticial, aumento en el 
estrés por flujo y activación de los receptores P2X, con 
infiltración de células inflamatorias en el intersticio renal 
que producen interleucinas y factores de crecimiento. La 
alteración de varios mecanismos fisiopatológicos induce 
la vasoconstricción renal que se observa en la hiperten-
sión arterial; la hipoxia, el estrés oxidativo y la inflama-
ción son parte de estos mecanismos fisiopatológicos que 
inducen sensibilidad a la sal y progresión de la lesión 
renal que puede llevar a insuficiencia renal terminal.
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