

Response predictors to cardiac resynchronization therapy in chronic heart failure: a 10-year-cardiovascular center experience

Predictores de respuesta a la terapia de resincronización cardíaca en insuficiencia cardíaca crónica: 10 años de experiencia en un centro cardiovascular

Juan C. Plata-Corona¹, Fabio Solis-Jiménez¹, Maximiliano Flores-Flamand¹, Carlos A. Dattoli-García¹, Ángel A. Priego-Ranero¹, Jorge D. Sierra-Lara², and Carlos R. Sierra-Fernández^{3*}

¹Department of Clinical Cardiology; ²Coronary Care Unit; ³Department of Electrophysiology. National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico

Abstract

Background: Cardiac resynchronization therapy (CRT) has been established as an effective therapy for heart failure with reduced ejection fraction. Randomized clinical trials have shown its impact on mortality and HF hospitalizations, as well as improvement of symptoms and quality of life. **Objectives:** Finding clinical, electrocardiographic, and echocardiographic variables that may predict the response to cardiac resynchronization therapy (CRT). **Methods:** We performed a single-center, observational, analytic, and retrospective study that included 102 patients with heart failure (HF) diagnosis who underwent CRT according to guideline-directed therapy from January 2010 to April 2020 in a third-level center. CRT response was defined as an improvement of New York Heart Association functional class in at least 1 category associated with a recovery of $\geq 5\%$ in the left ventricular ejection fraction (LVEF). **Results:** Our study population was 102 patients of which 61 (59.8%) were men. The mean age at HF diagnosis was 54 ± 18.7 years. Ischemic heart disease was the etiology in 37 (36.3%) cases. Fifty-one (50%) patients were classified as responders. Responders had wider QRS, and lower LVEF and right ventricular fractional area change at baseline. After CRT, responders had a greater reduction of QRS duration, and improvement in LVEF, global longitudinal strain, and echocardiographic dyssynchrony parameters. Multivariate regression analysis showed that left bundle branch block (LBBB), left ventricular end-diastolic volume (LVEDV), tricuspid annular plane systolic excursion (TAPSE), and baseline difference of pre-ejection periods were predictors of a positive response to CRT in this population. **Conclusions:** LBBB, TAPSE, LVEDV, and pre-ejection time difference are independent variables that can predict adequate response to CRT.

Keywords: Heart failure. Cardiac resynchronization therapy. Predictors. Ventricular synchrony.

Resumen

Antecedentes: La terapia de resincronización cardíaca (TRC) se ha establecido como una terapia efectiva para la insuficiencia cardíaca con fracción de eyección reducida. Ensayos clínicos aleatorizados han demostrado su impacto en la mortalidad y hospitalizaciones por insuficiencia cardíaca, así como la mejora de los síntomas y la calidad de vida. **Objetivos:** Determinar las variables clínicas, electrocardiográficas y ecocardiográficas que puedan predecir la respuesta a la terapia de resincronización cardíaca (TRC). **Método:** Estudio unicéntrico, observacional, analítico, retrospectivo, que incluyó 102 pacientes con diagnóstico de IC sometidos a TRC y terapia dirigida por guías, de enero de 2010 a abril de 2020, en un centro de tercer nivel. La respuesta a TRC fue definida como mejoría de la clase funcional de la New York Heart Association en al menos 1 categoría, asociado

***Correspondence:**

Carlos R. Sierra-Fernández

E-mail: cr.sierrafrdez@gmail.com

1405-9940 / © 2023 Instituto Nacional de Cardiología Ignacio Chávez. Published by Permanyer. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Date of reception: 23-10-2022

Date of acceptance: 25-03-2023

DOI: 10.24875/ACM.22000252

Available online: 1-3-2024

Arch Cardiol Mex. 2024;94(1):15-24

www.archivoscardiologia.com

con una recuperación $\geq 5\%$ en la fracción de expulsión del ventrículo izquierdo (FEVI). **Resultados:** Incluimos a 102 pacientes, 61 (59.8%) fueron hombres. El promedio de edad al diagnóstico de IC fue 54 ± 18.7 años. La cardiopatía isquémica fue la etiología en 37 (36.3%) pacientes. 51 (50%) pacientes, fueron clasificados como respondedores. Los respondedores presentaron QRS amplio, menor FEVI y menor fracción de acortamiento del ventrículo derecho al inicio del estudio. Despues de la TRC, los respondedores tuvieron una mayor reducción en la duración del QRS, mejoría en la FEVI, strain longitudinal global y parámetros de disincronía ecocardiográfica. El análisis de regresión multivariado mostró que el bloqueo de rama izquierdo (BRI), el volumen telediastólico del ventrículo izquierdo (VTDVI) la excursión sistólica del plano anular tricuspídeo (TAPSE) y la diferencia basal del período expulsivo fueron predictores de respuesta positiva a TRC. **Conclusiones:** BRI, TAPSE, VTDVI y la diferencia basal de períodos preexpulsivos son variables independientes que predicen respuesta adecuada a TRC.

Palabras clave: Insuficiencia cardíaca. Terapia de resincronización cardíaca. Predictores. Sincronía ventricular.

Introduction

Cardiac resynchronization therapy (CRT) has been established as an effective therapy for heart failure (HF) with reduced ejection fraction. Randomized clinical trials have shown its impact on mortality and HF hospitalizations, as well as improvement of symptoms and quality of life (QoL)¹⁻⁸. However, a substantial proportion of patients receiving CRT, ranging from 20% to 40%, is classified as non-responders, presenting a lack of improvement or even worsening of outcomes after the intervention^{1,7,9-14}. Considering this, as well as the increasing list of guideline-approved indications for CRT and, with the understanding that CRT is a high-cost therapy that is not exempt from complications, interest has migrated toward the identification of variables that predict response to CRT before its application.

The present research aims at analyzing clinical, electrocardiographic, and echocardiographic variables that can act as predictors of CRT response.

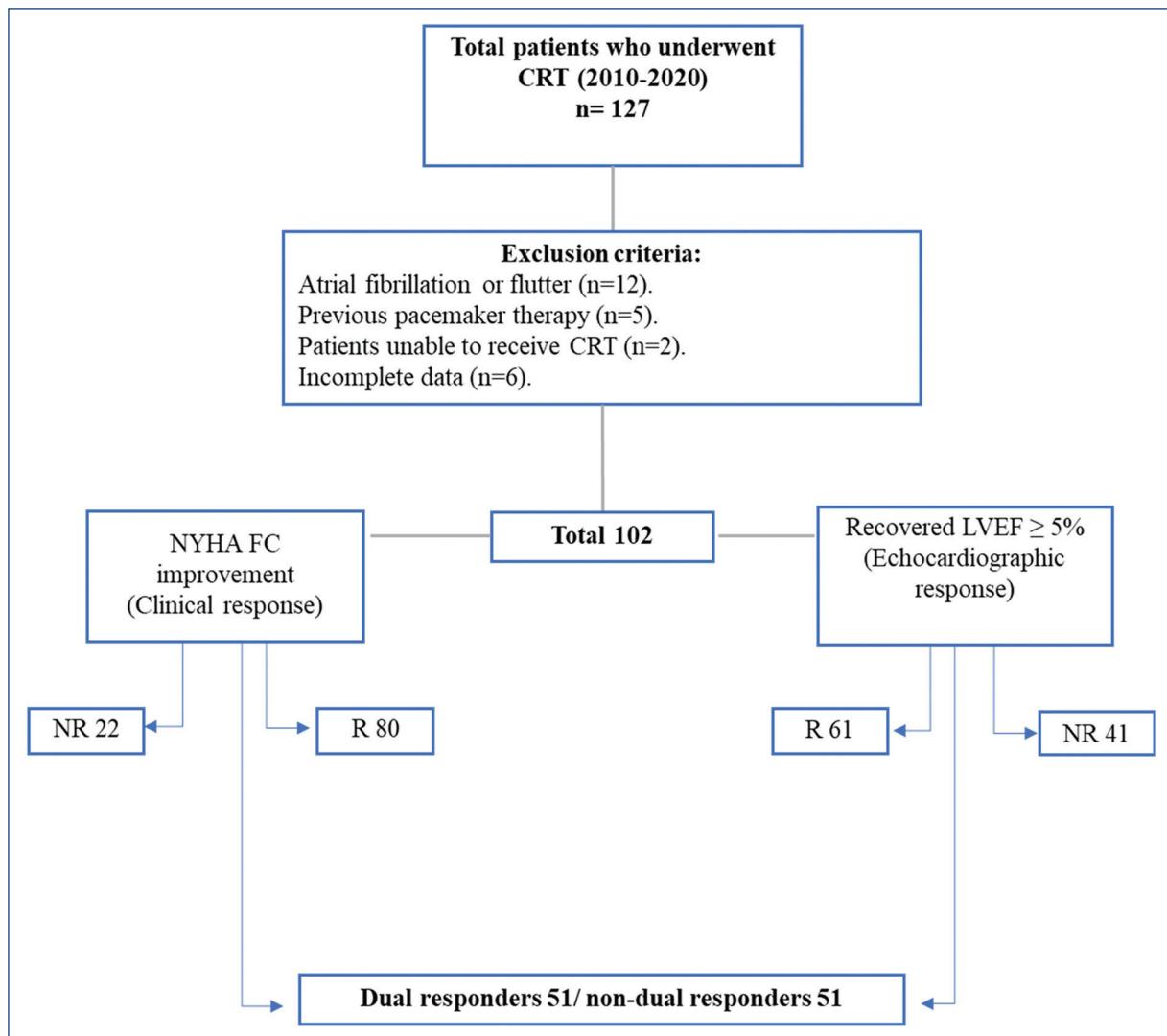
Materials and methods

We conducted an observational, retrospective, retrospective, and single-center study in patients with HF diagnosis who underwent CRT in a period from January 2010 to April 2020 in the National Institute of Cardiology in Mexico City. The study was designed to analyze clinical, electrocardiographic, and echocardiographic data before and after CRT to identify variables capable of predicting a successful response to therapy.

A successful response to CRT was defined as an improvement in New York Heart Association (NYHA) functional class in conjunction to an increase of at least 5% in the left ventricle ejection fraction (LVEF).

Inclusion criteria for the study were adults over 18 years old, with HF diagnosis and who had undergone CRT, based on recommendations approved for this treatment, from January 2010 to April 2020. All those

with recommendation IA, IIa, and IIb for CRT were considered candidates¹⁵. Patients were excluded if they had a previous diagnosis of atrial flutter/fibrillation, previous pacemaker implantation, and loss of follow-up or incomplete data up to 6 months after CRT. We defined the left bundle branch block (LBBB) according to AHA/ACC/HRS recommended criteria¹⁶.


Statistical analysis

Qualitative variables were described as frequencies and proportions and were analyzed with Pearson's independence test (χ^2) or Fisher's exact test. Quantitative variables were analyzed with Shapiro-Wilk's normality test and described as parametric (mean, standard deviation, and minimum-maximum) or non-parametric (median, interquartile range, and minimum-maximum). We constructed a block-entry logistic regression model, adjusted by age and sex, for determining the risk factors that predicted response to CRT. $P < 0.05$ was considered statistically significant for all analyses. Data were analyzed with Statistical Package for the Social Sciences ver. 25.

Results

The overall population of our study included initially 127 patients, after applying the exclusion criteria only 102 patients were considered (Fig. 1). Within these exclusion criteria, we considered those who had previously had a pacemaker placed and those with previously diagnosed atrial fibrillation or flutter, as they are not based on the same selection criteria for CRT.

Of these 102 patients, 41 were women (40.2%), and 61 were men (59.8%). The mean age at HF diagnosis was 54 ± 18.7 years, and the mean age at CRT device implantation was 56 ± 14.5 years. The average time from diagnosis to CRT was 3.16 ± 2.7 years. HF etiology was ischemic heart disease in 37 (36.7%) patients, while non-ischemic etiology (chagasic, peripartum, chronic myocarditis, etc.)

Figure 1. Patient selection and classification.

CRT: cardiac resynchronization therapy; FC: functional class; LVEF: left ventricular ejection fraction; NR: non-responder; NYHA: New York Heart Association; R: responder.

was diagnosed in the remaining population. Systemic hypertension was present in 50 (49%) patients and diabetes mellitus in 27 (26.5%). Most patients were classified as NYHA II-III (92.2%). Regarding the type of device implanted, 80 (78.4%) were undergone to CRT-defibrillator (CRT-D).

A successful response to CRT according to functional class and LVEF was achieved in 51 (50%), while the rest were classified as non-responders. Only 87 patients (85.3%) had an electrocardiogram (ECG) with LBBB registered before device implantation. PR interval was 188.7 ± 47.5 ms and 148.9 ± 35.8 ms before and after therapy, while QRS mean duration went from 160 ± 29.4 ms to 124.7 ± 28 ms.

The baseline echocardiographic data showed mean LVEF of $23.7 \pm 7.7\%$, left ventricular end-diastolic volume (LVEDV) of 139.1 ± 66.4 mL, left ventricular end-systolic volume (LVESV) of 108.5 ± 60.5 mL and global longitudinal strain (GLS) $-8.1 \pm 4.4\%$ before CRT, all of which improved afterward (LVEF $35.5 \pm 11.2\%$, LVEDV 121.3 ± 51.1 mL, LVESV 87 ± 47.5 mL, and GLS $-11 \pm 3.3\%$). General population characteristics are summarized in **table 1**.

Analysis of the population divided into responders and non-responders showed similar clinical and biochemical characteristics (**Table 2**). ECG findings showed a wider baseline QRS in responders (155 ± 31 ms vs. 167 ± 26 ms; $p = 0.04$). Furthermore, QRS reduction

Table 1. General population: clinical, biochemical, electrocardiographic, and echocardiographic characteristics before and after CRT

Variables	Total (n = 102)
Age at HF diagnosis (years)	54 ± 18.7
Women, n (%)	41 (40.2)
Age at CRT (years)	56 ± 14.5
Time from HF diagnosis to CRT (years)	3.16 ± 2.7
Device CRT-D/CRT-P, n (%)	80 (78.4) / 22 (21.6)
Hypothyroidism (%)	18 (17.3)
Arterial hypertension, n (%)	50 (49)
Diabetes mellitus, n (%)	27 (26.5)
BMI Kg/m ²	26 ± 3.9
Ischemic etiology of HF, n (%)	37 (36.3)
Complete OMT before CRT, n (%)	67 (65.7)
NYHA class, n (%)	
I	6 (5.82)
II	53 (51.9)
III	41 (40.3)
IV	2 (1.98)
LVEF improvement > 5% after CRT, n (%)	61 (58.7)
NYHA class improvement after CRT, n (%)	80 (78.4)
Dual responder, n (%)	51 (50)
Sodium before CRT mEq/L	138 ± 3.9
Creatinine before CRT mg/dL	1.14 ± 0.6
Uric acid pre-CRT mg/dL	7.05 ± 2.4
NT pro-BNP pre-CRT pg/mL	9020 ± 17913
Sodium post-CRT mEq/L	139 ± 3.2
Creatinine post-CRT mg/dL	1.16 ± 0.47
Uric acid post-CRT mg/dL	6.5 ± 2.2
NT proBNP post-CRT pg/mL	7926 ± 15608
Electrocardiogram	
LBBB pre-CRT, n (%)	87 (85.3)
PR segment pre-CRT (ms)	188.7 ± 47.5
QRS duration pre-CRT (ms)	160 ± 29.4
PR segment post-CRT (ms)	148.9 ± 35.8
QRS duration post-CRT (ms)	124.7 ± 28
Echocardiogram before CRT	
LVEF (%)	23.7 ± 7.7
LVEDV mL/m ²	139.1 ± 66.4
LVESV mL/m ²	108.5 ± 60.5
LA volume mL/m ²	51.2 ± 18.5
GLS	-8.1 ± 4.4
RVFAC (%)	37.8 ± 12.7
TAPSE	18.6 ± 4.9
PSAP mmHg	40.6 ± 14.6
VA coupling	0.53 ± 0.22

Table 1. General population: clinical, biochemical, electrocardiographic, and echocardiographic characteristics before and after CRT (continued)

Variables	Total (n = 102)
Echocardiogram after CRT	
LVEF (%)	35.5 ± 11.2
LVEDV mL/m ²	121.3 ± 51.1
LVESV mL/m ²	87 ± 47.5
LA volume mL/m ²	49.9 ± 23.9
GLS	-11 ± 3.3
RVFAC (%)	38.9 ± 15.2
TAPSE	18.4 ± 4.8
PSAP mmHg	40.1 ± 16
VA coupling	0.62 ± 0.90

CRT: cardiac resynchronization therapy; BMI: body mass index; GLS: global longitudinal strain; HF: heart failure; LA: left atrium; LBBB: left bundle branch block; LVEDV: left ventricular end-diastolic volume; LVEF: left ventricle ejection fraction; LVESV: left ventricle end-systolic volume; NYHA: New York Heart Association; PSAP: pulmonary arterial systolic pressure; RVFAC: right ventricle fractional area change; TAPSE: tricuspid annular plane systolic excursion; VA: ventriculoarterial; CRT-P: CRT-pacing.

after CRT was significantly higher in the responder subgroup (16 ± 23% vs. 24 ± 17%; p = 0.04). There was no significant difference in the prevalence of LBBB among groups, even though it was more commonly present in responders (Table 3).

In echocardiographic variables, we identified a lower LVEF (26 ± 8.5% vs. 21.6 ± 6.2%), and right ventricular fractional area change (RVFAC) (41 ± 13% vs. 35 ± 12%) in patients with an adequate response to treatment (p < 0.05). Among measurements of ventricular dyssynchrony, the delay between right and left ventricular pre-ejection times was higher in the responder group (38 ± 23 ms vs. 53 ± 27 ms; p = 0.04) (Table 4).

After CRT, responders had a greater improvement in LVEF (27.4 ± 10.2% vs. 37.6 ± 9.8%; p = 0.001), GLS (-7 ± 2.5% vs. -14 ± 2.8%; p = 0.02), LVESV (100 ± 50 mL vs. 67 ± 37 mL; p = 0.01), and LVEDV (132 ± 55 mL vs. 106 ± 42 mL; p = 0.04). There was also a reduction in the proportion of patients with severe mitral regurgitation, the difference between pre-ejection times, and the delay in peak-to-peak septal to posterior wall strain, all of which indicate a greater improvement of the left ventricular function and ventricular synchrony in patients responding to CRT (Table 5).

Age and sex-adjusted multivariate regression analysis demonstrated that LBBB (OR 3.81, 95% IC 1.110-35.5; p = 0.003), LVEDV (OR 0.926, 95% IC 0.7-0.97; p = 0.009), tricuspid annular plane systolic excursion (TAPSE) (OR 2.147, 95% IC 1.203-3.832; p = 0.01), and the basal difference between pre-ejection times (OR 4.5, 95% IC 1.170-27.12; p = 0.001) were associated to

(Continues)

Table 2. Clinical and biochemical variables according to CRT response

Variables	Non-responders (n = 51)	Responders (n = 51)	p
Women, n (%)	19 (18.6)	22 (21.6)	0.5
Age at HF diagnosis (years)	53 ± 12	55 ± 13	0.56
Age at CRT	56.3	55.6	0.81
Device, n (%)			0.81
CRT-P	10 (19.6)	12 (23.5)	
CRT-D	41 (80.4)	39 (76.5)	
Arterial hypertension, n (%)	25 (24.5)	25 (24.5)	1.0
Diabetes, n (%)	11 (10.8)	16 (15.7)	0.26
BMI kg/m ²	25.9 ± 4.5	26.1 ± 3.4	0.79
Ischemic etiology of HF, n (%)	19 (18.6)	18 (17.6)	0.83
OMT previous to CRT, n (%)	30 (29.4)	37 (36.3)	0.14
NYHA pre-CRT, n (%)			
I	6 (5.9)	0 (0)	0.65
II	27 (26.5)	26 (25.5)	
III	17 (16.7)	24 (23.5)	
IV	1 (1)	1 (1)	
Sodium pre-CRT mEq/L	138.2 ± 3.9	138.3 ± 4	0.91
Sodium post-CRT mEq/L	138.6 ± 3	139.4 ± 3.4	0.29
Creatinine pre-CRT mg/dL	1.23 ± 0.7	1.06 ± 0.4	0.21
Creatinine post-CRT mg/dL	1.2 ± 0.5	1 ± 0.3	0.09
Uric acid pre-CRT mg/dL	7.3 ± 2.7	6.8 ± 2.1	0.4
Uric acid post-CRT mg/dL	6.9 ± 2.6	6.1 ± 1.8	0.15
NT proBNP pre-CRT pg/ml	7935.8 ± 15090	10053 ± 20571	0.71
NT proBNP post-CRT pg/ml	7412 ± 14911	8591 ± 16909	0.82

HF: heart failure; BMI: body mass index; NYHA: New York Heart Association; CRT: cardiac resynchronization therapy; CRT-D: CRT-defibrillator; CRT-P: CRT-pacing.

Table 3. Electrocardiogram before and after CRT according to response to therapy

Variables	Non-responders (n = 51)	Responders (n = 51)	p
LBBB (%)	41 (80.3)	46 (90.2)	0.16
No LBBB (%)	10 (19.7)	5 (9.8%)	0.18
PR segment pre-CRT (ms) mean ± SD	186 ± 41	191 ± 54	0.65
QRS duration pre-CRT (ms) mean ± SD	155 ± 31	167 ± 26	0.04
QRS ≥ 150 ms, n (%)	26 (51)	36 (70.5)	0.03
QRS 120-149 ms (%)	25 (49)	15 (29.4)	0.52
PR segment post-CRT (ms) mean ± SD	152 ± 43	145 ± 27	0.41
QRS duration post-CRT (ms) mean ± SD	126 ± 31	123 ± 26	0.58
Delta QRS (%) mean ± SD	16 ± 13	24 ± 17	0.04

LBBB: left bundle branch block; SD: standard deviation; CRT: cardiac resynchronization therapy.

Table 4. Echocardiographic parameters before CRT according to response to therapy

Variables	Non-responders (n = 51)	Responders (n = 51)	p
LVEF (%)	26 ± 8.4	21.5 ± 6.2	0.003
LVEDV mL/m ²	139 ± 54	139 ± 80	0.98
LVESV mL/m ²	101 ± 50	118 ± 72	0.37
LA volume mL/m ²	52 ± 19	50 ± 18	0.65
GLS	-6 ± 2.5	-11 ± 2.9	0.054
E/e' relation	19 ± 10	19 ± 9	0.47
RVFAC (%)	41 ± 13	35 ± 12	0.04
TAPSE	18 ± 5	20 ± 5	0.06
TRV m/s	3 ± 1	3 ± 1	0.68
Tricuspid's velocity	9 ± 2	9 ± 3	0.64
PSAP (mmHg)	41 ± 17	41 ± 13	0.92
VA coupling	1 ± 0	1 ± 0	0.69
LVOT pre-ejection period (ms)	127 ± 55	148 ± 38	0.19
RVOT pre-ejection period (ms)	105 ± 31	104 ± 30	0.64
Difference between LVOT and RVOT pre-ejection periods (ms)	38 ± 23	53 ± 27	0.04
Septal and posterior wall activation delay (ms)	200 ± 89	205 ± 71	0.90
Diastolic filling time (%)	48 ± 15	50 ± 13	0.60
Severe mitral regurgitation n (%)	12 (23)	8 (15.6)	0.07

CRT: cardiac resynchronization therapy; GLS: global longitudinal strain; LA: left atrium; LBBB: left bundle branch block; LVEDV: left ventricular end-diastolic volume; LVEF: left ventricle ejection fraction; LVESV: left ventricle end-systolic volume; LVOT: left ventricular outflow tract; NYHA: New York Heart Association; PSAP: pulmonary arterial systolic pressure; RVFAC: right ventricle fractional area change; RVOT: right ventricular outflow tract; TAPSE: tricuspid annular plane systolic excursion; VA: ventriculoarterial.

successful response to CRT. Unlike previously reported in other cohorts, gender, HF, and basal QRS duration were not predictors of improvement (Table 6 and Fig. 2).

Discussion

There is robust evidence that shows a reduction in mortality and improvement of symptoms and QoL in HF patients that undergo CRT¹⁻⁸; however, even with strict application of currently approved selection criteria, 20-40% of patients do not respond adequately to therapy^{1,7,9-14}. This is a growing concern on account of the rise in prevalence of HF globally and broadening of selection criteria for CRT by international guidelines¹⁷.

In our population, the mean age at diagnosis of HF was 54 years old, lower than other studies in which it is around 65 years old¹⁸⁻²⁰, and the proportion of women was higher than in most other studies on the matter (40.2 vs. 20-30%)^{19,21}. Furthermore, ischemic heart disease was

the etiology of HF in only 36.7%, while in other studies, such as that of van Bommel et al.²¹, it represented the majority of the population. All of these differences from other studies in the literature could be explained by the selection bias conditioned by our center's patient population and explain the fact that age, sex, and etiology were not predictors of response to therapy.

There is no universally accepted definition of response to CRT, and the reported success of treatment varies from 32% to 91% according to the criteria used²². Our study used a definition of response to CRT that considered an improvement by clinical assessment (NYHA functional class) associated with LVEF improvement ($\geq 5\%$) by echocardiography since it is the most widely used echocardiographic parameter due to its clinical prognostic value²³. While it is true that there is no specific cutoff point for LVEF increase to consider a patient a responder, multiple studies have proposed a cutoff of at least 5%^{18,24}.

Table 5. Echocardiographic parameters after CRT according to response to therapy

Variables	Non-responders (n = 51)	Responders (n = 51)	p
LVEF (%)	27.4 ± 10.2	37.6 ± 9.8	0.001
LVEDV mL/m ²	132 ± 55	106 ± 42	0.04
LVESV mL/m ²	100 ± 50	67 ± 37	0.01
LA volume mL/m ²	53 ± 25	46 ± 23	0.34
GLS	-7 ± 2.5	-14 ± 2.8	0.02
E/e' relation	15 ± 7	13 ± 7	0.5
RVFAC (%)	37 ± 16	42 ± 13	0.2
TAPSE	15 ± 5	20 ± 5	0.01
TRV m/s	3 ± 1	3 ± 0	0.8
Tricuspid's velocity	10 ± 4	11 ± 2	0.27
PSAP (mmHg)	41 ± 19	39 ± 12	0.52
VA coupling	1 ± 1	1 ± 0	0.1
LVOT pre-ejection period (ms)	136 ± 36	125 ± 33	0.30
RVOT pre-ejection period (ms)	107 ± 35	107 ± 30	0.99
Difference between LVOT and RVOT pre-ejection periods (ms)	39 ± 26	22 ± 20	0.03
Septal and posterior wall activation delay (ms)	137.5 ± 30	97.5 ± 37	0.04
Diastolic filling time (%)	48.5 ± 14	47.0 ± 15	0.76
Severe mitral regurgitation n (%)	8 (15.6)	3 (5.8)	0.02

CRT: cardiac resynchronization therapy; GLS: global longitudinal strain; LA: left atrium; LBBB: left bundle branch block; LVEDV: left ventricular end-diastolic volume; LVEF: left ventricle ejection fraction; LVESV: left ventricle end-systolic volume; LVOT: left ventricular outflow tract; NYHA: New York Heart Association; PSAP: pulmonary arterial systolic pressure; RVFAC: right ventricle fractional area change; RVOT: right ventricular outflow tract; TAPSE: tricuspid annular plane systolic excursion; VA: ventriculoarterial.

When assessing both aspects of the definition the rate of response in the population of our study was 50%. If patients were classified as responders according to functional class only, the rate of success would be 78.4%, and it would be 58.7% if the classification was through LVEF exclusively. This confirms the findings in other studies that describe clinical improvement as predominant over echocardiographic parameters¹⁸.

The heterogeneous approach to defining response to CRT is a potential barrier to progress in this field. If these different response criteria show poor agreement, then the ability to generalize results from multiple studies is severely impaired, and a standard criteria need to be developed²².

Another important aspect of the population of this study is that only 65.7% fulfilled the requirement of optimal medical therapy for HF before device implantation which is considerably lower than compliance in other studies that reached up to 80%²⁵. This could be

a factor associated with a lower response to CRT in our study.

Analysis between responders and non-responders in this study showed no significant difference in clinical or biochemical variables. Both groups have CRT-D devices implanted in 80% of cases; this indicates a high risk of sudden cardiac death in the cohort and may correlate with greater severity of disease compared to other studies that had a greater proportion of patients implanted with CRT-Pacing^{24,26}.

Responders to CRT had a longer basal QRS duration and a greater shortening after device implantation. This finding is compatible with Lapidot et al., who described a reduction of QRS duration of 20 ms or more as an independent predictor of improvement as measured by major adverse cardiovascular events²⁷.

About echocardiographic measurements, LVEF and RVFAC before initiation of therapy were lower in

Figure 2. Predictors of good response to CRT.

CRT: cardiac resynchronization therapy; TAPSE: tricuspid annular plane systolic excursion; LVEDV: left ventricular end-diastolic volume.

responders than non-responders. These parameters and electrocardiographic differences previously described are consistent with a population with worse ventricular function and more evidence of dyssynchrony responding favorably to therapy.

After CRT, responders had a significant reduction of the left ventricular volumes and mitral regurgitation which represents reverse ventricular remodeling and functional improvement in this group, as reported previously by Pitzalis et al.²⁸ and Jin et al.²⁵.

Before device implantation, there was no significant difference in GLS between groups; however, responders had a greater improvement in this parameter. This coincides with a meta-analysis by Bazoukis et al.²⁹ who propose GLS as a defining factor of a successful response to CRT.

Comparison between groups also showed a significant difference in TAPSE, which was reduced in non-responders after CRT while staying the same in those with a proper response. This is probably a sign of adverse remodeling and a continuation of the natural progression of HF in the non-responder population. TAPSE has also been previously assessed as a predictor of CRT response by Cappelli et al., who found a

significant correlation between this parameter and reverse remodeling of the left ventricle, unlike with other right ventricle parameters³⁰.

After multivariate regression analysis, LBBB, LVEDV, TAPSE, and the delay in pre-ejection periods were response predictors. LBBB as a predictor of CRT response has been extensively validated, nevertheless, the Latino population are underrepresented in all cohort studies designed to discern predictors of good response to CRT^{20,31-33}. The role of basal ventricular volumes is confirmed, as lower quantities are associated with a higher rate of clinical response^{19,25,31,34}.

Dyssynchrony measurement by echocardiography has not been a predictor of response in previous studies³⁵; however, it showed a significant correlation in this population, which might be related to demographic and etiologic particularities outlined earlier.

We highlight that previously validated variables such as sex, etiology, and QRS duration^{1-3,7,8,19} were not predictors of response to therapy in our study. This could be explained by various factors, including the more significant proportion of women and non-ischemic etiology of heart disease as compared with previous cohorts.

Table 6. CRT response prediction variables multivariate regression analysis

Variables	OR (95% IC)	p
Female sex	2.54 (0.172-37.57)	0.49
Ischemic etiology	1.2 (0.76-18.9)	0.89
LBBB	3.81 (1.110-35.5)	0.003
QRS duration pre-CRT	0.962 (0.759-1.219)	0.74
LVEF pre-CRT	0.886 (0.732-1.076)	0.226
LA volume pre-CRT	0.943 (0.861-1.03)	0.205
LVESV pre-CRT	0.814 (0.7-1.94)	0.78
LVEDV pre-TCR	0.926 (0.7-0.97)	0.009
Severe mitral regurgitation pre-CRT	2.82 (0.26-30.78)	0.39
TAPSE pre-CRT	2.147 (1.203-3.832)	0.01
Difference between LVOT and RVOT pre-ejection periods	4.5 (1.170-27.12)	0.001
Age at CRT	0.95 (0.861-1.05)	0.37
Time between HF diagnosis and CRT	1.25 (0.786-2.1)	0.34
BMI	0.94 (0.805-1.26)	0.94

CRT: cardiac resynchronization therapy; BMI: body mass index; GLS: global longitudinal strain; HF: heart failure; LA: left atrium; LBBB: left bundle branch block; LVEDV: left ventricular end-diastolic volume; LVEF: left ventricle ejection fraction; LVESV: left ventricle end-systolic volume; LVOT: left ventricular outflow tract; NYHA: New York Heart Association; PSAP: pulmonary arterial systolic pressure; RVFAC: right ventricle fractional area change; RVOT: right ventricular outflow tract; TAPSE: tricuspid annular plane systolic excursion.

Conclusions

The present study is the first to assess the characteristics and response of HF patients undergoing CRT in Mexico, showing a population with demographic and clinical variables different from those reported in the international literature and confirming that there are electrocardiographic and echocardiographic variables such as LBBB, LVEDV, TAPSE, and the basal difference between pre-ejection times capable of predicting successful response to treatment, in addition to showing that other previously validated variables were not predictors of response in our study.

Funding

None.

Conflicts of interest

None.

Ethical disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data. The authors declare that no patient data appear in this article.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

References

- Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. *N Engl J Med.* 2002;346:1845-53.
- Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. *N Engl J Med.* 2004;350:2140-50.
- Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. *N Engl J Med.* 2005;352:1539-49.
- Linde C, Abraham WT, Gold MR, St John Sutton M, Ghio S, Daubert C. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. *J Am Coll Cardiol.* 2008;52:1834-43.
- Goldenberg I, Kutya V, Klein HU, Cannom DS, Brown MW, Dan A, et al. Survival with cardiac-resynchronization therapy in mild heart failure. *N Engl J Med.* 2014;370:1694-701.
- Tang AS, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. *N Engl J Med.* 2010;363:2385-95.
- Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. *N Engl J Med.* 2001;344:873-80.
- Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. *JAMA.* 2003;289:2685-94.
- Auricchio A, Prinzen FW. Non-responders to cardiac resynchronization therapy: the magnitude of the problem and the issues. *Circ J.* 2011;75:521-7.
- Prinzen FW, Vernooy K, Auricchio A. Cardiac resynchronization therapy: state-of-the-art of current applications, guidelines, ongoing trials, and areas of controversy. *Circulation.* 2013;128:2407-18.
- Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT). *Circulation.* 2011;123:1061-72.
- Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. *Am J Cardiol.* 2003;91:684-8.
- Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. *J Am Coll Cardiol.* 2002;39:2026-33.
- Daubert JC, Saxon L, Adamson PB, Auricchio A, Berger RD, Beshai JF, et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. *Europace.* 2012;14:1236-86.
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. *Eur Heart J.* 2016;37:2129-2200.
- Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. *J Am Coll Cardiol.* 2009;53:992-1002.

17. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur Heart J*. 2021;42:3599-726.
18. Abreu A, Oliveira M, Silva Cunha P, Santa Clara H, Santos V, Portugal G, et al. Predictors of response to cardiac resynchronization therapy: a prospective cohort study. *Rev Port Cardiol*. 2017;36:417-25.
19. Rinkuniene D, Bucyte S, Ceseviciute K, Abramavicius S, Baronaitė-Duduniene K, Laukaiteiene J, et al. Predictors of positive response to cardiac resynchronization therapy. *BMC Cardiovasc Disord*. 2014;14:55.
20. Hsu JC, Solomon SD, Bourgoun M, McNitt S, Goldenberg I, Klein H, et al. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome: the MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy) study. *J Am Coll Cardiol*. 2012;59:2366-73.
21. van Bommel RJ, Bax JJ, Abraham WT, Chung ES, Pires LA, Tavazzi L, et al. Characteristics of heart failure patients associated with good and poor response to cardiac resynchronization therapy: a PROSPECT (Predictors of Response to CRT) sub-analysis. *Eur Heart J*. 2009;30:2470-7.
22. Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD, et al. Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. *Circulation*. 2010;121:1985-91.
23. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. *JACC Cardiovasc Imaging*. 2011;4:98-108.
24. Lin H, Zhou Y, Xu G. Predictors for cardiac resynchronization therapy response: the importance of QRS morphology and left ventricular lead position. *Int Heart J*. 2014;55:256-63.
25. Jin H, Gu M, Hua W, Fan XH, Niu HX, Ding LG, et al. Predictors of super-response to cardiac resynchronization therapy: the significance of heart failure medication, pre-implant left ventricular geometry and high percentage of biventricular pacing. *J Geriatr Cardiol*. 2017;14:737-42.
26. Parsai C, Bijnens B, Sutherland GR, Baltabaeva A, Claus P, Marciniak M, et al. Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. *Eur Heart J*. 2009;30:940-9.
27. Lapidot D, Rav-Acha M, Bdolah-Abram T, Farkash R, Glikson M, Hasin T. QRS narrowing following CRT implantation: predictors, dynamics, and association with improved long-term outcome. *J Clin Med*. 2022;11:1279.
28. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. *J Am Coll Cardiol*. 2002;40:1615-22.
29. Bazoukis G, Thomopoulos C, Tse G, Tsiofis K, Nihoyannopoulos P. Global longitudinal strain predicts responders after cardiac resynchronization therapy-a systematic review and meta-analysis. *Heart Fail Rev*. 2022;27:827-36.
30. Cappelli F, Cristina Porciani M, Ricceri I, Perrotta L, Ricciardi G, Pieragnoli P, et al. Tricuspid annular plane systolic excursion evaluation improves selection of cardiac resynchronization therapy patients. *Clin Cardiol*. 2010;33:578-82.
31. Park MY, Altman RK, Orencole M, Kumar P, Parks KA, Heist KE, et al. Characteristics of responders to cardiac resynchronization therapy: the impact of echocardiographic left ventricular volume. *Clin Cardiol*. 2012;35:777-80.
32. Sweeney MO, van Bommel RJ, Schalij MJ, Borleffs CJ, Hellkamp AS, Bax JJ. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. *Circulation*. 2010;121:626-34.
33. Tian Y, Zhang P, Li X, Gao Y, Zhu T, Wang L, et al. True complete left bundle branch block morphology strongly predicts good response to cardiac resynchronization therapy. *Europace*. 2013;15:1499-506.
34. Díaz-Infante E, Mont L, Leal J, García-Bolao I, Fernández-Lozano I, Hernández-Madrid A, et al. Predictors of lack of response to resynchronization therapy. *Am J Cardiol*. 2005;95:1436-40.
35. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlini J, et al. Results of the predictors of response to CRT (PROSPECT) trial. *Circulation*. 2008;117:2608-16.