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Resumen

Los esfingolipidos (esfingomielina, glucolipidos y gangliésidos) se localizan en las membranas celulares, el plasma y las li-
poproteinas. En pacientes con enfermedades cardiovasculares, renales y metabdlicas, el perfil de los esfingolipidos y sus
metabolitos (ceramida, esfingosina y esfingosina-1-fosfato) se modifica, y estos cambios pueden explicar las alteraciones en
algunas respuestas celulares, como la apoptosis. Ademas, se ha sugerido que la esfingosina y la esfingosina-1-fosfato pre-
vienen la COVID-19. En esta revision también se mencionan brevemente las técnicas que permiten el estudio de los esfin-
golipidos y sus metabolitos.
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Abstract

Sphingolipids (sphingomyelin, glycolipids, gangliosides) are located in cell membranes, plasma, and lipoproteins. In patients
with cardiovascular, renal, and metabolic diseases, the profile of sphingolipids and their metabolites (ceramide, sphingosine,
and sphingosine-1-phosphate) is modified, and these changes may explain the alterations in some cellular responses such
as apoptosis. Furthermore, sphingosine and sphingosine-1-phosphate have been suggested to prevent COVID-19. This review
also briefly mentions the techniques that allow us to study sphingolipids and their metabolites.
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Introduccion

Los esfingolipidos (esfingomielina, glucolipidos, gan-
gliésidos) son el segundo grupo mas abundante de li-
pidos de membrana. Los esfingolipidos, junto con el
colesterol, forman microdominios llamados balsas lipi-
dicas o lipidrafts, que regulan la funcién de las protei-
nas de membrana (receptores, enzimas, transportadores
y canales i6nicos) y participan en la transduccién de
sefales, asi como en los procesos de comunicacion
celular. La esfingomielina y sus metabolitos (ceramida,
esfingosina y esfingosina-1-fosfato) modulan procesos
celulares como la diferenciacién, la proliferacién, el
crecimiento, la senescencia y la apoptosis'?.

Metabolismo de los esfingolipidos

La sintesis de novo de los esfingolipidos se lleva a
cabo en el reticulo endoplasmico liso, iniciando con la
condensacion de la L-serina con palmitoil-CoA para
formar 3-ceto-esfinganina, en una reaccion catalizada
por la serina palmitoil-transferasa. La 3-ceto-esfingani-
na es reducida a esfinganina, la cual es N-acilada por
la ceramida sintasa para formar dihidroceramida, y
posteriormente la dihidroceramida es oxidada por la
dihidroceramida desaturasa para formar ceramida
(Fig. 1),

La esfingosina que proviene de los lisosomas puede
ser utilizada por la ceramida sintasa para formar cera-
mida. La ceramida que se forma a través de estas dos
vias puede ser transportada del reticulo endoplasmico
liso al aparato de Golgi. En la cara citosélica del apa-
rato de Golgi, la ceramida es glucosilada por la gluco-
silceramida sintasa para formar glucosilceramida, asi
como otros glucoesfingolipidos complejos, que poste-
riormente son transportados en vesiculas para incor-
porarse a las membranas plasmaticas (Fig. 1)%5.

Por otro lado, en el lumen de los primeros comparti-
mentos del aparato de Golgi, la esfingomielina sintasa
utiliza ceramida como substrato para la biosintesis de
esfingomielina. La esfingomielina también sera trans-
portada hacia la membrana plasmatica. En las mem-
branas plasmaticas, los glucoesfingolipidos y la
esfingomielina aparecen organizados en microdomi-
nios llamados balsas lipidicas o lipidrafts (Fig. 1)%°.

Es importante sefialar que en las membranas plas-
maticas también se localizan las enzimas que partici-
pan en el catabolismo de los esfingolipidos. Asi, las
esfingomielinasas hidrolizan a la esfingomielina y libe-
ran ceramida, la cual es hidrolizada por la ceramidasas
y se libera esfingosina, y esta a su vez es fosforilada

por la esfingosina cinasa para formar esfingosina-1-fos-
fato (Fig. 1)

El catabolismo de los esfingolipidos también se lleva
a cabo en los lisosomas. Los glucoesfingolipidos son
hidrolizados por las glucosidasas, en tanto que la es-
fingomielina es hidrolizada por la esfingomielinasa &ci-
da. Ambas reacciones liberan ceramida, la cual es
hidrolizada por las ceramidasas para formar esfingosi-
na. La esfingosina es transportada al reticulo endo-
plasmico liso para formar ceramida, reaccion que es
catalizada por la ceramida sintasa (Fig. 1)35.

Como se menciond anteriormente, en el aparato de
Golgi la ceramida puede ser utilizada para la sintesis
de glucoesfingolipidos o de esfingomielina; también, en
la cara trans del aparato de Golgi, asi como en la mem-
brana plasmatica, la ceramida puede ser fosforilada
por la ceramida cinasa para formar ceramida-1-fosfato
(Fig. 1)35.

Es importante sefalar que la deficiencia de enzimas
lisosomales que participan en el metabolismo de los
esfingolipidos ocasiona su acumulacion y entonces se
manifiestan las enfermedades que se mencionan en la
tabla 1. Los genes que codifican para estas enzimas
siguen un patron de herencia autosémico recesivo, con
excepcion de la enfermedad de Fabry, que sigue una
herencia ligada al sexo (cromosoma X, locus Xg22)87.

Los esfingolipidos y sus metabolitos en
las enfermedades cardiovasculares,
renales y metabdlicas

En condiciones fisioldgicas, la esfingomielina, asi
como sus metabolitos (ceramida, esfingosina y esfin-
gosina-1-fosfato), se encuentran presentes en el plas-
ma y en las lipoproteinas®. Sin embargo, se han
reportado cambios en la concentracion de esfingomie-
lina y de sus metabolitos en el plasma de pacientes
con enfermedades cardiovasculares, renales, y meta-
bélicas (Tabla 2)°%7. También, la esfingomielina y sus
metabolitos se han determinado en las arterias, el mus-
culo esquelético y cardiaco, y el tejido adiposo de pa-
cientes con obesidad o con enfermedad arterial
coronaria (Tabla 3)?8-32,

Los cambios en el contenido de esfingolipidos, asi
como de sus metabolitos, en el plasma y los tejidos se
pueden deber a cambios en la expresion o la actividad
de las enzimas que participan en su metabolismo. Con
respecto a la expresion, se ha reportado que en el
miocardio de pacientes con sobrepeso u obesidad mo-
derada, con o sin antecedentes de diabetes tipo 2,
aumenta la expresion a nivel de ARNm de las enzimas
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Figura 1. Metabolismo de los esfingolipidos en las células.

involucradas en la sintesis y la degradacion de cera-
mida, incluidas la serina palmitoiltransferasa, la esfin-
gomielinasa neutra, las ceramidasas y la esfingosina
cinasa 1; sin embargo, no se han observado cambios
en el contenido de ceramida®. En el tejido adiposo
intraabdominal de pacientes con obesidad también se
ha encontrado aumentada la expresion de las esfingo-
mielinasas a nivel de ARNm?®,

Con respecto a la actividad enzimatica, se ha repor-
tado que en el plasma de pacientes con diabetes tipo
2, insuficiencia cardiaca crénica o sindrome coronario
agudo se observa un incremento la actividad de la es-
fingomielinasa acida?"36:%".

Los esfingolipidos y sus metabolitos posiblemente se
acumulan en los tejidos y de esta manera contribuyen
en el desarrollo y el mantenimiento de las enfermeda-
des cardiovasculares, renales y metabdlicas.

Participacion de los esfingolipidos en la
apoptosis celular

La apoptosis es un proceso fisioldgico que durante
el periodo prenatal y tras el nacimiento contrarresta

los efectos de la proliferacién celular, lo cual contri-
buye en el mantenimiento de la masa celular, asi
como en la arquitectura de los o6rganos y los teji-
dos®-44. Los estudios experimentales y clinicos han
demostrado que la desregulacion de la apoptosis pue-
de contribuir al desarrollo y al mantenimiento de di-
versas enfermedades cardiovasculares; por ejemplo,
un aumento en la apoptosis conduce a atrofia y pér-
dida de la funcion de un drgano, mientras que una
disminucion de la apoptosis conduce a la remodela-
cion del érgano*e-5¢,

Por otro lado, también se ha reportado que la cera-
mida y la esfingosina regulan el ciclo celular, la
diferenciacion y la apoptosis, mientras que la esfingo-
sina-1-fosfato promueve la proliferacion y la supervi-
vencia e inhibe la apoptosis®’-6°,

A continuacion, se describen las principales vias de
sefializacion celular a través de las cuales la ceramida,
la esfingosina y la esfingosina-1-fosfato participan en
la regulacién de la apoptosis. Estas vias de sefaliza-
cion se han estudiado principalmente en cultivos de
lineas celulares de cancer, lo cual sugiere que algunas
vias de sefalizacién pueden estar involucradas en el
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Tabla 1. Enfermedades por deficiencia de enzimas
lisosomales que participan en el metabolismo de los
esfingolipidos

Enfermedad de Gaucher Glucocerebrosidasa o

B-glucosidasa
Niemann-Pick tipos Ay B Esfingomielinasa acida
(aSMasa)

Enfermedad de Krabbe Galactosil ceramidasa

Leucodistrofia metacromatica Arilsulfatasa A

Enfermedad de Fabry a-Galactosidasa

Enfermedad de Tay-Sachs Hexosaminidasa A

Enfermedad de Sandhoff Hexosaminidasas Ay B

Enfermedad de Farber Ceramidasa acida

Tabla 2. Esfingolipidos o sus metabolitos en el plasma de
pacientes con enfermedad metabédlica, renal o
cardiovascular

Esfingolipido o Enfermedad

metabolito

Esfingomielina Hipercolesterolemia familiar
Enfermedad arterial coronaria
Fibrilacion auricular
Enfermedad renal y coronaria,

diabetes tipo 1

Fibrilacion auricular
Diabetes tipo 2

Diabetes tipo 1
Enfermedad renal crénica
Sindrome metabélico
Sindrome coronario agudo
Hipertension arterial
Isquemia miocéardica

Ceramida

Esfingosina Diabetes tipo 2

Esfingosina-1-fosfato Hipertension arterial

Enfermedad arterial coronaria
Obesidad

Isquemia-reperfusion (intervencion
coronaria percutanea)

Infarto al miocardio

desarrollo tanto del cancer como de las enfermedades
cardiovasculares.

La ceramida actua directamente sobre diversas pro-
teinas intracelulares, como la proteina fosfatasa acti-
vada por ceramida (CAPP), la proteina cinasa activada
por ceramida (CAPK), la proteina cinasa C { (PKC {)
y la catepsina D8'-%5. La CAPP cataliza la desfosforila-
cién y con ello la inactivacién de PKCa,, Akt/PKB y del

Tabla 3. Esfingolipidos o sus metabolitos en los tejidos
de pacientes con enfermedad cardiovascular o
metabdlica

Esfingolipido o metabolito Enfermedad

Esfingomielina en arterias Enfermedad arterial

coronaria
Ceramida en mlsculo esquelético Obesidad
Ceramida en corazon Enfermedad

isquémica cardiaca

Ceramida, esfinganina, esfingosina y Obesidad

esfingosina-1-fosfato en tejido adiposo

factor antiapoptético Bcl-2. La ceramida inhibe Akt a
través de PKC , y la catepsina D estimula la liberacion
del citocromo c y la activacion de las caspasas 9y 3
(Fig. 2)86-70,

La ceramida también puede activar ERK y p38MA-
PK; puede o no activar JNK; disminuye la activacién
de P13k/Akt, CREB, STAT3, p21/p53, FAK y PKC; y
aumenta la activacion de PLA,, PKA y calpaina, lo cual
puede conducir a la apoptosis. La comunicacién cru-
zada entre MAPK, PKC y CREB también puede regular
la apoptosis inducida por ceramida (Fig. 2)7'-0,

Ademés, Bcl-2/Bcl-xL inhibe la actividad de la cera-
mida sintasa y de las esfingomielinasas, y también
activa a la esfingosina cinasa, y por lo tanto aumenta
la esfingosina-1-fosfato, la cual disminuye la expresion
y la actividad de Bax/Bak, y asi disminuye la apoptosis
(Fig. 2)8'-83,

La esfingosina es uno de los metabolitos menos es-
tudiados, pero se sabe que inhibe a la proteina cinasa
C (PKC) y también regula el Ca** intracelular. Por otro
lado, la ceramida-1-fosfato inhibe la apoptosis, al me-
nos en parte, estimulando la via PI3-K/PKB/NF-kB y
manteniendo la produccién del factor Bcl-xL
antiapoptético®“.

Considerando lo antes descrito, es necesario realizar
estudios enfocados en demostrar si la ceramida, la es-
fingosina y la esfingosina-1-fosfato participan en la re-
gulacion de las vias de sefializacion de la apoptosis en
las enfermedades cardiovasculares, renales y metabo-
licas, lo cual en un futuro hara posible la intervencion
y, en algunos casos, la interrupcién de la apoptosis.

La esfingomielina y sus metabolitos en la
COVID-19

Los pacientes con riesgo cardiovascular, renal y me-
tabdlico son especialmente vulnerables para una
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Figura 2. Vias de sefializacion a través de las cuales la ceramida, la esfingosina y la esfingosina-1-fosfato regulan el
proceso de apoptosis. Akt/PKB: proteina cinasa B; Bcl-2: protooncogén B-cell lymphoma 2; CAPK: proteina cinasa
activada por ceramida; CAPP: fosfatasas activadas por ceramida; CREB: proteina de unidn a elementos de respuesta
cAMP; ERK: cinasa de sefializacion extracelular; ERK: cinasa reguladora de sefiales extracelulares; JNK: cinasas c-Jun
N-terminal; p38MAPK: MAP cinasa p38; PI3K/Akt: fosfatidilinositol-3 cinasa; PKA: proteina cinasa A; PKC o proteina
cinasa C isoforma o; PKC C: proteina cinasa C isoforma C; PLA,: fosfolipasa A,; PP1: proteina fosfatasa 1, PP2A: proteina
fosfatasa 2A; STAT3: transductor de sefial y activador de la transcripcion.

mayor morbimortalidad cuando sufren la COVID-19
(acrénimo de Coronavirus Disease 2019) causada por
el SARS-CoV-2 (Severe Acute Respiratory Syndrome
Coronavirus 2)%. Se ha demostrado que, en el epitelio
nasal humano, la esfingosina evita la interaccion de la
proteina spike del SARS-CoV-2 y la enzima converti-
dora de la angiotensina 2; evidencia que sugiere que
la esfingosina podria ser una alternativa terapéutica
para prevenir y tratar las infecciones por SARS-CoV-286.
Ademas de la esfingosina, también se propone que los
analogos de la esfingosina-1-fosfato, como el FTY720,
tendrian un gran potencial en el tratamiento de la CO-
VID0198788, En cultivo de células de epitelio nasal hu-
mano se ha demostrado que los antidepresivos, como
la amitriptilina, inhiben la actividad de la esfingomieli-
nasa acida, lo cual disminuye la infeccion por SARS-
CoV-2%. No obstante, es necesario realizar estudios
de preclinica y clinicos para evaluar los efectos tera-
péuticos y los riesgos de la respuesta a la esfingosina
y la esfingosina-1-fosfato, asi como la inhibicién de la

esfingomielinasa &cida en pacientes con enfermeda-
des cardiovasculares, diabetes y obesidad, ya que es-
tas constituyen la comorbilidad méas prevalente en los
pacientes con COVID-19.

Métodos para el estudio de los
esfingolipidos y sus metabolitos

Para el estudio de los esfingolipidos y de sus meta-
bolitos se requieren técnicas que permitan su aisla-
miento, analisis y cuantificacién. Para la deteccién y la
cuantificacion de los esfingolipidos se han descrito mé-
todos como los ensayos a través de la diacilglicerol
cinasa o la cromatografia en capa fina, pero son téc-
nicas poco utilizadas. Actualmente, técnicas como la
cromatografia de gases o la cromatografia liquida de
alta eficacia (HPLC, High Performance Liquid Chroma-
tography) permiten una mejor separacion e identifica-
cién de estas moléculas, a través de los tiempos de
retencion. Por otra parte, si el cromatdgrafo de gases
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o liquidos esta acoplado a un espectrémetro de masas
(MS), este ultimo permitira la identificacién y la cuanti-
ficacion de los esfingolipidos y sus metabolitos, a tra-
vés de su masa y carga (m/z). Estos resultados son
corroborados a través de estandares que pueden ser
analizados dentro de unas bases de datos. Finalmente,
si el analisis se desea hacer con mayor profundidad
puede desarrollarse un andlisis de fragmentacion de
las moléculas analizadas dentro del espectrometro de
masas, o0 también llamado MS2, que en conjunto con
las técnicas anteriores no solo proporciona los tiempos
de retencion, la masa y la carga, sino también su es-
pectro de fragmentacion®-9.

La microcopia de alta resolucion (STED-Microscopy,
Stimulated Emission Depletion-Microscopy) es otra de
las técnicas que en los ultimos afios nos ha acercado
a tener un dato visual del tipo y de la interaccion de
los lipidos de la membrana celular®-%°.

Otras de las técnicas utilizadas para identificar cam-
bios en los esfingolipidos y sus metabolitos en la mem-
brana celular son la microscopia de fluorescencia y la
citometria de flujo. Estas permiten identificar y cuanti-
ficar algunos lipidos mediante el uso de anticuerpos
monoclonales o de colorantes fluorescentes'®%1%2, Re-
cientemente reportamos que con la técnica de ELISA
(Enzyme-Linked-Immunosorbent Assay) es posible de-
terminar la concentracion de ceramida, esfingosina y
esfingosina-1-fosfato en plasma y tejidos', lo cual per-
mitira en un futuro aplicarlo en la clinica.

Conclusiones

Se ha sugerido que la esfingomielina, asi como sus
metabolitos, podrian ser biomarcadores potencialmen-
te utiles en la clinica para el diagndstico, el prondstico
y el tratamiento de las enfermedades cardiovasculares,
renales y metabdlicas, aunque aun existen limitaciones
para su validez. Por esta razdn, es importante realizar
estudios preclinicos enfocados en comprender el me-
tabolismo de los esfingolipidos, incluyendo a las enzi-
mas que participan en este proceso, lo cual permitira
explicar los cambios en la concentracion de esfingo-
mielina y de sus metabolitos en el plasma, asi como
su contenido en algunos tejidos. Ademas, es necesario
estudiar el o los mecanismos a través de los cuales los
esfingolipidos y sus metabolitos contribuyen en la fisio-
patologia de las enfermedades cardiovasculares, 10
cual nos permitira proponer alternativas farmacolégicas
en el tratamiento de las enfermedades cardiovascula-
res, renales y metabdlicas.
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