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 ARTÍCULO DE REVISIÓN

Resumen
Los esfingolípidos (esfingomielina, glucolípidos y gangliósidos) se localizan en las membranas celulares, el plasma y las li-
poproteínas. En pacientes con enfermedades cardiovasculares, renales y metabólicas, el perfil de los esfingolípidos y sus 
metabolitos (ceramida, esfingosina y esfingosina-1-fosfato) se modifica, y estos cambios pueden explicar las alteraciones en 
algunas respuestas celulares, como la apoptosis. Además, se ha sugerido que la esfingosina y la esfingosina-1-fosfato pre-
vienen la COVID-19. En esta revisión también se mencionan brevemente las técnicas que permiten el estudio de los esfin-
golípidos y sus metabolitos.
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Abstract
Sphingolipids (sphingomyelin, glycolipids, gangliosides) are located in cell membranes, plasma, and lipoproteins. In patients 
with cardiovascular, renal, and metabolic diseases, the profile of sphingolipids and their metabolites (ceramide, sphingosine, 
and sphingosine-1-phosphate) is modified, and these changes may explain the alterations in some cellular responses such 
as apoptosis. Furthermore, sphingosine and sphingosine-1-phosphate have been suggested to prevent COVID-19. This review 
also briefly mentions the techniques that allow us to study sphingolipids and their metabolites.
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Introducción
Los esfingolípidos (esfingomielina, glucolípidos, gan-

gliósidos) son el segundo grupo más abundante de lí-
pidos de membrana. Los esfingolípidos, junto con el 
colesterol, forman microdominios llamados balsas lipí-
dicas o lipidrafts, que regulan la función de las proteí-
nas de membrana (receptores, enzimas, transportadores 
y canales iónicos) y participan en la transducción de 
señales, así como en los procesos de comunicación 
celular. La esfingomielina y sus metabolitos (ceramida, 
esfingosina y esfingosina-1-fosfato) modulan procesos 
celulares como la diferenciación, la proliferación, el 
crecimiento, la senescencia y la apoptosis1,2.

Metabolismo de los esfingolípidos
La síntesis de novo de los esfingolípidos se lleva a 

cabo en el retículo endoplásmico liso, iniciando con la 
condensación de la L-serina con palmitoil-CoA para 
formar 3-ceto-esfinganina, en una reacción catalizada 
por la serina palmitoil-transferasa. La 3-ceto-esfingani-
na es reducida a esfinganina, la cual es N-acilada por 
la ceramida sintasa para formar dihidroceramida, y 
posteriormente la dihidroceramida es oxidada por la 
dihidroceramida desaturasa para formar ceramida 
(Fig. 1)3-5.

La esfingosina que proviene de los lisosomas puede 
ser utilizada por la ceramida sintasa para formar cera-
mida. La ceramida que se forma a través de estas dos 
vías puede ser transportada del retículo endoplásmico 
liso al aparato de Golgi. En la cara citosólica del apa-
rato de Golgi, la ceramida es glucosilada por la gluco-
silceramida sintasa para formar glucosilceramida, así 
como otros glucoesfingolípidos complejos, que poste-
riormente son transportados en vesículas para incor-
porarse a las membranas plasmáticas (Fig. 1)3-5.

Por otro lado, en el lumen de los primeros comparti-
mentos del aparato de Golgi, la esfingomielina sintasa 
utiliza ceramida como substrato para la biosíntesis de 
esfingomielina. La esfingomielina también será trans-
portada hacia la membrana plasmática. En las mem-
branas plasmáticas, los glucoesfingolipidos y la 
esfingomielina aparecen organizados en microdomi-
nios llamados balsas lipídicas o lipidrafts (Fig. 1)3-5.

Es importante señalar que en las membranas plas-
máticas también se localizan las enzimas que partici-
pan en el catabolismo de los esfingolípidos. Así, las 
esfingomielinasas hidrolizan a la esfingomielina y libe-
ran ceramida, la cual es hidrolizada por la ceramidasas 
y se libera esfingosina, y esta a su vez es fosforilada 

por la esfingosina cinasa para formar esfingosina-1-fos-
fato (Fig. 1)3-5.

El catabolismo de los esfingolípidos también se lleva 
a cabo en los lisosomas. Los glucoesfingolípidos son 
hidrolizados por las glucosidasas, en tanto que la es-
fingomielina es hidrolizada por la esfingomielinasa áci-
da. Ambas reacciones liberan ceramida, la cual es 
hidrolizada por las ceramidasas para formar esfingosi-
na. La esfingosina es transportada al retículo endo-
plásmico liso para formar ceramida, reacción que es 
catalizada por la ceramida sintasa (Fig. 1)3-5.

Como se mencionó anteriormente, en el aparato de 
Golgi la ceramida puede ser utilizada para la síntesis 
de glucoesfingolípidos o de esfingomielina; también, en 
la cara trans del aparato de Golgi, así como en la mem-
brana plasmática, la ceramida puede ser fosforilada 
por la ceramida cinasa para formar ceramida-1-fosfato 
(Fig. 1)3-5.

Es importante señalar que la deficiencia de enzimas 
lisosomales que participan en el metabolismo de los 
esfingolípidos ocasiona su acumulación y entonces se 
manifiestan las enfermedades que se mencionan en la 
tabla 1. Los genes que codifican para estas enzimas 
siguen un patrón de herencia autosómico recesivo, con 
excepción de la enfermedad de Fabry, que sigue una 
herencia ligada al sexo (cromosoma X, locus Xq22)6,7.

Los esfingolípidos y sus metabolitos en 
las enfermedades cardiovasculares, 
renales y metabólicas

En condiciones fisiológicas, la esfingomielina, así 
como sus metabolitos (ceramida, esfingosina y esfin-
gosina-1-fosfato), se encuentran presentes en el plas-
ma y en las lipoproteínas8.  Sin embargo, se han 
reportado cambios en la concentración de esfingomie-
lina y de sus metabolitos en el plasma de pacientes 
con enfermedades cardiovasculares, renales, y meta-
bólicas (Tabla 2)9-27. También, la esfingomielina y sus 
metabolitos se han determinado en las arterias, el mús-
culo esquelético y cardiaco, y el tejido adiposo de pa-
cientes con obesidad o con enfermedad arterial 
coronaria (Tabla 3)28-33.

Los cambios en el contenido de esfingolípidos, así 
como de sus metabolitos, en el plasma y los tejidos se 
pueden deber a cambios en la expresión o la actividad 
de las enzimas que participan en su metabolismo. Con 
respecto a la expresión, se ha reportado que en el 
miocardio de pacientes con sobrepeso u obesidad mo-
derada, con o sin antecedentes de diabetes tipo 2, 
aumenta la expresión a nivel de ARNm de las enzimas 
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Figura 1. Metabolismo de los esfingolípidos en las células.

involucradas en la síntesis y la degradación de cera-
mida, incluidas la serina palmitoiltransferasa, la esfin-
gomielinasa neutra, las ceramidasas y la esfingosina 
cinasa 1; sin embargo, no se han observado cambios 
en el contenido de ceramida34. En el tejido adiposo 
intraabdominal de pacientes con obesidad también se 
ha encontrado aumentada la expresión de las esfingo-
mielinasas a nivel de ARNm35.

Con respecto a la actividad enzimática, se ha repor-
tado que en el plasma de pacientes con diabetes tipo 
2, insuficiencia cardiaca crónica o síndrome coronario 
agudo se observa un incremento la actividad de la es-
fingomielinasa ácida21,36,37.

Los esfingolípidos y sus metabolitos posiblemente se 
acumulan en los tejidos y de esta manera contribuyen 
en el desarrollo y el mantenimiento de las enfermeda-
des cardiovasculares, renales y metabólicas.

Participación de los esfingolípidos en la 
apoptosis celular

La apoptosis es un proceso fisiológico que durante 
el período prenatal y tras el nacimiento contrarresta 

los efectos de la proliferación celular, lo cual contri-
buye en el mantenimiento de la masa celular, así 
como en la arquitectura de los órganos y los teji-
dos38-44. Los estudios experimentales y clínicos han 
demostrado que la desregulación de la apoptosis pue-
de contribuir al desarrollo y al mantenimiento de di-
versas enfermedades cardiovasculares; por ejemplo, 
un aumento en la apoptosis conduce a atrofia y pér-
dida de la función de un órgano, mientras que una 
disminución de la apoptosis conduce a la remodela-
ción del órgano45-56.

Por otro lado, también se ha reportado que la cera-
mida y la esfingosina regulan el ciclo celular, la 
diferenciación y la apoptosis, mientras que la esfingo-
sina-1-fosfato promueve la proliferación y la supervi-
vencia e inhibe la apoptosis57-60.

A continuación, se describen las principales vías de 
señalización celular a través de las cuales la ceramida, 
la esfingosina y la esfingosina-1-fosfato participan en 
la regulación de la apoptosis. Estas vías de señaliza-
ción se han estudiado principalmente en cultivos de 
líneas celulares de cáncer, lo cual sugiere que algunas 
vías de señalización pueden estar involucradas en el 



91

 F. Hernández-Bello et al. Metabolismo de los esfingolípidos

Tabla 2. Esfingolípidos o sus metabolitos en el plasma de 
pacientes con enfermedad metabólica, renal o 
cardiovascular

Esfingolípido o 
metabolito

Enfermedad

Esfingomielina Hipercolesterolemia familiar
Enfermedad arterial coronaria
Fibrilación auricular
Enfermedad renal y coronaria, 
diabetes tipo 1

 Ceramida Fibrilación auricular
Diabetes tipo 2
Diabetes tipo 1
Enfermedad renal crónica
Síndrome metabólico
Síndrome coronario agudo
Hipertensión arterial
Isquemia miocárdica

Esfingosina Diabetes tipo 2

Esfingosina‑1‑fosfato Hipertensión arterial
Enfermedad arterial coronaria
Obesidad
Isquemia‑reperfusión (intervención 
coronaria percutánea)
Infarto al miocardio 

Tabla 1. Enfermedades por deficiencia de enzimas 
lisosomales que participan en el metabolismo de los 
esfingolípidos

Enfermedad Enzima

Enfermedad de Gaucher Glucocerebrosidasa o 
β‑glucosidasa

Niemann‑Pick tipos A y B Esfingomielinasa ácida 
(aSMasa)

Enfermedad de Krabbe Galactosil ceramidasa

Leucodistrofía metacromática Arilsulfatasa A

Enfermedad de Fabry α‑Galactosidasa

Enfermedad de Tay‑Sachs Hexosaminidasa A 

Enfermedad de Sandhoff Hexosaminidasas A y B

Enfermedad de Farber Ceramidasa ácida

Tabla 3. Esfingolípidos o sus metabolitos en los tejidos 
de pacientes con enfermedad cardiovascular o 
metabólica

Esfingolípido o metabolito Enfermedad

Esfingomielina en arterias Enfermedad arterial 
coronaria 

Ceramida en músculo esquelético
Ceramida en corazón

Obesidad
Enfermedad 
isquémica cardiaca 

Ceramida, esfinganina, esfingosina y 
esfingosina‑1‑fosfato en tejido adiposo

Obesidad

desarrollo tanto del cáncer como de las enfermedades 
cardiovasculares.

La ceramida actúa directamente sobre diversas pro-
teínas intracelulares, como la proteína fosfatasa acti-
vada por ceramida (CAPP), la proteína cinasa activada 
por ceramida (CAPK), la proteína cinasa C ζ (PKC ζ) 
y la catepsina D61-65. La CAPP cataliza la desfosforila-
ción y con ello la inactivación de PKCα, Akt/PKB y del 

factor antiapoptótico Bcl-2. La ceramida inhibe Akt a 
través de PKC ζ, y la catepsina D estimula la liberación 
del citocromo c y la activación de las caspasas 9 y 3 
(Fig. 2)66-70.

La ceramida también puede activar ERK y p38MA-
PK; puede o no activar JNK; disminuye la activación 
de P13k/Akt, CREB, STAT3, p21/p53, FAK y PKC; y 
aumenta la activación de PLA2, PKA y calpaína, lo cual 
puede conducir a la apoptosis. La comunicación cru-
zada entre MAPK, PKC y CREB también puede regular 
la apoptosis inducida por ceramida (Fig. 2)71-80.

Además, Bcl-2/Bcl-xL inhibe la actividad de la cera-
mida sintasa y de las esfingomielinasas, y también 
activa a la esfingosina cinasa, y por lo tanto aumenta 
la esfingosina-1-fosfato, la cual disminuye la expresión 
y la actividad de Bax/Bak, y así disminuye la apoptosis 
(Fig. 2)81-83.

La esfingosina es uno de los metabolitos menos es-
tudiados, pero se sabe que inhibe a la proteína cinasa 
C (PKC) y también regula el Ca++ intracelular. Por otro 
lado, la ceramida-1-fosfato inhibe la apoptosis, al me-
nos en parte, estimulando la vía PI3-K/PKB/NF-κB y 
manteniendo la producción del factor Bcl-xL 
antiapoptótico84.

Considerando lo antes descrito, es necesario realizar 
estudios enfocados en demostrar si la ceramida, la es-
fingosina y la esfingosina-1-fosfato participan en la re-
gulación de las vías de señalización de la apoptosis en 
las enfermedades cardiovasculares, renales y metabó-
licas, lo cual en un futuro hará posible la intervención 
y, en algunos casos, la interrupción de la apoptosis.

La esfingomielina y sus metabolitos en la 
COVID-19

Los pacientes con riesgo cardiovascular, renal y me-
tabólico son especialmente vulnerables para una 
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Figura 2. Vías de señalización a través de las cuales la ceramida, la esfingosina y la esfingosina-1-fosfato regulan el 
proceso de apoptosis. Akt/PKB: proteína cinasa B; Bcl-2: protooncogén B-cell lymphoma 2; CAPK: proteína cinasa 
activada por ceramida; CAPP: fosfatasas activadas por ceramida; CREB: proteína de unión a elementos de respuesta 
cAMP; ERK: cinasa de señalización extracelular; ERK: cinasa reguladora de señales extracelulares; JNK: cinasas c-Jun 
N-terminal; p38MAPK: MAP cinasa p38; PI3K/Akt: fosfatidilinositol-3 cinasa; PKA: proteína cinasa A; PKC α: proteína 
cinasa C isoforma α; PKC ζ: proteína cinasa C isoforma ζ; PLA2: fosfolipasa A2; PP1: proteína fosfatasa 1; PP2A: proteína 
fosfatasa 2A; STAT3: transductor de señal y activador de la transcripción.
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mayor morbimortalidad cuando sufren la COVID-19 
(acrónimo de Coronavirus Disease 2019) causada por 
el SARS-CoV-2 (Severe Acute Respiratory Syndrome 
Coronavirus 2)85. Se ha demostrado que, en el epitelio 
nasal humano, la esfingosina evita la interacción de la 
proteína spike del SARS-CoV-2 y la enzima converti-
dora de la angiotensina 2; evidencia que sugiere que 
la esfingosina podría ser una alternativa terapéutica 
para prevenir y tratar las infecciones por SARS-CoV-286. 
Además de la esfingosina, también se propone que los 
análogos de la esfingosina-1-fosfato, como el FTY720, 
tendrían un gran potencial en el tratamiento de la CO-
VID‐1987,88. En cultivo de células de epitelio nasal hu-
mano se ha demostrado que los antidepresivos, como 
la amitriptilina, inhiben la actividad de la esfingomieli-
nasa ácida, lo cual disminuye la infección por SARS-
CoV-289. No obstante, es necesario realizar estudios 
de preclínica y clínicos para evaluar los efectos tera-
péuticos y los riesgos de la respuesta a la esfingosina 
y la esfingosina-1-fosfato, así como la inhibición de la 

esfingomielinasa ácida en pacientes con enfermeda-
des cardiovasculares, diabetes y obesidad, ya que es-
tas constituyen la comorbilidad más prevalente en los 
pacientes con COVID-19.

Métodos para el estudio de los 
esfingolípidos y sus metabolitos

Para el estudio de los esfingolípidos y de sus meta-
bolitos se requieren técnicas que permitan su aisla-
miento, análisis y cuantificación. Para la detección y la 
cuantificación de los esfingolípidos se han descrito mé-
todos como los ensayos a través de la diacilglicerol 
cinasa o la cromatografía en capa fina, pero son téc-
nicas poco utilizadas. Actualmente, técnicas como la 
cromatografía de gases o la cromatografía líquida de 
alta eficacia (HPLC, High Performance Liquid Chroma-
tography) permiten una mejor separación e identifica-
ción de estas moléculas, a través de los tiempos de 
retención. Por otra parte, si el cromatógrafo de gases 
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o líquidos está acoplado a un espectrómetro de masas 
(MS), este último permitirá la identificación y la cuanti-
ficación de los esfingolípidos y sus metabolitos, a tra-
vés de su masa y carga (m/z). Estos resultados son 
corroborados a través de estándares que pueden ser 
analizados dentro de unas bases de datos. Finalmente, 
si el análisis se desea hacer con mayor profundidad 
puede desarrollarse un análisis de fragmentación de 
las moléculas analizadas dentro del espectrómetro de 
masas, o también llamado MS2, que en conjunto con 
las técnicas anteriores no solo proporciona los tiempos 
de retención, la masa y la carga, sino también su es-
pectro de fragmentación90-95.

La microcopía de alta resolución (STED-Microscopy, 
Stimulated Emission Depletion-Microscopy) es otra de 
las técnicas que en los últimos años nos ha acercado 
a tener un dato visual del tipo y de la interacción de 
los lípidos de la membrana celular96-99.

Otras de las técnicas utilizadas para identificar cam-
bios en los esfingolípidos y sus metabolitos en la mem-
brana celular son la microscopía de fluorescencia y la 
citometría de flujo. Estas permiten identificar y cuanti-
ficar algunos lípidos mediante el uso de anticuerpos 
monoclonales o de colorantes fluorescentes100-102. Re-
cientemente reportamos que con la técnica de ELISA 
(Enzyme-Linked-Immunosorbent Assay) es posible de-
terminar la concentración de ceramida, esfingosina y 
esfingosina-1-fosfato en plasma y tejidos103, lo cual per-
mitirá en un futuro aplicarlo en la clínica.

Conclusiones

Se ha sugerido que la esfingomielina, así como sus 
metabolitos, podrían ser biomarcadores potencialmen-
te útiles en la clínica para el diagnóstico, el pronóstico 
y el tratamiento de las enfermedades cardiovasculares, 
renales y metabólicas, aunque aún existen limitaciones 
para su validez. Por esta razón, es importante realizar 
estudios preclínicos enfocados en comprender el me-
tabolismo de los esfingolípidos, incluyendo a las enzi-
mas que participan en este proceso, lo cual permitirá 
explicar los cambios en la concentración de esfingo-
mielina y de sus metabolitos en el plasma, así como 
su contenido en algunos tejidos. Además, es necesario 
estudiar el o los mecanismos a través de los cuales los 
esfingolípidos y sus metabolitos contribuyen en la fisio-
patología de las enfermedades cardiovasculares, lo 
cual nos permitirá proponer alternativas farmacológicas 
en el tratamiento de las enfermedades cardiovascula-
res, renales y metabólicas.
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