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Resumen:
Antecedentes y Objetivos: Los individuos de Balmea stormiae (Rubiaceae) son árboles o arbustos hemiepífitos que habitan malpaíses con bosques 
de pino-encino en poblaciones disyuntas en Centroamérica y México. La especie se considera en peligro de extinción y particularmente se ha docu-
mentado que las poblaciones de Michoacán han estado expuestas a fuertes presiones antropogénicas. Por tal motivo, en este estudio se estimó la 
diversidad genética en cuatro poblaciones de Michoacán, contrastando esta información con la obtenida en una población de Jalisco, ambas regiones 
ubicadas en el centro-occidente de México.
Métodos: Las muestras vegetales fueron recolectadas en cinco poblaciones de la región occidente del Cinturón Volcánico Transmexicano. Para 
evaluar la diversidad genética, se utilizó el intrón rps16 del ADN de cloroplasto, el espaciador transcrito externo (ETS) del ADN ribosomal nuclear y 
marcadores dominantes ISSR de ADN nuclear (Inter Secuencias Simples Repetidas por sus siglas en inglés).
Resultados clave: Los marcadores moleculares revelaron alta diferenciación genética entre las poblaciones de Jalisco y Michoacán, la cual se atribu-
ye a la baja conectividad entre estas. Posiblemente se deba a la baja capacidad de dispersión a larga distancia de las semillas y el polen. Se detectó 
flujo genético moderado y expansión demográfica reciente en las poblaciones de Michoacán. Los niveles de variación genética en las poblaciones de 
Michoacán concuerdan con la edad de los flujos de lava, siendo Arocutín y Zacapu las poblaciones más diversas sobre los flujos de lava más antiguos.
Conclusiones: Los resultados podrían explicarse por el origen relativamente reciente, producto de la actividad volcánica del Holoceno, de los am-
bientes en los que habita esta especie, sumado a la perturbación recurrente relacionada con grandes asentamientos prehispánicos de Michoacán.
Palabras clave: estructura genética, genética de la conservación, hemiepífita, madera dura, vegetación de malpaís.

Abstract:
Background and Aims: Individuals of Balmea stormiae (Rubiaceae) are trees or hemiepiphytic shrubs that inhabit pine-oak forests on rock outcrops 
in disjunct populations of Central America and Mexico. The species is considered endangered and especially the populations of Michoacán have been 
reported as exposed to strong anthropogenic pressures. For this reason, in this study the genetic diversity of four populations of Michoacán was 
estimated, contrasting this information with that obtained from one population of Jalisco, both regions located in west-central Mexico.
Methods: Samples were collected in five populations in the western region of the Trans-Mexican Volcanic Belt. The chloroplast rps16 intron, the 
external transcribed spacer of ribosomal DNA (ETS) and seven Inter-Simple Sequence Repeats of nuclear DNA (ISSR) were used to assess genetic 
diversity.
Key results: Molecular markers revealed high genetic differentiation between the populations from Jalisco and Michoacán, attributed to the low 
connectivity amongst them, probably due to the low long distance dispersal capacity of seeds and pollen. Moderate genetic flow and demographic 
expansion were detected for populations in Michoacán. The degree of genetic diversity in Michoacán populations are consistent with the age of lava 
flows, whereby Arocutín and Zacapu are the most diverse populations located on the oldest lava flows.
Conclusions: Results could be explained by the relatively recent origin, resulting from Holocene volcanic activity, of the environments in which the 
species inhabits, coupled with the recurring disturbance related to large pre-Hispanic settlements.
Key words: conservation genetics, genetic structure, hardwood, hemi-epiphyte, vegetation of lava flow.
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Introducción

Conocida como “ayuque”, Balmea stormiae Martínez (Hi-
llieae, Cinchonoideae, Rubiaceae; sensu Manns y Bremer, 
2010) es la única especie del género. Es un árbol o arbusto 
hemiepífito cuyos individuos alcanzan 20 m de altura y hasta 
20 cm de diámetro, con madera dura, blanquecina y hojas 
ampliamente ovadas con la base cordada (Fig. 1D; Borhidi, 
2012). Su inflorescencia es terminal en cimas corimbosas 
péndulas (Fig. 1A); las flores son hermafroditas, gamopéta-
las, rojas a púrpuras, aromáticas nocturnas (Fig. 1B; Martí-
nez, 1942), por lo que de acuerdo con el enfoque de la bio-
logía reproductiva (Van Zandt et al., 2020), su polinización 
podría ser por falenofilia. El fruto es una cápsula septicida, 
bivalva con numerosas semillas aladas (Fig. 1E; Martínez, 
1942; Fosberg, 1974; Borhidi, 2012). 

La especie se distribuye en pequeñas áreas en Guate-
mala, El Salvador y México (Chiapas, Colima, Estado de Mé-
xico, Guerrero, Jalisco, Michoacán, Nayarit y Oaxaca,) en alti-
tudes entre 1100 y 2100 m (Martínez, 1942; Fosberg, 1974; 
Martínez Salas et al., 2017). Sin embargo, la distribución local 
de B. stormiae es bastante restringida, pues habita en sitios 
muy específicos y aislados, encontrándose en bosque de 
pino-encino o encino sobre pedregales de rocas volcánicas o 
calizas, en un área de ocupación estimada de 188 km2 (Mar-
tínez Salas et al., 2017). 

Se ha reportado declive de las poblaciones de B. 
stormiae desde 1940 cuando se utilizó como árbol navideño 
en Michoacán, México (Fosberg, 1974). En la actualidad, ese 
detrimento continúa debido a que la madera de esta especie 
se utiliza para la construcción de techos y artesanías; ade-
más de afrontar amenazas como incendios y destrucción de 
su hábitat debido a la extracción de rocas para su uso en la 
construcción o para despejar zonas y utilizarlas en el pasto-
reo, resultando en el deterioro de las poblaciones de esta 
especie (Molina-Paniagua y Zamudio, 2010; Martínez Salas 
et al., 2017). Lo anterior justifica que esta especie esté in-
cluida en la categoría de “Protección Especial” en la regla-
mentación mexicana NOM-059-SEMARNAT-2010 (SEMAR-
NAT, 2010). A nivel internacional es considerada “En Peligro” 
(Martínez Salas et al., 2017) y ubicada en el Apéndice I de 
CITES (CITES, 2022).

Factores como un pequeño tamaño poblacional, el 
aislamiento de las poblaciones y la especificidad del ambien-

te podrían incidir negativamente en la variación genética 
de las poblaciones de B. stormiae, incrementando la deriva 
genética y la diferenciación entre las poblaciones. Estos as-
pectos no han sido evaluados en B. stormiae, por lo que el 
propósito de este trabajo es estimar la diversidad genética 
en cuatro poblaciones de Michoacán y una de Jalisco, en 
el centro-occidente de México, mediante siete marcadores 
ISSR, así como secuencias del intrón rps16 de cloroplasto y 
del espaciador transcrito externo ribosomal nuclear (ETS).

Materiales y Métodos

Área de estudio
Se exploraron cinco poblaciones del centro-occidente del 
Cinturón Volcánico Transmexicano, cuatro en Michoacán 
(Arocutín, San Andrés Coru, Nuevo San Juan Parangaricutiro 
y Zacapu) y una en la Sierra de Manantlán, Jalisco (Cuadro 1; 
Fig. 2). Estas localidades se encuentran en diferentes forma-
ciones volcánicas. Las de Michoacán pertenecen al campo 
Michoacán-Guanajuato del Cinturón Volcánico Transmexi-
cano. El malpaís de Zacapu está compuesto por varios flujos 
de lava agrupados en dos periodos con una edad de 27,000 
a 21,300 a. C. y 1479 a 900 a. C (Reyes-Guzmán, 2018). Al 
flujo de lava (El Capaxtiro) donde se realizó la colecta en 
este estudio, se le ha asignado una edad de entre 1500 a 
2500 años de antigüedad (Reyes-Guzmán, 2018). Por otra 
parte, en el pedregal Arocutín, la zona de muestreo fue en 
el cerro La Taza, que se encuentra al suroeste del Lago de 
Pátzcuaro, y se le ha asignado una edad aproximada de 
8430 años (García-Quintana et al., 2016; Osorio-Ocampo, 
2018). Los pedregales cercanos a Nuevo San Juan Paranga-
ricutiro fueron originados por varios eventos de actividad 
volcánica durante el Plioceno, Pleistoceno y Holoceno (Boc-
co, 1998), aunque se sabe que 50% de todo ese territorio 
fue cubierto por cenizas o flujos de lava provenientes del 
volcán Paricutín durante su erupción de 1943 a 1952 (Me-
dina et al., 2000). En la localidad de San Andrés Coru, el 
volcán El Metate es considerado el más joven del campo 
volcánico Michoacán-Guanajuato, iniciando su actividad en 
el año 1250 d. C. (Chevrel et al., 2016). Los individuos de B. 
stormiae se colectaron en el flujo de mayores dimensiones 
(flujo 6). En el estado de Jalisco, la formación de la Sierra 
de Manantlán se encuentra en la confluencia de la Sierra 
Madre del Sur y el Cinturón Volcánico Transmexicano (INE, 
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2000). La zona de colecta de B. stormiae se ubica en el oc-
cidente de la Sierra de Manantlán en la Unidad Fisiográfica 
Las Joyas, la cual es la parte más alta y conservada, formada 
por roca volcánica intrusiva y extrusiva, que es producto del 
vulcanismo del Mioceno y Pleistoceno (Martínez y Ramírez, 
1998).

Muestreo de material vegetal
Se incluyeron muestras de la mayor cantidad de individuos 
que estuvieran separados entre sí por al menos 15 m, pero 
dada la dificultad de desplazamiento dentro de los pedre-
gales, solo se muestrearon entre 8 a 15 individuos por lo-
calidad (Cuadro 1). Las muestras por individuo consistieron 

Figura 1: Imágenes de algunas estructuras morfológicas de Balmea stormiae Martínez: A. inflorescencia; B. flor en antesis; C. disección de la flor; D. 
ápice de la rama; E. semilla alada. Barra de escala A, B y C=1 cm; E=1mm.
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en una rama de 35 cm (permiso de colecta SEMARNAT 
SGPA/DGVS/003505/18), de las cuales una hoja sin rastros 
de herbívoros o de alguna afectación fúngica se preservó 
en gel de sílice (J. T. Baker, Estado de México, México). Una 
vez deshidratadas se mantuvieron en un congelador a -20 
°C en el laboratorio de Sistemática Molecular de Plantas, 
Facultad de Biología, Universidad Michoacana de San Nico-
lás de Hidalgo, donde se realizó la extracción del ADN con 
el kit de Invisorb ® Spin Plant Mini Kit (STRATEC, Birkenfeld, 
Alemania).

Amplificación y secuenciación de ADN
Se amplificó el intrón de cloroplasto rps16 siguiendo a Ox-
elman et al. (1997) con los cebadores rpsF y rpsr2 (Cuadro 

2). Además, se incluyó una secuencia de este marcador obte-
nida de GenBank (GenBank, 2022; Cuadro 3) de un individuo 
reportado para Colima por Manns y Bremer (2010).

Las amplificaciones del ETS se realizaron siguiendo a 
Becerra (2003) utilizando su cebador BUR1 y el ETS-iR1 (Cua-
dro 2). Las PCRs se realizaron en un termociclador TC-412 
(Techne, Staffordshire, UK). Los fragmentos de ADN resultan-
tes se enviaron a secuenciar a Macrogen Inc., Corea del Sur. 
Los electroferogramas “forward” y “reverse” se revisaron vi-
sualmente y se ensamblaron con Sequencher v. 4.8 (Gene 
Codes Corp. Ann Arbor, Michigan, EUA). Las secuencias ob-
tenidas se alinearon manualmente en el programa BioEdit 
v. 7.1.9 (Hall, 1999). Los sitios variables detectados fueron 
revisados cuidadosamente para descartar errores.

Latitud Longitud Altitud
(m s.n.m.)

N Secuencias
obtenidas

Ribotipos RH S Hd +SD π + SD D de 
Tajima

Fs de Fu

Arocutín 19.5366 -101.709 2132 15 23 H2(11), 
H6(1), 
H7(7), 
H8(1), 
H9(2), 
H10(1)

4.85 8 0.696 
± 

0.0727

0.0027
± 

0.00119

-1.019 -0.872

Zacapu 19.8384 -101.8358 2242 8 12 H1(1), 
H2(6), 
H3(1), 
H9(2), 

H13(1),
H14(1)

6 5 0.758 
±

0.1221

0.0017
± 

0.00142

-1.52* -3.44 **

San Andrés 
Coru

19.458 -101.975 1854 12 14 H1(1), 
H2(8), 
H3(3), 
H4(1), 
H5(1)

4.57 4 0.659 
±

0.1227

0.0015
 ± 

0.0013

-1.02 -1.998

Nuevo San Juan 19.4190 -102.1161 1931 13 16 H2(11), 
H5(2), 
H9(1), 

H11(1),
H12(1)

4.2 4 0.533 
±

0.1421

0.0011
 ±

 0.00101

-1.54* -2.75 *

Manantlán 19.6330 -104.3325 1765 12 13 H15(12),
H16(1)

1.92 1 0.154
±

0.1261

0.00028
± 

0.00046

-1.15 -0.53

Valores globales _____ _____ _____ 60 78 _____ 5.73 22 0.754 0.0021 -1.9* -11.37***

Cuadro 1: Detalles geográficos, tamaño de muestra y medidas de diversidad genética en las poblaciones de Balmea stormiae Martínez con el 
ETS. El número de secuencias contabiliza independientemente a las dos secuencias de los heterocigotos.  N=número de individuos, RH=riqueza 
de haplotipos, S=número de sitios polimórficos, Hd=diversidad haplotípica, π=diversidad nucleotídica (Nei, 1987) y SD=desviación estándar. En 
paréntesis se muestra el número de secuencias por ribotipo. *P<0.05, **P<0.001, ***P<0.0001.
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Figura 2: Ubicación geográfica de las poblaciones muestreadas de Balmea stormiae Martínez en Michoacán y Jalisco, México. 1. Arocutín; 2. 
Manantlán; 3. Nuevo San Juan; 4. San Andrés Coru; 5. Zacapu.

Marcador Nombre del Cebador
Secuencia del cebador

5’ - 3’
Cita

ETS
ETS-iR1 GGCAGGATCAACCAGGTAGC Este estudio

BUR1 GGGCGTGTGAGTGGTGTT Becerra, 2003

rps16
rpsF GTGGTAGAAAGCAACGTGCGACTT Oxelman et al., 1997

rpsR TCGGGATCGAACATCAATTGCAAC Oxelman et al., 1997

ISSR

UBC807 AGAGAGAGAGAGAGAGT George et al., 2017

UBC811 GAGAGAGAGAGAGAGAC George et al., 2017

UBC814 CTCTCTCTCTCTCTCTA Muthusamy et al., 2008

UBC 825 ACACACACACACACACT George et al., 2017

UBC841 GAGAGAGAGAGAGAGAYC Muthusamy et al., 2008

UBC842 CACACACACACACACAYG Lau et al., 2005

UBC844 CTCTCTCTCTCTCTCTRC Lau et al., 2005

Cuadro 2: Secuencia de los cebadores utilizados para las secuencias de núcleo, cloroplasto e ISSR de Balmea stormiae Martínez, así como las citas de 
los estudios donde se retomó la secuencia de nucleótidos de cada cebador.

En el caso de los ISSR se realizaron pruebas prelimina-
res con 28 cebadores de los desarrollados por el Laboratorio 
de Biotecnología de Universidad de Columbia Británica, en 
Vancouver, British Columbia, Canadá. De estos se eligieron 

con base en la obtención de bandas claras y su reproducibi-
lidad en todos los ensayos, a los oligonucleótidos denomina-
dos UBC807, UBC811, UBC814, UBC825, UBC841, UBC842 y 
UBC844 (Cuadro 2), anteriormente utilizados en varios estu-
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dios (Lau et al., 2005; Li y Jin, 2008; Muthusamy et al., 2008; 
Datta et al., 2010; Gama-Maia y Torres, 2016; George et al., 
2017). Las condiciones de amplificación siguieron el proce-
dimiento realizado por Santillán-Mendoza et al. (2018). Los 
productos de los amplicones se corrieron en geles de agarosa 
al 1.5%, con TBE 0.5×, a cinco voltios por centímetro (5 V/cm) y 
un marcador de peso molecular de 100 pb (New England Bio-
labs, UK). Los geles se sometieron a postinción en una dilución 
al 3× del colorante GelRed (Biotum, Inc, EUA) por 30 minutos.

Análisis de secuencias de ADN
Las ambigüedades en las secuencias de rps16 fueron trata-
das como datos faltantes y los haplotipos se establecieron en 
DNAsp v. 5 (Librado y Rozas, 2009). En el caso de los datos nu-
cleares ETS, se evidenciaron los individuos heterocigotos ubi-
cando dobles picos en los electroferogramas de las secuencias. 
Se detectaron y eliminaron los bloques con recombinación 
mediante IMgc (Woerner et al., 2007) y las ambigüedades 
encontradas se resolvieron con el método Phase (Stephens 

Marcador Haplotipo Localidad Número de acceso GenBank

Intrón de cloroplasto rps16

H1 57 individuos de las cuatro poblaciones de 
Michoacán

OL519845

H2 Una secuencia de Colima reportada por Manns y 
Bremer (2010)

GQ852371.1

15 secuencias de Manantlán, Jalisco OL548879

Espaciador transcrito 
externo del ADN ribosomal 
nuclear

H1 Dos secuencias, una de San Andrés Coru y una 
Zacapu, Michoacán

OL598583

H2 55 secuencias, 14 de San Andrés Coru, 16 de 
Arocutín, 17 de Nuevo San Juan y ocho de 
Zacapu, Michoacán

OL598584

H3 Cinco secuencias, cuatro de San Andrés Coru y una 
de Zacapu, Michoacán

OL598585

H4 Una secuencia de San Andrés Coru, Michoacán OL598586

H5 Tres secuencias, una de San Andrés Coru y dos de 
Nuevo San Juan, Michoacán

OL598587

H6 Una secuencia de Arocutín, Michoacán OL598588

H7 Ocho secuencias de Arocutín, Michoacán OL598589

H8 Una secuencia de Arocutín, Michoacán OL598590

H9 Siete secuencias, tres de Arocutín, dos de Nuevo 
San Juan y dos de Zacapu, Michoacán

OL598591

H10 Una secuencia de Arocutín, Michoacán OL598592

H11 Una secuencia de Nuevo San Juan, Michoacán OL598593

H12 Una secuencia de Nuevo San Juan, Michoacán OL598594

H13 Una secuencia de Zacapu, Michoacán OL598595

H14 Una secuencia de Zacapu, Michoacán OL598596

H15 20 secuencias de Manantlán, Jalisco OL598597

H16 Una secuencia de Manantlán, Jalisco OL598598

Cuadro 3: Número de acceso GenBank (2022) de los haplotipos obtenidos de cloroplasto y núcleo de Balmea stormiae Martínez, así como las 
localidades donde se distribuían las muestras.
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et al., 2001) del programa DNAsp v. 5 (Librado y Rozas, 
2009). Con este mismo programa se calcularon los índices 
de diversidad nucleotídica de Nei (π, Nei, 1987), diversidad 
haplotípica (Hd, Nei, 1987), diferenciación genética (GST, 
Nei, 1973) y flujo genético (Nm, Wright, 1951), tanto para 
rps16 como para ETS. Las relaciones genealógicas entre 
haplotipos se infirieron con redes de “median-joining” en 
PopART v. 1.7 (Bandelt et al., 1999). 

La baja variabilidad genética obtenida en rps16 de 
este muestreo impidió realizar analisis adicionales con es-
tas secuencias de cloroplasto. En el caso de ETS, para tratar 
de comparar variabilidad genética, compensando el dife-
rente tamaño del muestreo entre las poblaciones, se obtu-
vo la riqueza de haplotipos (RH) con el programa SPAGeDi 
v. 1.5a (Hardy y Vekemans, 2002). Los análisis que se descri-
ben a continuación se realizaron con las secuencias de ETS, 
considerando dos regiones (Jalisco y Michoacán) y las cinco 
poblaciones, una en Jalisco y cuatro dentro de Michoacán. 
Se realizaron análisis “mismatch distribution” y de partición 
de la variabilidad genética (AMOVA), así como la obtención 
de las FST pareadas en Arlequin v. 3.5.2 (Excoffier y Lischer, 
2010). Se evaluó la estructura filogeográfica comparando 
GST y NST en PERMUT-CPSSR v. 2.0 (Pons y Petit, 1996). Las 
pruebas de neutralidad con Fs de Fu (Fu, 1997) y D de Ta-
jima (Tajima, 1989) se realizaron en DNAsp v. 5 (Librado y 
Rozas, 2009) y Arlequin v. 3.5.2 (Excoffier y Lischer, 2010). 
Se evaluó el aislamiento por distancia con una prueba de 
Mantel (1967) en GenAlEx v. 6.5 (Peakall y Smouse, 2006), 
usando los valores de las FST pareadas y las distancias geo-
gráficas lineales, realizando dos analisis, uno incluyendo 
todas las poblaciones y otro excluyendo Manantlán, la lo-
calidad más alejada.

Análisis de datos ISSR
Las bandas resultantes de las amplificaciones se codificaron 
como caracteres binarios (Wolfe, 2005). Utilizando Popge-
ne v. 1.31 (Yeh et al., 1999), se estimó el número de alelos 
observados (Na), el número de alelos efectivos (Ne) (Ki-
mura y Crow, 1964), la diversidad genética de Nei (h) (Nei, 
1973), el porcentaje de loci polimórficos (%P), el índice de 
Shannon (I) (Shannon, 1948) y la diferenciación genética 
(GST) (Nei, 1973). El flujo genético se calculó como: Nm=0.5 
(1-GST) / GST, con el supuesto de que todas las poblaciones 

tienen el mismo flujo genético. Con GenAlEx v. 6.5 (Peakall 
y Smouse, 2006), se obtuvieron las distancias genéticas en-
tre las poblaciones con el método de Nei (1972). Se realizó 
el AMOVA con dos regiones (Jalisco y Michoacán) y pobla-
ciones dentro de Michoacán. La prueba de Mantel (1967) 
se efectuó entre las distancias genéticas de Nei y las distan-
cias geográficas lineales entre las poblaciones, realizando 
dos análisis, uno incluyendo todas las poblaciones y otro 
excluyendo Manantlán, la localidad más alejada.

La estructura genética se determinó con STRUCTURE 
v. 2.3 (Pritchard et al., 2000) considerando los datos como 
marcadores dominantes (Falush et al., 2007) usando el mo-
delo de ancestría mezclada (Admixture model) y frecuen-
cias alélicas correlacionadas (Allele Frequencies Correlat-
ed). El análisis se hizo con un periodo burn-in de 100,000, 
longitud de corrida de 1,000,000 generaciones de MCMC 
(cadenas Markovianas de Monte Carlo) y 10 réplicas inde-
pendientes para cada valor de K (de 1 a 6). Se determinó 
el número adecuado de grupos con el valor de delta K de 
acuerdo con Evanno et al. (2005) en Structure Harvester v. 
0.6.94 (Earl y VonHoldt, 2012). 

Resultados

Diversidad genética y redes de haplotipos con 
rps16 y ETS
El alineamiento de rps16 consistió en 73 individuos y 
716 posiciones, presentando baja diversidad haplotí-
pica (Hd=0.335±0.056) y baja diversidad nucleotídica 
(π=0.0014±0.00024). Se encontraron dos haplotipos se-
parados por tres sustituciones. El haplotipo con mayor 
frecuencia (H1) se presenta en 57 muestras de las cuatro 
poblaciones de Michoacán (Cuadro 3). El haplotipo menos 
frecuente se encontró en 16 muestras, 15 de Jalisco y una 
de Colima (Cuadro 3). Consecuentemente la red de haploti-
pos separa las poblaciones de Michoacán de las de Jalisco/
Colima (Fig. 3C).

En los datos de ETS se incluyó cada elemento del par 
de secuencias de los heterocigotos detectados, por lo que 
el alineamiento resultó de 78 secuencias, 560 posiciones 
y 17 sitios polimórficos (S). La diversidad haplotípica fue 
alta (Hd=0.754 ± 0.041) y la diversidad nucleotídica baja 
(π=0.0021). Las poblaciones con mayor diversidad haplotí-
pica y nucleotídica son Arocutín y Zacapu; en cambio en Ma-
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Figura 3: A. distribución geográfica de los ribotipos del ETS obtenidos de cinco poblaciones de Balmea stormiae Martínez del centro-occidente de 
México, donde los colores de la derecha diferencian los 16 ribotipos encontrados; B. red de los ribotipos referidos; C. red de haplotipos con rps16, el 
haplotipo H1 se encuentra en las poblaciones de Michoacán y el H2 en Manantlán (Jalisco) y Colima.
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nantlán, Jalisco se presentó la menor diversidad (Cuadro 1). 
En el caso de la estimación de la riqueza de haplotipos (RH) 
se obtuvo que Zacapu presenta la mayor riqueza de haplo-
tipos (RH=6), seguido de Arocutín (RH=4.85), mientras que 
Manantlán presentó la menor (RH=1.92). Se obtuvieron 16 
ribotipos (H) dispuestos en una red de haplotipos en forma 
de estrella: al centro el ribotipo más común (H2), presente 
en 55 secuencias de Michoacán, seguido por un ribotipo 
(H15) presente en 20 secuencias de Jalisco (Cuadro 3). Al 
menos un ribotipo único se encontró en todas las poblacio-
nes estudiadas. No se presentaron ribotipos compartidos 
entre Michoacán y Jalisco (Figs. 3A, B).

Estructura genética
El valor de NST no fue significativamente mayor que el 
GST, lo que indica ausencia de estructura filogeográfica 
(NST=0.349, GST=0.182, P>0.05). El AMOVA con los datos 
ETS indicó que 51.76% de la variación fue explicada por las 

diferencias dentro de las poblaciones, mientras que 7.57% 
de la diversidad genética se encontró entre poblaciones y 
aunque la variación entre regiones es de 40.67%, este va-
lor no fue significativo (Cuadro 4). Los valores más altos de 
las FST pareadas con ETS (0.35 a 0.71, P<0.05) se presen-
taron entre la población de Manantlán (Jalisco) y las cua-
tro poblaciones de Michoacán (Cuadro 5). En Michoacán, 
Arocutín presentó los mayores niveles de diferenciación al 
compararla con las demás poblaciones, con valores de FST 
moderados y bajos (entre 0.15 y 0.099, P<0.05). Por otro 
lado, San Andrés Coru y Nuevo San Juan, localidades cer-
canas geográficamente, mostraron una FST baja (FST=0.073, 
P<0.05), mientras que Zacapu presentó FST bajos respec-
to a San Andrés Coru (0.024, P>0.05) y Nuevo San Juan 
(0.0085, P>0.05). El flujo genético global, incluyendo todas 
las poblaciones, fue relativamente bajo (Nm=0.81), mien-
tras que el flujo genético sin incluir la población de Jalisco 
fue moderado (Nm=8.95).

San Andrés Coru Arocutín Nuevo San Juan Zacapu Manantlán

San Andrés Coru ---- 0.031* 0.095* 0.105* 0.266*

Arocutín 0.15301* ---- 0.089* 0.113* 0.238*

Nuevo San Juan 0.07324* 0.12322* ---- 0.079* 0.234*

Zacapu 0.02369 0.09970 -0.00854 ---- 0.208

Manantlán 0.66947* 0.34636* 0.71208* 0.65169* ----

Cuadro 5: Comparaciones de FST por pares de poblaciones en Balmea stormiae Martínez. Los valores de ISSR arriba de la diagonal y de ETS debajo 
de la diagonal. *P<0.05.  

Fuente de variación Grados de libertad Suma de cuadrados % de variación Índice de fijación

AMOVA del ETS Entre regiones 1 9.003 40.67 FCT=0.406

Entre poblaciones 3 4.483 7.57 FSC=0.127*

Dentro de poblaciones 73 32.81 51.76 FST=0.482**

Total 77 46.29 100

AMOVA de ISSR Entre regiones 1 81.141 17 FCT=0.169*

Entre poblaciones 3 73.818 7 FSC=0.084*

Dentro de poblaciones 76 752.376 76 FST=0.239*

Total 80 907.335 100

Cuadro 4: Resultados del AMOVA del ETS e ISSR en cinco poblaciones de Balmea stormiae Martínez. *P<0.001, **P<0.0001.
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Historia demográfica
Los valores globales de D de Tajima (-1.88, P<0.05), de Fs 
de Fu (-11.45, P<0.05) y la distribución unimodal en el 
“mismatch distribution” sugirieron que hay señal de una 
expansión demográfica reciente en B. stormiae. A nivel de 
poblaciones, se obtuvo D de Tajima y Fs de Fu negativas 
y significativas para Zacapu (-1.22 y -3.44, P<0.05) y para 
San Juan Nuevo (-1.54 y -2.75, P<0.05), sugiriendo que hay 
desviaciones de la neutralidad esperada y expansión pobla-
cional. Los resultados de la prueba de Mantel, incluyendo 
todas las poblaciones, indicaron una alta relación positiva 
(no significativa) entre la distancia geográfica y la distancia 
genética calculada (R2=0.790, P>0.05), obteniendo una mu-
cho menor correlación si se excluye la población de Jalisco 
(R2=0.222, P>0.05).

Diversidad genética con ISSR
La matriz ISSR produjo 97 loci (bandas) oscilando entre 11 
(UBC807) y 22 (UBC841) por marcador y se generaron 81 
genotipos diferentes. Se encontró un alto porcentaje de 
loci polimórficos (80.41%). La diferenciación genética fue 
moderada, como indicó la FST (0.239, P<0.001), presentán-
dose los valores más altos entre la población de Manantlán 
y las de Michoacán (Cuadro 5). La población de Arocutín 
fue la más diversa, ya que presentó el mayor porcentaje 
de loci polimórficos (60.82%), el mayor número de alelos 

observados (Na=1.6082) y alelos efectivos (Ne=1.3953), así 
como los valores más altos de diversidad genética de Nei 
(h=0.2271) y de Shannon (I=0.3359). Por el contrario, la po-
blación de Manantlán fue la que presentó menores niveles 
de diversidad (Cuadro 6). 

El AMOVA con ISSR indicó que 76% de la variación fue 
explicada dentro de las poblaciones (FST=0.239, P<0.001), 
seguido por 17% entre las regiones de Michoacán y Jalisco 
(FCT=0.169, P<0.001), mientras 7% de la variación restan-
te fue entre poblaciones (FSC=0.084, P<0.001) (Cuadro 4). 
El delta K del método de Evanno en STRUCTURE Harves-
ter indicó que el número óptimo de grupos genéticos fue 
cuatro. La estructura genética coincidió con la distribución 
geográfica de B. stormiae en Jalisco y Michoacán, pero con 
ancestría mezclada en la mayoría de los individuos (Figs. 
4A, B). La prueba de Mantel con ISSR, incluyendo todas las 
poblaciones, indicó una correlación positiva significativa 
(R2=0.921, P<0.05), contrastando con la nula correlación 
obtenida (R2=0.054, P>0.05) para esta misma prueba si se 
excluye la población de Jalisco.

Discusión

Diversidad genética y redes de haplotipos
La baja variabilidad del rps16 de cloroplasto respecto a la 
de los datos ribosomales es lo esperado (Baldwin et al., 
1995), ya que el menor tamaño efectivo poblacional de las 

N Na Ne h I # loci polimórficos % loci polimórficos

Arocutín 19
1.6082

± 0.4907
1.3953

± 0.3884
0.2271

± 0.2064
0.3359

± 0.2933
59 60.82

Zacapu 14
1.5876

± 0.4948
1.3733

± 0.3843
0.2149

± 0.2076
0.3179

± 0.2953
57 58.76

Nuevo San Juan 16
1.567

± 0.4981
1.3744

± 0.3995
0.2115

± 0.2135
0.3103

± 0.3027
55 56.7

San Andrés Coru 16
1.5464

± 0.5004
1.3661

± 0.3948
0.2084

± 0.2104
0.3068

± 0.2997
53 54.64

Manantlán 16
1.5361

± 0.5013
1.3019

± 0.3656
0.1778
± 0.197

0.2682
± 0.2821

52 53.61

GLOBAL 81
1.8041

± 0.3989
1.4249

± 0.3644
0.2518

± 0.1858
0.3832 

± 0.2546

Cuadro 6: Medidas de diversidad genética de cinco poblaciones de Balmea stormiae Martínez con ISSR. N=número de individuos, Na=número de 
alelos observados, Ne=número de alelos efectivos (Kimura y Crow,1964), h=diversidad genética de Nei (1973), I=índice de Shannon (Shannon, 1948).
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Figura 4: Agrupación de las poblaciones de Balmea stormiae Martínez de Michoacán y Jalisco obtenidas con STRUCTURE. A. distribución de los 
grupos genéticos obtenidos; B. asignación de los grupos genéticos a partir de los datos ISSR de las poblaciones estudiadas para el delta K=4, donde 
cada color representa un diferente grupo genético. 

regiones de cloroplasto, comparado con el de las regiones 
nucleares, incide en este patrón (McCauley, 1995; Hare, 
2001). Sin embargo, no era esperado el contraste entre la 
nula diferenciación entre las poblaciones de Michoacán y 

la gran diferenciación entre las poblaciones de este esta-
do y la de Jalisco. Factores como la separación geográfica 
entre las regiones de Michoacán y Jalisco, la perturbación 
del ambiente y la fragmentación del hábitat pueden redu-
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cir el tamaño efectivo de las poblaciones (como ha sido 
documentado por ejemplo en Young et al., 1996). Como 
consecuencia de todo lo anterior, el transporte de semi-
llas y polen de una región a otra puede ser muy deficiente, 
reduciendo la tasa de flujo genético e incrementándose la 
endogamia dentro de las poblaciones (Young et al., 1996; 
Frankham et al., 2002; Lowe et al., 2005). Esta situación se 
magnifica para las regiones de cloroplasto dada la menor 
capacidad de dispersión de las semillas comparada con la 
del polen (Petit et al., 2005). En casos como este donde 
existe aislamiento geográfico, reducción en el tamaño po-
blacional y alta diferenciación entre poblaciones, se ha do-
cumentado que la deriva genética actúa con mayor fuerza 
reduciendo la variabilidad dentro de las poblaciones (Set-
suko et al., 2007).

La diferenciación genética entre las poblaciones de 
Michoacán fue baja, tanto en el caso de los datos de ETS, 
como de los ISSR. En cambio, esta es de mayores proporcio-
nes entre la población de Jalisco respecto a las poblaciones 
de Michoacán, siendo considerable en el caso de los datos 
de ETS y moderada en el caso de los ISSR. Una diferencia-
ción alta entre las localidades de estas regiones también 
se evidenció con los datos de cloroplasto, a pesar de la 
poca variabilidad encontrada en este marcador, ya que no 
se detectaron haplotipos compartidos entre Michoacán y 
Jalisco. Además, con ambos marcadores de núcleo el ais-
lamiento por distancia se evidencia cuando se incluye la 
población de Jalisco, pero no es así cuando solo se pone 
a prueba entre las poblaciones de Michoacán. Esto podría 
estar evidenciando una dinámica de islas en el cielo (“sky-
island dynamic”) como lo sugerido por Mastretta-Yanes et 
al. (2015). Tomando en cuenta esto, se puede afirmar que 
las poblaciones de B. stormiae de la región de Manantlán 
(Jalisco/Colima) presentan conectividad limitada con las de 
Michoacán como consecuencia de la separación por tierras 
bajas que funcionan como barreras para la dispersión de 
esta especie. Lo anterior es consistente con la ausencia de 
haplotipos compartidos y con la diferenciación genética 
con los datos de rps16 y ETS entre estas dos regiones. Por 
otro lado, la menor distancia geográfica entre las poblacio-
nes de B. stormiae distribuidas en Michoacán favoreció la 
conectividad entre éstas, lo cual pudo haber permitido la 
colonización por semillas entre los diferentes volcanes de la 

región de manera escalonada (“stepping stone”), así como 
una dispersión del polen más efectiva (Mastretta-Yanes et 
al., 2015). El modelo de “stepping stone” también podría 
dar explicación a la ausencia de una relación estadística-
mente significativa entre la distancia genética y geográfica 
con el ETS indicando una alta conectividad entre las monta-
ñas de Michoacán (Mastretta-Yanes et al., 2015).

Estructura genética e historia demográfica
Los resultados obtenidos en el AMOVA con ETS e ISSR in-
dican que los porcentajes de variación genética coinciden 
en ser bajos entre poblaciones, intermedios entre regiones 
y altos dentro de las poblaciones, indicando flujo genéti-
co entre poblaciones (al menos entre las poblaciones de 
Michoacán) y bajo entre regiones. Mientras tanto, la alta 
variación genética dentro de las poblaciones puede ser 
consecuencia de una expansión demográfica, detectada 
por la D de Tajima, Fs de Fu y la “mismatch distribution”, 
con datos del ETS.

La ausencia de estructura filogeográfica estimada 
con GST y NST con los datos del ETS es congruente con su 
red de haplotipos, que muestra una estructura filogeográfi-
ca muy simple reflejando principalmente la separación en-
tre las poblaciones de Michoacán y Jalisco. Por otro lado, 
la combinación de diversidad haplotípica alta y diversidad 
nucleotídica baja de este marcador en conjunto con la red 
de haplotipos con forma de estrella, en la que hay un ha-
plotipo notoriamente predominante, también sugiere un 
crecimiento poblacional reciente (Avise, 2000).

Es de resaltar que los altos valores de loci polimór-
ficos, diversidad genética de Nei y diversidad de Shannon 
obtenidos con ISSR para la especie en estudio son simila-
res a los reportados en otras especies de rubiáceas, como 
Psychotria hastisepala Müll. Arg. y Morinda tomentosa B. 
Heyne ex Roth (Arya et al., 2014; Silva et al., 2014). Para P. 
hastisepala por ejemplo, se sugirió que los niveles de varia-
bilidad genética se atribuyen a su autoincompatibilidad y 
reproducción vegetativa (Silva et al., 2014). Estos factores 
deberán ser descartados para B. stormiae en estudios ve-
nideros.

Otra hipótesis por comprobar en futuros estudios es 
la concordancia de los niveles de variación genética para las 
poblaciones de Michoacán obtenidos tanto con ISSR como 
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con la π del ETS, con la orogénesis reportada para los flujos 
de lava de mayor a menor antigüedad: Arocutín, Zacapu, 
San Andrés Coru y Nuevo San Juan (Bocco et al., 1998; Mar-
tínez y Ramírez, 1998; Chevrel et al., 2016; García-Quintana 
et al., 2016; Osorio-Ocampo, 2018; Reyes-Guzmán, 2018). 
Es decir, las poblaciones con mayor diversidad genética 
(Arocutín y Zacapu) se encuentran en los flujos de lava más 
antiguos, mientras que las poblaciones menos diversas se 
encuentran sobre los pedregales más recientes. Si esto se 
comprueba en estudios posteriores, será congruente con el 
argumento de que la variación genética de poblaciones an-
cestrales es mayor que la presente en las poblaciones más 
recientes, ya que estas últimas han tenido menos tiempo 
para acumular diferencias (Mastretta-Yanes et al., 2015). 
Sin embargo, al parecer esto no aplica a la población de 
Manantlán que presenta la menor variación genética y se 
encuentra en la erupción más antigua del Mioceno-Pleisto-
ceno (Martínez y Ramírez, 1998). Esta observación podría 
confirmar que esta población está aislada de las demás 
poblaciones, tanto por distancia como por la orografía del 
lugar, lo que incide negativamente en el flujo genético y au-
menta su endogamia.

Otra hipótesis aventurada, por confirmar, tiene que 
ver con los valores negativos y significativos de los estima-
dores de neutralidad que indican expansión poblacional de 
B. stormiae, lo que podría estar relacionado con los supues-
tos de la dinámica de la vegetación durante el Cuaternario 
Tardío, los cuales indican que los cambios en la estructura 
de la vegetación en el Holoceno fueron provocados por las 
actividades humanas durante los últimos 4000 años (Caba-
llero-Rodríguez et al., 2018). En ese sentido, se reporta que 
los primeros asentamientos humanos en Zacapu datan de 
aproximadamente 1500 a. C. (Reyes-Guzmán et al., 2018). 
Se estima que, en su apogeo, la población prehispánica 
de esta localidad albergó alrededor de 20,000 habitantes, 
abarcando 1100 hectáreas sobre el pedregal (Michelet, 
1998; Migeon, 1998; Smith, 2005; Forest, 2014). Si supo-
nemos que se utilizaron los recursos forestales disponibles 
en la región para la subsistencia de estos asentamientos 
humanos, esto pudo haber originado una recurrente per-
turbación al hábitat, incidiendo en la variación genética 
de esta especie. Sin embargo, el abandono posterior del 
pedregal durante la conquista pudo propiciar el crecimien-

to poblacional de B. stormiae; esto antes de nuevamente 
ser perturbada en tiempos actuales (Martínez-Salas et al., 
2017; Reyes-Guzmán et al., 2018).

Implicaciones para la conservación
Este es el primer estudio que contribuye al entendimiento 
de la genética poblacional de B. stormiae, especie conside-
rada en peligro de extinción, distribuida en regiones aisla-
das. No obstante, es necesario llevar a cabo futuros análisis 
ampliando el tamaño del muestreo e incluyendo poblacio-
nes de Colima, Guerrero, Oaxaca, Nayarit, Guatemala y El 
Salvador. Además, se sugiere explorar otros marcadores 
moleculares para fechar con precisión eventos de contrac-
ción y expansión demográfica para corroborar las hipóte-
sis aquí expuestas y tener más elementos para establecer 
estrategias de conservación adecuadas para esta especie. 
Con base al trabajo de campo realizado en este estudio, 
considerando la perturbación observada en las diferentes 
localidades y el bajo número de individuos censados, se 
constata a esta especie en peligro de extinción (Martínez 
Salas et al., 2017).
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