SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

ALVARADO, Carlos J. et al. Hongos micorrízicos arbusculares y la fitorremediación de plomo. Rev. Int. Contam. Ambient [online]. 2011, vol.27, n.4, pp. 357-364. ISSN 0188-4999.

    Arriagada M.A., Herrera M.A. y Ocampo J.A. (2005). Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Poll. 166, 31–47. [ Links ]

    Baker A.J.M. (1981). Accumulators and excluders–strategies in the response of plants to heavy metals. J. Plant Nutr. 3, 643–654. [ Links ]

    Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D. y Raskin I. (1997). Enhanced accumulation of Pb in Indian mustard by soil–applied chelating agents. Environ. Sci. Technol. 31, 860–865. [ Links ]

    Burton K.W., Morgan E. y Roig A. (1984). The influence of heavy metals on the growth of sitkaspruce in South Wales forests in greenhouse experiments. Plant Soil. 78, 271–282. [ Links ]

    Capaccio L.V.M. y Callow J.A. (1982). The enzymes of polyphosphate metabolism in vesicular–arbuscular mycorrhizas. New Phytol. 91, 81–91. [ Links ]

    Chaney R.L. (2008). Anthropogenic contamination of urban soils: sources, risks, remediation. Joint Meeting of the Geological Society of America, Soil Science Society etc., Hoston, Texas, USA. 7 de Octubre de 2008. http://gsa.confex.com/gsa/2008AM/finalprogram/abstract_149953.htm (ultimo acceso 19 de Oct. de 2011). [ Links ]

    Chen X., Wu C., Tang J. y Hu S. (2005). Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60, 665–671. [ Links ]

    Clemens S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486. [ Links ]

    Ernst W.H.O. (1998). Effects of heavy metals in plants at the cellular and organismic levels. En: Ecotoxicology: Ecological Fundamentals, Chemical Exposure and Biological Effects (G. Schuurmann y B. Markert, Eds.). Wiley, Heidelberg, pp. 587–620. [ Links ]

    Ezawa T., Smith S.E. y Smith F.A. (2001). Differentiation of polyphosphate metabolism between the extra– and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol. 149, 555–563. [ Links ]

    Galli U., Schüepp H. y Brunold C. (1994). Heavy metal binding by mycorrhizal fungi. Physiol. Plantarum. 926, 364–368. [ Links ]

    Gaur A. y Adholeya A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Sci. 86, 528–534. [ Links ]

    Göhre V. y Paszkowski U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223, 1115–1122. [ Links ]

    González–Chávez M.C., Carrillo–González R., Wright S.F. y Nichols K.A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 130, 317–323. [ Links ]

    Harrison M.J. y Van Buuren M.L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629. [ Links ]

    Harrison M.J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 361–389. [ Links ]

    Joner E.J., Briones R. y Leyval C. (2000). Metal–binding capacity of arbuscular mycorrhizal mycelium. Plant Soil. 226, 227–234. [ Links ]

    Khan A.G., Kuek C., Chaudhry T.M., Khoo C.S. y Hayes W.J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197–207. [ Links ]

    Khan A.G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18, 355–364. [ Links ]

    Kojima T., Hayatsu M. y Saito M. (1998). Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus, Gigaspora margarita. Biol. Fert. Soils. 26, 331–335. [ Links ]

    Kramer U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16, 133–141. [ Links ]

    Kumar N.P.B.A., Dushenkov V., Motto H., Raskin I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29, 1232–1238. [ Links ]

    Lanfranco L., Bolchi A., Ros E.C., Ottonello S. y Bonfante P. (2002). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol. 130, 58–67. [ Links ]

    Lavania U.C. y Lavania S. (2000). Vetiver grass technology for environmental technology and sustainable development. Current Sci. 78, 944–946. [ Links ]

    Maldonado–Mendoza I.E., Dewbre G.R. y Harrison M.J. (2001). A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol. Plant Microbe In. 14, 1140–1148. [ Links ]

    Morselt A.F.W., Smits W.T.M. y Limonard T. (1986). Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil. 96, 417–420. [ Links ]

    Mucciarelli M., Bertea C.M., Scannerini S. y Gallino M. (1998). Vetiveria zizanioides as a tool for environmental engineering. Acta Hortic. 457, 261–269. [ Links ]

    Nowak J. (2007). Effects of cadmium and lead concentrations and arbuscular mycorrhizal on growth, flowering and heavy metal accumulation in scarlet sage (Salvia splendens sello 'torreador'). Acta Agrobot. 60, 79–83. [ Links ]

    Pawlowska T.E. y Charvat I. (2004). Heavy–metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 70, 6643–6649. [ Links ]

    Peuke A.D. y Rennenberg H. (2005). Phytoremediation. EMBO Rep. 6, 497–501. [ Links ]

    Punamiya P., Datta R., Sarkar D., Barber S., Patel M. y Das P. (2010). Symbiotic role of Glomus mosseae in lead phytoextraction using vetiver grass [Chrysopogon zizanioides (L.)]. J. Hazard. Mat., 177, 465–474. [ Links ]

    Rabie G.H. (2005). Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal–polluted soil. African J. Biotechnol. 4, 332–345. [ Links ]

    Saito M. (1995). Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol. 129, 425–431. [ Links ]

    Salt D.E., Blaylock M., Kumar P.B.A.N., Dushenkov V., Ensley B.D., Chet I. y Raskin I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 13, 468–175. [ Links ]

    Seregin I.V. e Ivanov VB. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian J. Plant Physiol. 48, 523–544. [ Links ]

    Shu W.S., Xia H.P., Zhang Z.Q., Lan C.Y. y Wong M.H. (2002). Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. Inter. J. Phyto. 4, 47–57. [ Links ]

    Turnau K., Kottke I. y Oberwinkler F. (1993). Elemental localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected to experimental plots treated with cadmium dust. New Phytol. 123, 313–324. [ Links ]

    Vodnik D., Grcman H., Macek I., Van Elteren J.T. y Kovacevic M. (2008). The contribution of glomalinrelated soil protein to Pb and Zn sequestration in pol–luted soil. Sci. Total Environ. 392, 130–136. [ Links ]

    Wong C.C., Wu S.C., Kuek C., Khan A.G. y Wong M.H. (2007). The role of mycorrhizae associated with vetiver grown in Pb–/Zn–contaminated soils: Greenhouse study. Restor. Ecol. 15, 60–67. [ Links ]