SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

MENDOZA, Alberto  y  GARCIA, Marisa R.. Modelación inversa aplicada al análisis del inventario de emisiones de la zona metropolitana de Guadalajara, México. Rev. Int. Contam. Ambient [online]. 2011, vol.27, n.3, pp.199-214. ISSN 0188-4999.

    Aldrin M. (1997). Length modifed ridge regression. Comput. Stat. Data An. 28, 377–398. [ Links ]

    Bergin M.S., Russell A.G., Odman M.T., Cohan D.S. y Chameides W.L. (2008). Single–source impact analysis using 3D air quality models. J. Air Waste Manage. 58, 1351–1359. [ Links ]

    Brown M. (1993). Deduction of emissions of source gases using an objective inversion algorithm and a chemical transport model. J. Geophys. Res. 98, 12639–12660. [ Links ]

    Carter W.P.L. (1990). A detailed mechanism for the gasphase atmospheric reactions of organic compounds. Atmos. Environ. 24, 481–518. [ Links ]

    Chang M.E., Hartley D.E., Cardelino C., Haas–Laursen D. y Chang W.–L. (1997). On using inverse methods for resolving emissions with large spatial inhomogeneities. J. Geophys. Res. 102, 16023–16036. [ Links ]

    Cohan D.S., Boylan J.W., Marmur A. y Maudood K. (2007). An integrated framework for multipollutant air quality management and its application in Georgia. Environ. Manage. 40, 545–554. [ Links ]

    Corsmeier U., Imhof D., Kohler M., Kühlwein J., Kurtenbach R., Petrea M., Rosenbohm E., Vogel B. y Vogt U. (2005). Comparison of measured and model–calculated real–world traffic emissions. Atmos. Environ. 39, 5760–5775. [ Links ]

    Davydova–Belitskaya V., Skiba, Y.N., Martínez A. y Bulgakov S. (2001). Modelación matemática de los niveles de contaminación en la ciudad de Guadalajara, Jalisco, México. Parte II. Modelo numérico de transporte de contaminantes y su adjunto. Rev. Int. Contam. Ambie. 17, 97–107. [ Links ]

    Doll D.C., Scheffe R.D., Meyer E.L. y Chu S.–H. (1991). EPA–450/4–91–013. Guideline for regulatory application of the Urban Airshed Model. Office of Air Quality, Planning and Standards, United States Environmental Protection Agency, Research Triangle Park, NC. 89 pp. [ Links ]

    Elbern H. y Schmidt H. (1999). A four–dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling. J. Geophys. Res. 104, 18583–18598. [ Links ]

    Elbern H., Strunk A., Schmidt H. y Talagrand O. (2007). Emission rate and chemical state estimation by 4–dimensional variational inversion. Atmos. Chem. Phys. 7, 3749–3769. [ Links ]

    Grell G. A., Knoche R., Peckman S.E. y McKeen S. A. (2004). Online versus offline air quality modeling on cloud–resolving scales. Geophys. Res. Lett. 31, L16177, doi:10.1029/2004GL020175. [ Links ]

    Gobierno del Estado de Jalisco, Secretaría de Medio Ambiente, Recursos Naturales y Pesca, y Secretaría de Salud (1997). Programa para el Mejoramiento de la Calidad del Aire en la Zona Metropolitana de Guadalajara 1997–2001. Instituto Nacional de Ecología, México, D.F., 240 pp. [ Links ]

    Goodin W.R., McRae G.J. y Seinfeld J.H. (1979). A comparison of interpolation methods for sparse data: Application to wind and concentration fields. J. Appl. Meteorol. 18, 761–771. [ Links ]

    Goodin W.R., McRae G.J. y Seinfeld J.H. (1980). An objective analysis technique for constructing three–dimensional urban–scale wind fields. J. Appl. Meteorol. 19, 98–108. [ Links ]

    Hakami A., Odman M.T. y Russell A.G. (2003). High–order, direct sensitivity analysis of multidimensional air quality models. Environ. Sci. Technol. 37, 2442–2452. [ Links ]

    Hakami A., Henze D. K., Seinfeld J. H., Chai T., Tang Y., Carmichael G. R. y Sandu A. (2005). Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment. J. Geophys. Res. 110, D14301, doi: 10.1029/2004JD005671. [ Links ]

    Hanna S.R. (1988). Air quality model evaluation and uncertainty. JAPCA. 38, 460–412. [ Links ]

    Hao J., He D., Wu Y., Fu L. y He K. (2000). A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing. Atmos. Environ. 34, 453–465. [ Links ]

    Harley R., Russell A.G., McRae G.J., Cass G.R. y Seinfeld J.H. (1993). Photochemical modeling of the Southern California Air Quality Study. Environ. Sci. Technol. 27, 378–388. [ Links ]

    Harley R.A., Marr L.C., Lehner J.K. y Giddings S.H. (2005). Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environ. Sci. Technol. 39, 5356–5362. [ Links ]

    Hoerl A.E. y Kennard R.W. (1976). Ridge regression iterative estimation of the biased parameter. Commun. Stat. A–Theor. A5, 77–88. [ Links ]

    Hogrefe C., Civerolo K. L., Hao W., Ku, J.–Y., Zalewsky E.E. y Sistla G. (2008). Rethinking the assessment of photochemical modeling systems in air quality planning applications. J. Air Waste Manage. 58, 1086–1099. [ Links ]

    Jang J.C.C., Jeffries H.E. y Tonnesen S. (1995). Sensitivity of ozone to model grid resolution – II: Detailed process analysis for ozone chemistry. Atmos. Environ. 29, 3101–3114. [ Links ]

    Kimura Y., McDonald–Buller E., Vizuete W. y Allen D.T. (2008). Application of a Lagrangian process analysis tool to characterize ozone formation in Southeast Texas. Atmos. Environ. 42, 5743–5759. [ Links ]

    McNair L.A., Harley R.A. y Russell A.G. (1996). Spatial inhomogeneity in pollutant concentrations, and their implications for air quality model evaluation. Atmos. Environ. 30, 4291–4301. [ Links ]

    McRae G.J., Goodin W. y Seinfeld J.H. (1982a). Development of a second–generation mathematical model for urban air pollution – I. Model formulation. Atmos. Environ. 16, 679–696. [ Links ]

    McRae G.J., Goodin W.R. y Seinfeld J.H. (1982b). Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comp. Phys. 45, 1–42. [ Links ]

    Mendoza–Domínguez A. y Russell A.G. (2000). Iterative inverse modeling and direct sensitivity analysis of a photochemical air quality model. Environ. Sci. Technol. 34, 4974–4981. [ Links ]

    Mendoza–Domínguez A. y Russell A.G. (2001). Estimation of emission adjustments from the application of four–dimensional data assimilation to photochemical air quality modeling. Atmos. Environ. 35, 2879–2894. [ Links ]

    Mendoza A. y García M.R. (2009). Aplicación de un modelo de calidad del aire de segunda generación a la Zona Metropolitana de Guadalajara, México. Rev. Int. Contam. Ambie. 25, 73–85. [ Links ]

    Napelenok S.L., Cohan D.S., Yongtao H. y Russell A.G. (2006). Decoupled direct 3D sensitivity analysis for particulate matter (DDM–3D/PM). Atmos. Environ. 40, 6112–6121. [ Links ]

    Napelenok S.L., Pinder R.W., Gilliland A.B. y Martin R.V. (2008). A method for evaluating spatially–resolved NOx emissions using Kalman filter inversion, direct sensitivities, and space–based NO2 observations. Atmos. Chem. Phys. 8, 5603–5614. [ Links ]

    Niemeier D.A. (2003). The impact of incorporating spatial, temporal variability on running stabilized mobile emissions inventories. Atmos. Environ. 37, Supplement No. 2, S27–S37. [ Links ]

    NRC (1991). Rethinking the Ozone Problem in Urban and Regional Air Pollution. National Academy Press. Washington, EUA. 500 pp. [ Links ]

    Odman M.T. (1998). EPA/600/R–97/142. Research on Numerical Transport Algorithms for Air Quality Simulation Models. Office of Research and Development, United States Environmental Protection Agency. Washington, D.C. 62 pp. [ Links ]

    O'Neill S.M. y Lamb B.K. (2005). Intercomparison of the Community Multiscale Air Quality Model and CALGRID Using Process Analysis. Environ. Sci. Technol. 39, 5742–5753. [ Links ]

    Parrish D.D. (2006). Critical evaluation of US on–road vehicle emission inventories. Atmos. Environ. 40, 2288–2300. [ Links ]

    Placet M., Mann C.O., Gilbert R.O. y Niefer M.J. (2000). Emissions of ozone precursors from stationary sources: a critical review. Atmos. Environ. 34, 2183–2204. [ Links ]

    Russell A.G., McCue K.F. y Cass G.R. (1988). Mathematical modeling of the formation and transport of nitrogen–containing pollutants I: Model evaluation. Environ. Sci. Technol. 22, 263–271. [ Links ]

    Russell A. y Dennis R. (2000). NARSTO critical review of photochemical models and modeling. Atmos. Environ. 34, 2283–2324. [ Links ]

    Russell A.G. (2008). EPA Supersites program–related emissions–based particulate matter modeling: initial applications and advances. J. Air Waste Manage. 58, 289–302. [ Links ]

    Sawyer R.F., Harley R.A., Cadle S.H., Norbeck J.M., Slott R. y Bravo H.A. (2000). Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 34, 2161–2181. [ Links ]

    Srivastava R.K., McRae, D.S. y Odman, M.T. (2000). An adaptive grid algorithm for air quality modeling. J. Comp. Phys. 165, 437–472. [ Links ]

    Wesely M.L. (1989). Parameterization of surface resistances to gaseous dry deposition in regional–scale numerical models. Atmos. Environ. 23, 1293–1304. [ Links ]

    Yang Y.–J., Wilkinson J.G. y Russell A.G. (1997). Fast, direct sensitivity analysis of multidimensional photochemical models. Environ. Sci. Technol. 31, 2859–2868. [ Links ]

    Zhang Y., Stedman H.D., Bishop G.A., Guenther P.L. y Beaton S.P. (1995). Worldwide on–road vehicle exhaust emissions study by remote sensing. Environ. Sci. Technol. 29, 2286–2294. [ Links ]

    Zuk M., Rojas Bracho L. y Tzintzun Cervantes M.G. (2007) Tercer almanaque de datos y tendencias de la calidad del aire en nueve ciudades mexicanas. Instituto Nacional de Ecología, México, D.F.; 116 p. [ Links ]