SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

TAGHI SATTARI, M.; ANLI, A. S.; APAYDIN, H.  y  KODAL, S.. Decision trees to determine the possible drought periods in Ankara. Atmósfera [online]. 2012, vol.25, n.1, pp.65-83. ISSN 0187-6236.

    Bhattacharya B., R. K. Price and D. P. Solomatine, 2004. A data mining approach to modeling sediment transport. 6th International Conference on Hydro-informatics. World Scientific Publishing. Pages 1-8. Singapore. [ Links ]

    Bobba M. E. and J. L. Minetti, 2010. South American atmospheric circulation anomalies related to droughts in the northwest of Argentina (1951-1980). Atmósfera 23, 263-275. [ Links ]

    Bonaccorso B., A. Cancelliere and G. Rossi, 2003. An analytical formulation of return period of drought severity. Stoch. Environ. Res. Risk. Assess. 17, 157-174. [ Links ]

    Burak S., I. Duranyildiz and U. U. Yetis, 1997. Water resources management. National Environment Act Plan (In Turkish). Turkish State Planning Organization, 116 pp. [ Links ]

    Edwards D. C. and T. B. McKee, 1997. Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report Number 97-2, Colorado State University, Fort Collins, CO, 155 pp. [ Links ]

    Florian T. B., A. S. Dragan and A. W. Godfrey, 2003. Water Reservoir Control with Data Mining. J. Water Res. Plan. Man. 129, 26-34. [ Links ]

    García-Barrón L. and M. F. Pita. 2004. Stochastic analysis of time series of temperatures in the south-west of the Iberian Peninsula. Atmósfera 17, 225-244. [ Links ]

    Gordon A. D., 1981. Classification methods for the exploratory analysis of multivariate data. Chapman and Hall, London, 193 pp. [ Links ]

    Han J. and M. Kamber, 2006. Data Mining: Concepts and techniques. Morgan Kaufmann Publishers, Elsevier, San Francisco, CA. USA, 770 pp. [ Links ]

    Harms S. K., J. Deogun and T. Tadesse, 2002. Discovering sequential association rules with constraints and time lags in multiple sequences. In: Proc. of the 13th International Symposium on Methodologies for Intelligent Systems, Lyon, France (M. S. Hacid, Z. W. Ras, D. A. Zighed and Y. Kodratoff, Eds.). Foundations of Intelligent Systems, Lecture Notes in Artificial Intelligence, June 27-29. Springer, Berlin, 2366, 432-441. [ Links ]

    Hosking J. R. M. and J. R. Wallis, 1997. Regional frequency analysis: An approach based on L-moments. Cambridge University Press, Cambridge, UK, 224 pp. [ Links ]

    Khan A. S. and L. See, 2006. Rainfall-runoff modeling using data driven and statistical methods. International Conference on Advances in Space Technologies, Institute of Electrical and Electronics Engineers (IEEE), 2-3 September, Islamabad, 16-20, doi: 10.1109/ICAST.2006.313.789. [ Links ]

    McKee T. B., N. J. Doesken and J. Kliest, 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, 17-22 January, Anaheim, CA. American Meteorological Society, Boston, MA, 179-184. [ Links ]

    Mishra A. K., V. P. Singh and V. R. Desai, 2009. Drought characterization: a probabilistic approach. Stoch Environ. Res. Risk Assess. 23, 41-55. [ Links ]

    Mitchell T. M., 1997. Machine learning. McGraw-Hill, Boston, 414 pp. [ Links ]

    Nadarajah S., 2009. A bivariate Pareto model for drought. Stoch. Environ. Res. Risk. Assess. 23, 811-822. [ Links ]

    Pal M. and S. Deswal, 2009. M5 model tree based modeling of reference evapotranspiration. Hydrol. Process. 23, 1437-1443. [ Links ]

    Peralta-Hernández A. R., L. R. Barba-Martínez, V. O. Magaña-Rueda, A. D. Matthias, and J. J. Luna-Ruíz, 2008. Temporal and spatial behavior of temperature and precipitation during the canícula (midsummer drought) under El Niño conditions in central México. Atmósfera 21, 265-280. [ Links ]

    Quinlan J. R., 1993. C4.5 Programs for machine learning. Morgan Kaufmann Publishers, Inc., San Mateo, CA, USA, 299 pp. [ Links ]

    Quinlan J. R., 1997. See5 (available from Last updated January 2011). [ Links ]

    Redmond K. T., 2000. Integrated climate monitoring for drought detection. Drought: A global assessment (D. A. Wilhite, Ed.). DA, Routledge, London, 752 pp. [ Links ]

    Seager R., M. Ting, M. Davis, M. Cane, N. Naik, J. Nakamura, C. Li, E. Cook and D. W. Stahle, 2009. Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22, 1-31. [ Links ]

    Solomatine D. P., 2002. Application of data-driven modeling and machine learning in control of water resources. In: Computational intelligence in control. Idea Group Publishing, London, UK, 197-217. [ Links ]

    Srdjevica B., Y. D. P. Medeirosb and R. L. Portoc, 2005. Data envelopment analysis of reservoir system performance. Comput. Oper. Res. 32, 3209-3226. [ Links ]

    Stahl K., 2001. Hydrological drought. A study across Europe. Ph.D. thesis Albert-Ludwigs University Freiburg, Freiburg, Germany, 129 pp. [ Links ]

    Sudha V., N. K. Ambujam and K. Venugopal, 2006. A data mining approach for deriving irrigation reservoir operating rules. Conference on Water Observation and Information System for Decision Support, 23-26 May, Orhid, Macedonia, 9 pp. [ Links ]

    Tadesse T., D. A. Wilhite, S. K. Harms, M. J. Hayes and S. Goddard, 2004. Drought monitoring using data mining techniques: A case study for Nebraska, USA. Nat. Hazards 33, 137-159. [ Links ]

    Tadesse T., J. F. Brown and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the US. central plains. ISPRS J. Photo-gramm. Remote Sens. 59, 244-253. [ Links ]

    Velickov S. and D. P. Solomatine, 2000. Predictive data mining: Practical examples. Artificial Intelligence in Civil Engineering. Proceed. 2nd Joint, Workshop. March, Cottbus, Germany, 17 pp. [ Links ]

    Wang D., 2010. Accelerating entropy theory: New approach to the risks of risk analysis in water issues. Hum. Ecol. Risk Assess. 16, 4-9. [ Links ]

    Wilhite D. A., 1994. Drought management in a changing west. New Directions for Water Policy, (Deborah and A. Wood, Eds.) IDIC Technical Report Series. Portland, Oregon, 94 pp. [ Links ]

    Wilhite D. A., K. Cody, H. Mike and P. Tom, 2000. The basics of drought planning: A 10-step process. Drought Mitigation Center University of Nebraska, Nebraska, USA.(available from Date 2011-12-04). [ Links ]

    Yaralioglu, K., 2004. Uygulamada Karar Destek Yontemleri (In Turkish), Ilkem Ofset, Izmir, Turkiye (available from Date 2011-12-04). [ Links ]