SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

SINGH, D.. Evaluation of long-term NDVI time series derived from Landsat data through blending with MODIS data. Atmósfera [online]. 2012, vol.25, n.1, pp. 43-63. ISSN 0187-6236.

    Acerbi F. W. Jr., J. G. P. W. Clevers and M. E. Schaepman, 2006. The assessment of multisensor image fusion using wavelet transforms for mapping the Brazilian savanna. Int. J. Appl. EarthObs. 8, 278-288. [ Links ]

    Ali M. A. and D. A. Clausi, 2002. Automatic registration of SAR and visible band remote sensing images. 2002 IEEE International Geoscience and Remote Sensing Symposium, June 24-28 TO, Canada, doi: 10.1109/IGARSS.2002.1026106. [ Links ]

    Badhwar G. D., 1984. Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation. Remote Sens. Environ. 14, 31-37. [ Links ]

    Bentoutou Y., N. Taleb, K. Palma and J. Ronsin, 2005. An automatic image registration for application in remote sensing. IEEE T. Geosci. Remote Sens. 43, 2127-2137. [ Links ]

    Bernstein L. S., S. M. Adler-Golden, R. L. Sundberg, R. Y Levine, T. C. Perkins, A. Berk, A. J. Ratkowski, G. Felde and M. L. Hoke, 2005. A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (Quick atmospheric correction). Proceedings of International Geoscience and Remote Sensing Symposium. 5, 3549-3552. [ Links ]

    Carper J., T. M. Lillesand and R. W. Kiefer, 1990. The use of intensity-huesaturation transformations for merging SPOT panchromatic and multispectral image data. Photo-gramm. Eng. RemoteSens. 56, 459-467. [ Links ]

    Chander G. and B. L. Markham, 2003. Revised Landsat-5 TM radiometric calibration procedures, and post-calibration dynamic ranges. IEEE T. Geosci. Remote Sens. 41, 2674-2677. [ Links ]

    Chander G., B. L. Markham and J. A. Barsi, 2007. Revised Landsat 5 thematic mapper radiometric calibration. IEEE T. Geosci. RemoteSens. 44, 490-494. [ Links ]

    Chiller J., L. St-Laurent and J. A. Dyer, 1991. Relationship between the normalized difference vegetation index and ecological variables. Remote Sens. Environ. 35, 279-298. [ Links ]

    Choudhary B. J. and C. J. Tucker, 1987. Monitoring global vegetation using Nimbus-7 37 GHz data: some empirical relations. Int. J. Remote Sens. 8, 1085-1090. [ Links ]

    Choudhary B. J. and R. E. Golus, 1988. Estimating soil wetness using satellite data. Int. J. RemoteSens. 9, 1251-1257. [ Links ]

    Cohen W. B., T. A. Spies and G. A. Bradshaw, 1990. Semivariograms of digital imagery for analysis of conifer canopy structure, Remote Sens. Environ. 34, 167-178. [ Links ]

    Coppin P., I. Jonckheere, K. Nackaerts, B. Muys and E. Lambin, 2004. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 25, 1565-1596. [ Links ]

    Dare P. M. and I. J. Dowman, 2000. Automatic registration of SAR and SPOT imagery based on multiple feature extraction and matching. Geoscience and Remote Sensing Symposium, Proceedings, IGRASS 2000, IEEE 2000 International, Honolulu, Hi, USA, 24-28 July. Doi: 10.1109/IGARSS.2000.860282. [ Links ]

    Devenport M. L and S. E. Nicholson, 1993. On the relationship between rainfall and using normalized difference vegetation index for diverse vegetation types in East Africa. Int. J.Remote Sens. 14, 2369-2389. [ Links ]

    Di L., D. C. Rundquist and L. Han, 1994. Modelling relationships between NDVI and precipitation during vegetation growth cycles, Int. Remote Sens. 15, 2121-2136. [ Links ]

    Farrar T. J., S. E. Nicholson and A. R. Lare, 1994. The influence of soil type on the relationship between NDVI, rainfall and soil moisture in semi-arid Botswana. II. Relationship to soil moisture, Remote Sens. Environ. 50, 121-131. [ Links ]

    Gao F., J. Masek, M. Schwaller and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE T. Geosci. RemoteSens. 44, 2207-2218. [ Links ]

    Gao W., M. L. Wesely, D. R. Cook and R. L. Hart, 1992. Air-surface exchange of H2O, CO2 and O3 at a tall grass prairie in relation to remotely sensed vegetation indices. J. Geophys. Res. 97, 18663-18671. [ Links ]

    Grist J., S. E. Nicholson and A. Mpolokang, 1997. On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana. J. Arid Environ. 35,195-214. [ Links ]

    Gutman G. G., 1999. On the use of long-term global data of land reflectances and vegetation indices derived from the AVHRR. J. Geophys. Res. 104, 6241-6255. [ Links ]

    Hall F. G. and G. D. Badhwar, 1987. Signature-extendable technology: Global space-based crop recognition. IEEE T.Geosci. RemoteSens. 2, 93-103. [ Links ]

    Hanaizumi N. and S. Fujimura, 1993. An automated method for registration of satellite remote sensing images, Geoscience and Remote Sensing Symposium, IGRASS'93. Better understanding of earth environment. International ITT Visual Information Solutions, Boulder, CO. doi: 10.1109/IGARSS.1993.322087. [ Links ]

    Hansen M. C., D. P. Roy, E. Lindquist, B. Adusei, C. O. Justice and A. Altstatt, 2008. A method for integrating MODIS and Landsat data for systematic monitoring of forest covers and changes in the Congo Basin. Remote Sens. Environ. 112, 2495-2513. [ Links ]

    Helder D and T. Ruggles, 2004. Landsat thematic mapper reflective-band radiometric artifacts. IEEE Transactions on Geoscience and Remote Sensing, 42, 2704-2716. [ Links ]

    Hilker T., M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G. Masek, F. Gao and J. C. White, 2009. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 113, 1613-1627. [ Links ]

    Hwang T., S. Kang, J. Kim, Y. Kim, D. Lee and L. Band, 2008. Evaluating drought effect on MODIS Gross Primary Production (GPP) with an eco-hydrological model in the mountainous forest, East Asia. Glob. Change Biol. 14, 1-20. [ Links ]

    Irons J. and J. Masek, 2006. Requirements for a Landsat data continuity mission, Photo-gramm.Eng. Remote Sens. 72, 1102-1108. [ Links ]

    James M. E. and S. N. V. Kalluri, 1994. The pathfinder AVHRR land data set: an improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens. 15, 3347-3363. [ Links ]

    Justice C. O. and J. R. G. Townshend, 2002. Special issue on the moderate resolution imaging spectroradiometer (MODIS): A new generation of land surface monitoring. Remote Sens.Environ. 83, 1-2. [ Links ]

    Kalvelage T. and J. Willems, 2005. Supporting users through integrated retrieval, processing, and distribution systems at the land processes distributed active archive center. Acta Astronaut. 56, 681-687. [ Links ]

    Kaufmann R. K., L., Zhou, Knyazikhin, N. V. Shabanov, R. B. Myneni and C. J. Tucker, 2000. Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE T. Geosci. Remote Sens. 38, 2584-2597. [ Links ]

    Kennedy R. E. and W. B. Cohen, 2003. Automated designation of tie-points for image-to-image coregistration. Int. J. Remote Sens. 24, 3467-3490. [ Links ]

    Kerr Y. H, J. Imbernon, G. Dediue, O. Hautecour, J. P. Lagouarde and B. Seguin, 1989. NOAAAVHRR and its uses for rainfall and evapotransipiration monitoring. Int. J. Remote Sens. 10, 847-854. [ Links ]

    Markham B. L., G. Chander, R. Morfitt, D. M. Hollaren, J. Nelson, L. Ong, and J. F. Mendenhall, 2004. Radiometric processing and calibration of EO-1 advanced land imager data. Proceedings of Global Priorities in Land Remote Sensing, PECORA 16, South Dakota, Sioux Falls, 23-27 October. http://cursosihlla.bdh.org.ar/Tutoria_2010/Sensor_ALI/Markham_B.pdf. [ Links ]

    Maselli F., S. Romanelli, L. Bottai and G. Zipoli, 2003. Use of NOAA-AVHRR NDVI images for the estimation of dynamic fire risk in Mediterranean areas. Remote Sens. Environ. 86, 187-197. [ Links ]

    Myneni R. B., C. D. Keeling, C. J. Tucker, G. Asrar and R. R. Nemani, 1997. Increase plant growth in the northern high latitudes from 1981-1991. Nature 386, 698-702. [ Links ]

    Nicholson S. E., M. L. Devenport and A. R. Malo, 1990. A comparison of the vegetation response to rainfall in the Sahel and east Africa using normalized difference vegetation index from NOAA AVHRR. Clim. Change 17, 209-241. [ Links ]

    Nicholson S. E. and T. J. Farrar, 1994. The influence of soil type on the relationship between NDVI, rainfall and soil moisture in semi arid Botswana. I. Relationship to rainfall, RemoteSens. Environ. 50, 107-120. [ Links ]

    Nicholson S. E., A. R. Lare, J. A. Marengo and P. Sanros, 1996. A revised version of Lettau's evapoclimatonomy model. J. Appl. Meteorol. 35, 549-561. [ Links ]

    Price K. P., S. L. Egbert, M. D. Nellis, R.-Y. Lee and R. Boyce, 1997. Mapping land cover in a high plains agro-ecosystem using a multidate Landsat thematic mapper modeling approach. Transactions of the Kansas Academy of Science 100, 21-33. [ Links ]

    Roy D. P. and O. Dikshit, 1994. Investigation of image resampling effects upon the textural information content of a high spatial resolution remotely sensed image. Int. J. Remote Sens. 15, 1123-1130. [ Links ]

    Roy D. P., 2000. The impact of misregistration upon composited wide field of view satellite data and implications for change detection. IEEE T. Geosci. Remote Sens. 38, 2017-2032. [ Links ]

    Roy P., J. Junchang, P. Lewis, C. Schaaf, F. Gao, M. Hansen and E. Lindquist, 2008. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of landsat data. Remote Sens. Environ. 112, 3112-3130. [ Links ]

    Running S. W. and R. R. Nemani, 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. RemoteSens. Environ. 24, 347-367. [ Links ]

    Savitzky A. and J. E. Golay, 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627-1639. [ Links ]

    Schultz P. A. and M. S. Halpert, 1993. Global correlation of temperature, NDVI and precipitation. Adv. Space Res. 13, 277-280. [ Links ]

    Seevers P. M. and R. W. Ottmann, 1994. Evapotranspiration estimation using a normalized difference vegetation index transformation of satellite data. Hydrolog. Sci. J. 39, 333-345. [ Links ]

    Sellers P. J., 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6,1335-1372. [ Links ]

    Shettigara V. K., 1992. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photo-gramm. Eng. Remote Sens. 58, 561-567. [ Links ]

    Singh R. P., S. Roy and F. Kogan, 2003. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 24, 4393-4402. [ Links ]

    Smith J. H. and D. B. Ramey, 1982. A crop area estimator based on changes in the temporal profile of a vegetative index. Proceedings of the Survey Research Methods Section, American Statistical Association, 1982, Cincinnati, Ohio, USA, 495-498. [ Links ]

    Smith P. M., S. N. V. Kalluri, S. D. Prince and R. Defries, 1997. The NOAA/ NASA Pathfinder AVHRR 8-km land data set. Photo-gramm. Eng. Remote Sens. 63, 12-31. [ Links ]

    Song C. and C. E. Woodcock, 2003. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE T. Geosci. Remote Sens. 41, 2557-2567. [ Links ]

    Susmitha J., A. K. Sahai and B. N. Goswami, 2009. Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim. Dynam. 32, 1139-1153. [ Links ]

    Szilagyi J., D. C. Rundquist and D. C. Gosselin, 1998. NDVI relationship to monthly evaporation. Geophys. Res. Lett. 25,1753-1756. [ Links ]

    Szilagyi J., 2000. Can a vegetation index derived from remote sensing be indicative of areal transpiration? Ecol. Model. 127, 65-79. [ Links ]

    Tait A. and X. G. Zheng, 2003. Mapping frost occurrence using satellite data. J. App. Meteorol. 42, 193-203. [ Links ]

    Tanre D., E. Vermote, B. N. Holben and Y. L. Kaufman, 1992. Satellite aerosol retrieval over land surfaces using the structure functions. Proc. International GARSS'92, IEEET. Geosci. RemoteSens. Soc. Houston, TX, 1474-1477. [ Links ]

    Tucker C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127-150. [ Links ]

    Tucker C. J., C. L. Vampraer, M. J. Sharman and G. Van Ittcrsum, 1985. Satellite remote sensing of total herbaceous biomass production in the Senegales Sahel: 1980-1984. Remote Sens.Environ. 17, 233-249. [ Links ]

    Tucker C. J. and J. E. Pinzón, 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485-4498. [ Links ]

    Vermote E. F. and Y. J. Kaufmann, 1995. Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views. Int. J. Remote Sens. 16, 2317-2340. [ Links ]

    Viovy N., O. Arino and A. S. Belward, 1992. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time series. Int. J. Remote Sens. 13, 1585-1590. [ Links ]

    Wang Q., M. Watanabe, S. Hayashi and S. Murakami, 2003. Using NOAAAVHRR data to assess flood damage in China. Environ. Monit. Assess. 82, 119-148. [ Links ]

    Wardlow B. D., S. L. Egbert and J. H. Kastens, 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U. S. Central Great Plains. Remote Sens.Environ. 108, 290-310. [ Links ]

    Wiegand C. L. and A. L. Richardson, 1990. Use of spectral vegetation indices to infer leaf area, evapotranspiration and yield. Agron. J. 82, 623-636. [ Links ]

    Woodcock C. E. and A. H. Strahler, 1987. The factor of scale in remote sensing. Remote Sens.Environ. 21, 311-332. [ Links ]

    Yocky D. A., 1996. Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data. Photo-gramm. Eng. Remote Sens. 62,1067-1074. [ Links ]

    Zhang Z. and J. Zhang, 2001. Facet based differential registration of remote sensing images. Geoscience and Remote Sensing Symposium. IGRASS 2001,IEEE Geosci. Remote Sens. Soc. 2001. Sydney, AU, 27, 1188-1190. [ Links ]