SciELO - Scientific Electronic Library Online

 
vol.10Comparación de tres sitios de muestreo sanguíneo para la evaluación fisiometabólica en el lechónLeucaena leucocephala y Opuntia ficus-indica reducen la producción de metano in vitro índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Abanico veterinario

versión On-line ISSN 2448-6132versión impresa ISSN 2007-428X

Abanico vet vol.10  Tepic ene./dic. 2020  Epub 02-Mar-2021

https://doi.org/10.21929/abavet2020.14 

Original articles

Giant Squid meal (Dosidicus gigas) inclusión, as a source of protein in laying hens’ diet

María Carranco-Jáuregui1 
http://orcid.org/0000-0002-7254-1813

Benjamín Fuente-Martínez2  * 
http://orcid.org/0000-0003-4792-4860

Miriam Ramírez-Poblano3 

María Calvo-Carrillo1 
http://orcid.org/0000-0003-4668-9598

Ernesto Ávila-González2 
http://orcid.org/0000-0002-6036-1321

1Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Ciudad de México. México. concepcioncalvo1@hotmail.com

2Centro de Enseñanza, Investigación y Extensión en Producción Avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México. Ciudad de México. México. benjaminfuente@yahoo.com.mx avilaernesto@yahoo.com

3Alumna de la Facultad de Química, Universidad Nacional Autónoma de México. Ciudad de México. México. rexprimero@hotmail.com


ABSTRACT

The giant squid Dosidicus gigas has a great potential to elaborate human consumption products and balanced food due to its high protein content. The objective of this work was to inelude 10 and 20 % of giant squid meal (GSM) as a protein source in diets for laying hens. One hundred thirty-five Bovans White hens were distributed as follows: control (T), 10 % (T1), and 20 % (T2), in a 6-week trial. The Productive variables measured were the physical quality of the egg, crude protein, amino acid profile, and sensory evaluation (taste), Raw GSM protein (77.76 %), amino acids (g aa/100 protein): methionine + cysteine (3.76), lysine (10.16), isoleucine (4.26), leucine (6.56), phenylalanine (4.56) and tryptophan (2.0). The Productive variables measured were (P < 0.05) in posture (%); egg weight (g); food conversion (kg: kg) and egg mass (bird/day/g), and without difference (P > 0.05) consumption (bird/day/g); physical quality of the egg with differences (P < 0.05) in egg weight (g), albumin height (mm) and Haugh units (UH). In egg raw protein and amino acid differences (P < 0.05), Sensory evaluation (P > 0.05), rating the 3 treatments in 4 “likes”. According to the results, it is concluded that giant squid flour not exceeding 10 % can be an alternative as a source of protein for feeding posture hens.

Keywords: Giant squid meal; Chemical composition; laying hens; egg

RESUMEN

El calamar gigante Dosidicus gigas presenta un potencial para elaborar productos para consumo humano y alimentos balanceados por su alto contenido de proteína. El objetivo de este trabajo fue incluir 10 y 20 % de harina de calamar gigante (HCG) como fuente de proteína en dietas para gallinas ponedoras. Ciento treinta y cinco gallinas Bovans White se distribuyeron en testigo (T), 10 % (TI) y 20 % (T2) en ensayo de 6 semanas. Se midieron variables productivas, calidad física del huevo, proteína cruda, perfil de aminoácidos y evaluación sensorial (sabor). Proteína cruda en HCG (77.76 %), aminoácidos (g aa/100 de proteína): metionina+cisteína (3.76), lisina (10.16), isoleusina (4.26), leucina (6.56), fenilalanina (4.56) y triptófano (2.0). Variables productivas (P < 0.05) en postura (%); peso del huevo (g); conversión alimentaria (kg:kg) y masa de huevo (ave/día/g), y sin diferencia (P > 0.05) consumo (ave/día/g). Calidad física del huevo con diferencias (P < 0.05) en peso de huevo (g); altura de albúmina (mm) y unidades Haugh (UH). En huevo proteína cruda y aminoácidos diferencias (P < 0.05). Evaluación sensorial (P > 0.05), calificando los 3 tratamientos en 4 “gusta”. Se concluye que la harina de calamar gigante puede ser una alternativa como fuente de proteína para la alimentación de gallinas de postura no mayor al 10 %.

Palabras clave: Harina de calamar gigante; composición química; gallinas ponedoras y huevo

INTRODUCTION

México is one of the main countries in the world in the giant squid fishery ( gigas D’Orbigny 1835) (Montaño et al., 2015). It is an oceanic and migratory species from the Eastern Pacific Ocean, it is distributed from Monterey, California, USA to the north of Chile. Of the squid species, Dosidicus gigas is exploited commercially in México, its catch is officially registered in the Gulf of California and it is unloaded in the ports of Mazatlán, Sinaloa; Santa Rosalía, Baja California Sur and Guaymas, Sonora (Luna et al., 2006).

The capture of the giant squid in recent years has been abundant and important, as a resource within the fishing production system in México. The catch of 40,878.02 kg in Guaymas, Sonora was reported for 2014 (CONAPESCA, 2017). In general, 75% of the squid is used without viscera, and as it is a food of marine origin, its nutritional value is considered good. It stands out the content of proteins (53%) of easy digestion (digestibility = 94%), non-assimilable carbohydrates, vitamins A, D and complex B, low fat and caloric content (Martínez-Vega et al., 2000; Luna et al., 2006; Toyes, 2016).

There is information on the ecology, biology, reproduction and distribution of the giant squid (Dosidicus gigas) as well as the Chemical composition of fresh whole squid with a humidity of 82.23%, crude protein 15.32%, ash 1.31 % and fat 0.87%; in flour a content of crude protein 77.76%, ash 8.54% and fat 6.33% is reported (Abugoch et al., 1999; Alegreet al., 2014; Calvo et al., 2016).

On the other hand, poultry activity contributes significantly to the food production system in the world, which is why a search is necessary to improve every day each of the aspects involved in the production process. Acquiring the right feed to obtain optimal results in poultry farming is an important aspect where the feed represents the highest percentage of the investment made in the production cycle; protein being the ingredient with the highest cost in the production of balanced foods. Therefore, research in the poultry area focuses on the possibility of modifying the Chemical composition of its products; for example, reducing the level of cholesterol and saturated fat and enriching them with unsaturated fatty acids, vitamins, minerals, antioxidant pigments and proteins; both in chicken meat and in eggs (Morales et al., 2013; Martínez et al., 2016).

The use of giant squid meal (GSM) in bioassays applied to laying hens will allow to know the optimal level of inclusion in the diet to take advantage of this protein resource in the poultry industry. GSM has been used as feed in shrimp farms, but there is no scientific literature that reports its use as feed for birds, as has been done with other products of marine origin such as fish oils and meais, crustaceans and seaweed; as sources of protein, n-3 and n-6 fatty acids and pigments.

The objective of this research was to determine the effect of the inclusion of giant squid meal, as a protein source in diets for laying hens, and its effect on the productive variables and egg quality.

MATERIAL AND METHODS

Obtaining, receiving and storing giant squid meal (GSM)

The GSM (mantle, tentacles, viscera, feather and mouth) was provided by a marine products processing plant in Guaymas, Sonora, México, it was transported to the Dr. Fernando Pérez-Gil Romo Department of Animal Nutrition of the National Institute of Medical Sciences and Nutrition Salvador Zubirán, and they were keptfrozen (-20 °C) until their analysis and use.

Chemical analysis of giant squid meal (GSM)

It was analyzed by the standardized methods described by AOAC (2005) (6 repetitions): humidity by drying oven (method 934.01), ashes by calcination (method 942.05), crude protein by Kjeldahl (Nx6.25) (method 976.05), extract ethereal by Soxhlet (method 2003.06) and extract free of nitrogen and minerals by atomic absorption spectrophotometry. Gross energy using Calorimetric Pump (Parr Instrument Company, Inc., Moline Illinois). Amino acid profile by HPLC (Método Waters, 1993). Hydrolyzed Amino Acid Standards, Pierce Brand, Catalog NCI 0180.

The sample was hydrolyzed with phenol and 6N HCI, to later derivatize it with a phosphate buffer and 6-aminoquilonyl-N-hydroxysuccimonolyl carbamate (derivatizing reagent AccQ-tag fluor), converting the primary and secondary amino acids into stable derivatives of ureas that strongly fluoresce at 395 nm. The standards are derivatized in the same way as the sample.

HPLC conditions (Waters model 2475): a 4 pm Nova-Pak C18 high efficiency AccQ-Tag column was used, mobile phase with eluent A: WATERS AccQ-TAG buffer; eluent B: acetonitrile and eluent C: MILLI-Q HPLC grade water, 60 min. run time, Waters 470 nm fluorescence detector, column temperature 37 ° C and 5 pL injection volume, and continue with the analytical procedure described in the Waters Operating Manual for this column (Waters 1993).

Preparation of diets and behavior of birds

The study was carried out at the Center for Teaching, Research and Extension in Poultry Production (CELEPAv) of the Faculty of Veterinary Medicine and Zootechnics of the National Autonomous University of México, México City, with a height of 2,250 m above sea level sea, temperate-humid climate, average annual temperature of 16 °C and average annual rainfall of 747 mm (CONAGUA, 2019). The procedure followed in the handling of the birds complied with NOM-062-ZOO-1999, technical specifications for the production, care and use of laboratory animals.

135 first eyele Bovans White hens, 18 weeks oid, housed in battery cages with 3 hens each were used; They were distributed with a completely randomized design in 3 treatments with 5 repetitions with 9 birds each: control diet, 10 and 20 % of protein from GSM. The Allix2 Computer program was used. See 5.37.1 to formulate the experimental diets supplemented with GSM. The procedure used consists of including the data from the proximal Chemical analysis of the ingredients. The calculation was made based on the protein contribution, where the GSM protein partially replaced that of the soybean paste, which met the nutritional needs of the lineage according to the production phase (table 1).

Table 1 Experimental diets supplemented with giant squid meal Dosidicus gigas 

Ingredien Control (T) T + 10 % HCG T + 20 % HCG
Sorghum 564.823 621.553 652.180
Soybean paste 269.096 197.115 149.015
Calcium carbonate 99.593 99.902 100.164
Vegetable oil 38.212 28.320 21.560
Giant Squid Meal (GSM) 0.000 26.910 53.820
Orthophosphate 1820 16.490 14.768 12.940
Salt (NaCl) 4.649 4.671 4.688
DL-Methionine 99% 1.768 1.566 1.134
Vitamin premix1 1.000 1.000 1.000
Mineral premix2 0.500 0.500 0.500
Toxisorb3 1.000 1.000 1.000
Avelut powder4 1.000 1.000 1.000
L-Lisina HCI 78.8 % 0.870 0.693 0.000
Choline Chloride 60% 0.500 0.500 0.500
Vegetable red pigment5 0.200 0.200 0.200
Antioxidant6 0.150 0.150 0.150
Furafeed7 0.150 0.150 0.150
Total 1000.0 1000.0 1000.0
Price (National Currency) 120.59 109.51 99.52
Nutrient analysis
Metabolizable energy, kcal / kg 2.871 2.850 2.850
Crude protein, % 18.334 17.274 17.169
Methionine + total cystine,% 0.747 0.743 0.741
Total lysine,% 0.963 0.961 0.984
Total threonine,% 0.686 0.702 0.756
Total tryptophan,% 0.228 0.186 0.157
Total calcium,% 4.001 4.001 4.001
Available phosphorus,% 0.440 0.440 0.440
Sodium, % 0.190 0.190 0.190

1Vitamin content per kg: A; 4.0 MUI: D3; 666,666.7 IU: RovomixHyD; 5 kg: K3; 1.67 g: B1; 0.83 g: B2; 2.33 g: B6; 1.17 g: B12; 6,666.67 mg: Niacin; 10 g: D-Pantothenic Acid; 3.33 g: folie acid; 0.33 g: Biotin; 33.33 mg: Choline; 100 g.

2Mineral content per kg: Iron; 20 g: Zinc; 26.67 g: Manganese; 36.67 g: Copper; 5 g: lodine; 0.33 g: Selenium; 0.1 g.

3Mycotoxin sequestrant.

4Source of natural yellow xanthophylls.

5Avired: 5 g/kg (minimum) of Capsicum spp. Fruit xanthophylls.

6BHA; 1.2%: BHT; 9.0%: Ethoxyquin; 4.8%: Chelating agents; 10.0%.

7Antifungal.

Quantification of crude protein and amino acid profile in the egg

At the end of the evaluation of the physical quality of the egg, of these, 5 of each repetition were taken at random and mixed with a hand mixer, and the crude protein quantification was carried out by the Kjeldahl method (AOAC, 2005). The quantification of the amino acid profile was carried out by HPLC, using the AccQ-TAG Waters 1993 method (Manual No. WAT052874, Waters, 1993).

Sensory evaluation

10 eggs were sampled from each treatment (2 per repetition), they were cooked in scrambled egg form without oil and without salt. A taste level test was carried out, and a 5-point scale was established (1 = dislike very much; 2 = dislike; 3 = neither like nor dislike; 4 = like and 5 = like very much). Thirty untrained judges participated, but they were habitual egg consumers (Anzaldúa, 2014).

Statistical analysis

For all the variables studied, an analysis of variance (ANDEVA) was carried out with 95% confidence, and the difference between means by the Tukey test, through the statistical package of Statistical Analysis System (SAS Inst. Inc., 2003). The results of the sensory evaluation were analyzed using Friedman's non-parametric test (P <0.05) (Anzaldúa, 2014).

RESULTS AND DISCUSSION

Chemical analysis of GSM and diets

In table 2, the Chemical composition of the giant squid meal (GSM) is presented, where the crude protein value stands out (77.76% BH and 82.82% BS). Toyes (2016) reports a crude protein content in squid viscera meal of the same species of 53%, observing a difference of 28% lower than in GSM. However, Ezquerra et al. (2007) reported that of the total crude protein of various species of squid, non-nitrogenous elements (trimethylamine oxide and other amines, free amino acids and octopine, arginine, glycine, betaine, alanine and nucleotides), constitute 37%; although these authors do not specify if this value corresponds to whole squid or only edible parts, and if it is fresh or in flour; however, Mazaet al. (2003), mention in their study that the non-protein nitrogen content in fresh mantle of giant squid is 39.5%. On the other hand, in GSM the ashes (8.54%), are mainly made up of ¡ron and sodium (0.19 and 0.16 mg/IOOg), respectively. As part of the process to obtain the GSM, a pressing is carried out that generates a fluid formed by water and oil, for which the fat content in the flour was 6.33%. For this reason, the energy intake is less than 4.03 Kcal/g, being similar to that published in lllex illecebrosus squid flour (4.13 Kcal / g) (Calvoet al.,2016).

Table 2 Chemical composition, amino acid and mineral profile in giant squid meal (GSM) Dosidicus gigas 

GSM /wet base GSM/dry base
Proximal analysis (g/100g)1
Humidity 3.46 ± 0.002
Crude protein 77.76 ± 0.04 80.54
Ethereal extract 6.33 ± 0.007 6.55
Ashes 8.54 ± 0.002 8.84
Nitrogen-free extract2 3.91 4.07
Gross Energy (Kcal / g) 4.03 ±0.02 4.17
Amino acids (g aa/100 g de proteína)
Methionine* 1.64 ±0.01 1.69
Cysteine 2.12 ±0.03 2.19
Methionine + Cystine 3.76 3.89
Lysine* 10.16 ±0.03 10.52
Threonine* 3.86 ± 0.02 3.99
Aspartic acid 9.53 ±0.01 9.87
Glutamic acid 14.53 ±0.02 15.05
Proline 5.16 ±0.03 5.34
Wisteria 7.57 ± 0.03 7.84
Alanine 6.79 ±0.03 7.03
Valine* 5.40 ± 0.03 5.59
Isoleucine* 4.26 ±0.01 4.41
Leucine* 6.56 ± 0.02 6.79
Serine 3.42 ± 0.02 3.54
Phenylalanine* 4.56 ± 0.02 4.72
Arginine 3.86 ± 0.02 3.99
Histidine* 6.89 ±0.03 7.13
Tryptophan* 2.0 ±0.03 2.07
Minerals (mg/100g)
Calcium 0.15 ±0.001 0.15
Sodium 0.16 ±0.005 0.16
Potassium 0.14 ±0.002 0.14
Magnesium 0.08 ± 0.005 0.08
Iron 0.19 ± 0.009 0.09

1 n=12. 2Por diferencia; *Aminoácidos esenciales 1 n = 12.2By difference; *Essential amino acids

It should be noted that the difference reported in the results of this study with reference to other authors could be due to the squid species, harvest season, parts of the squid analyzed, handling and preparation of the samples for analysis (fresh or in flour).

The quality of the protein is in accordance with its profile of essential amino acids, linked to the efficiency in protein conversion (EPC). In this GSM it was found that the values of lysine, histidine, sulfur and aromatic amino acids were similar to the amino acids of milk and eggs, with the exception of lysine and histidine, present in higher amounts in milk and higher valine and isoleucine in eggs (Calvo et al., 2016).

Productive variables and physical quality of the egg

In table 3, it is observed that there were significant differences (P <0.05) between the control, 10 and 20 % of GSM in the% of laying (91.42, 94.23 and 89.33), egg weight (53.61, 52.82 and 52.35 g ), feed conversion (1.96, 1.95 and 2.05 kg/kg) and egg mass (49.11, 49.93 and 46.91 bird/day/g) and without difference (P> 0.05), feed consumption (95.49, 96.16 and 94.07 g ) respectively between the three diets. At the end of the study, the hens were 24 weeks oid, and according to the data published in the Bovans White Management Guide (ISA, 2009) the egg weight 54.6 g, egg mass 49.4 g, feed consumption g/day 100 and feed conversion 2.02 kg/kg; therefore both groups of data were similar.

Table 3 Average of the productive variables in Bovans Blanca hens and physical quality of the egg with different inclusion percentages of giant squid meal (GSM) Dosidicus gigas 

Productive variables
Control 10 % HCG 20 % HCG
Posture (%) 91.42 ±5.08b 94.23 ± 6.31b 89.33 ± 10.37b
Egg Weight (g) 53.61 ± 2.62b 52.86 ± 2.36b 52.35 ± 2.56b
Consumption, bird/day (g) 95.49 ± 8.24 96.16 ±8.80 94.07 ± 8.37
Feed Conversion (kg/kg) 1.96 ± 0.27b 1.95 ±0.28b 2.05 ± 0.35b
Egg mass, bird/day (g) 49.11 ± 4.95b 49.93 ± 5.44b 46.91 ±7.27b
Physical quality of the egg
Egg Weight (g) 53.55 ± 3.78b 52.58 ±4.90b 51.83 ±3.91b
Albumin height (mm) 9.27 ± 0.96b 9.42 ± 1.11b 8.90 ± 1.05b
Haugh Units (HU) 97.20 ± 4.49b 98.11 ± 5.43b 95.86 ±4.99b
Egg classification according to Haugh
Units in Mexico1
México Extra México Extra México Extra

Productive variables n = 135. Physical quality of the egg n = 300. a,b Different letter in the same row shows statistically different values (P <0.05).

1 Albumen height greater than 5.5 mm or in Haugh Units greater than 70 (NMX-FF-079-SCFI, 2004)

The results reported in this study agree with the Bovans White Management Guide (ISA, 2009), which mentions that birds between 30-35 weeks of age reach a good production development, where they report 60-61 egg weight g, egg mass of 25.5 g, feed consumption 106 g/day and feed conversion of 2.08 kg/kg.

Regarding the physical quality of the egg, the Mexican Standard (NMX-FF-127-SCFI-2016) mentions 5 categories forfresh eggs determined by weight and size (Extra-large ≥ 64, Large 60 - 64, Médium 55 - 60, Small 50 - 55 and Marble ≥ 50). In this study, the egg weight was lower with 20% GSM (52.35 g) compared to the control (53.61 g), so they are within the boy classification, justified this result by the age of the hens.

For this same Mexican standard, there is another classification for fresh eggs for dishes: extra, category I, category II and out of classification, and it mainly refers to the appearance of the shell (normal, intact and clean); air chamber (normal and not exceed 3.2 mm), clear or albumen and Haugh Units (slimy, clean and firm), and yolk (round, in the center, with visible germ disc and color between 9 and 13 on the fan scale Roche colorimetric). According to this classification, the physical quality of the studied egg falls on extra, since, although there were significant differences in HU (98.11 for 10% and 95.86 for 20% of GSM and control of 97.20 HU) and albumin height (9.42 mm and 8.90 mm for 10 and 20% GSM respectively and 9.27 mm for control), are within this standard. These variables indícate the freshness of the egg, where the albumin must be viscous (colloidal), the one that surrounds the yolk, and to distinguish 3 layers (two dense and 1 aqueous) that as the laying time passes CO2 is lost and increases pH 7.6 to 9.7; as well as loss of moisture in the form of water vapor that will denature the proteins, and this will cause the albumin to lose its structure, making it more liquid and this leads to a lower value of albumin height and HU, as well as the capacity to keep the yolk in the center; modification that occurs when the egg has been laying for several days. Possibly the small increase in protein in the diet at 10% GSM was reflected in the physical characteristics of albumin.

Crude protein quantification and amino acid profile in egg

In table 4, it is observed that between crude egg protein with inclusión of 10% (12.58%) and control (12.34%) there was no statistical difference (P> 0.05), but with 20% of GSM (10.79%) there was there was a difference (P <0.05).

Table 4 Protein content and amino acid profile in eggs of hens fed with different inclusions of giant squid meal (GSM) Dosidicus gigas 

Control 10 % HCG 20 % HCG
Crude protein (%) 12.34 ± 0.56a 12.58 ± 0.32a 10.79 ±0.67b
Amino acid profile (g aa / 100g protein)
Isoleucine* 5.26 ± 0.05a 5.18 ± 0.03a 4.92 ±0.09b
Leucine* 8.46 ± 0.06a 8.26 ± 0.06b 8.35 ± 0.03b
Lysine* 7.28 ± 0.07a 6.93 ±0.02b 7.17 ± 0.05a
Methionine + Cystine* 3.91 ± 0.05a 3.71 ±0.10b 3.55 ± 0.03b
Phenylalanine* 5.79 ± 0.21a 5.66 ± 0.06b 5.60 ± 0.04b
Threonine* 4.87 ± 0.11a 4.68 ± 0.07a 4.40 ± 0.05b
Valine* 6.52 ± 0.07a 6.32 ±0.07b 6.11 ±0.05c
Tyrosine 4.40 ± 0.07a 4.21 ±0.09b 4.12 ±0.06b
Argininea 6.74 ± 0.03b 6.52 ± 0.06b 6.45 ± 0.13b

n = 10. a,b,c Different letter in the same row shows statistically different values (P <0.05). *Essential amino acids

In relation to the amino acids reported, there was a difference (P <0.05) between the control and the samples with 10 and 20% of GSM. Studies such as Naber (1979) who classified the Chemical components of the egg based on changes in the diet of the hens, concluded that the nutrients proteins, amino acids, total fat and macrominerals show little variation when modifying the diet; not so with microminerals, vitamins and fatty acids that are more influenced by changes in diet, all depending on the nutrient being studied. Likewise, Stadelman and Pratt (1989) evaluated the factors that modify the composition of the egg and mention that the protein level in it increases slightly with increasing protein and energy in the diet, that the total amount of albumen will depend on the balance of amino acids of the diet, and that a deficiency in lysine or methionine will reduce the weight of the albumen and decrease the concentration of all free amino acids.

Sensory evaluation

The results obtained from the egg taste evaluation had a score of 4, which corresponds to the level of "like". In the comments of this evaluation, he did not refer to unpleasant flavors (table 5).

Table 5 Results of the evaluation of the taste of eggs from hens fed with different inclusions of giant squid meal (GSM) Dosidicus gigas 

Control 10 % HCG 20 % HCG
Taste 4.16 ± 1.02 4.09 ± 0.86 4.06 ± 1.01

n = 30. 5-point scale (1 = dislike very much; 2 = dislike; 3 = neither like nor dislike; 4 = like and 5 = like very much)

Finally, it is worth mentioning that the Chemical composition of the egg in this study in comparison with the control egg and other reports will depend on the age of the hen, the lineage and type of management; however, the most important factor will be diet.

CONCLUSION

The results obtained in this study can be concluded that the giant squid meal Dosidicus gigas can be used as a source of protein in diets for laying hens up to 10% inclusion, without affecting the productive variables, the taste of the egg and with a slight increase in the protein content of the egg; Therefore, the use of this flour in the poultry industry can be an alternative.

REFERENCES

ABUGOCH L, Guarda A, Pérez LM, Paredes MP. 1999. Determination of proximal Chemical composition of squid ( Dosidicus gigas) and development of gel products. Archivos Latinoamericanos de Nutrición. 49(2): 156-161. https://europepmc.org/article/med/10488395. PMID: 10488395. [ Links ]

ALEGRE Ana, Frédéric Ménard, Ricardo Tafur, Pepe Espinoza, Juan Argüelles, Víctor Maehara, Oswaldo Flores, Monique Simier, Arnaud Bertrand. 2014. Comprehensive Model of Jumbo Squid Dosidicus gigas Trophic Ecology in the Northern Humboldt Current System. PLoS ONE. 9(1): e85919. https://doi.org/10.1371/journal.pone.0085919. [ Links ]

ANZALDÚA MA. 2014. Evaluación sensorial de los alimentos en la teoría y la práctica. Ed. Acribia S.A. Pp. 214. ISBN: 978-84-200-0767-0. https://www.editorialacribia.com/libro/la-evaluacion-sensorial-de-los-alimentos-en-la- teoria-y-la-practica_53649/Links ]

AOAC. 2005. Official methods of analysis of AOAC International. 18 ed. Arlington, VA, USA. ISBN 0-935584-77-3. http://www.eoma.aoac.org/Links ]

CALVO CMC, Carranco JME, Salinas CA, Carrillo DS. 2016. Composición química de harina de calamar gigante Dosidicus gigas. Archivos Latinoamericanos de Nutrición. 66(1): 74-81. ISSN 0004-0622. www.alanrevista.org. [ Links ]

CONAGUA. 2019. Resúmenes mensuales de temperaturas y lluvia. https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias. [ Links ]

CONAPESCA. 2017. Estadísticas pesqueras en México. https://www.gob.mx/conapesca/documentos/estadistica-pesquera-y-acuicola-de-mexico. [ Links ]

EZQUERRA-Brauer JM, Díaz AC, Fenucci JL. 2007. Harina de Calamar. Manual de Ingredientes Proteicos y Aditivos en la Formulación de Alimentos Balanceados para Camarones. (García Galano T, Villarreal-Colmenares H, Fenucci JL . Eds). EUDEM. Argentina. ISBN 978-987-1371-02-0. 2007. 41-55. http://retos-aaa.edu.umh.es/wp-content/uploads/sites/299/2017/06/CV-Marina-J.-Ezquerra.pdfLinks ]

ISA. 2009. Bovans White. Guía de manejo Sistemas de producción en jaula. Instituí de Sélection Anímale BV. The Netherlands-EU. Disponible en: https://www.bovans.com/documents/261/HGL_nutrition_management_guide_L7121-2.pdf. [ Links ]

LUNA RMC, Urciaga GJI, Salinas ZCA, Cisneros MMA, Beltrán MLF. 2006. Diagnóstico del consumo del calamar gigante en México y Sonora. Economía, Sociedad y Territorio. 6(22): 535-560. ISSN: 1405-8421. https://doi.org/10.22136/est002006267 [ Links ]

MARTÍNEZ-Vega JA, Cruz-Suárez LE, Ricque-Marie D. 2000. Composición corporal y proceso de secado del calamar gigante Dosidicus gigas. Ciencia y Mar. 4(11):35-38. http://www.umar.mx/revistas/Links ]

MARTÍNEZ Aispuro JA, González Alcorta MJ, Miranda Romero LA, Carrillo Domínguez S, Castillo Domínguez RM. 2016. Sustitución de aceite de soya por aceite de atún en la dieta de pollos como alternativa para enriquecer la carne con ácidos grasos omega-3. Interciencia. 41(12):851-856. https://www.redalyc.org/articulo.oa?id=33948806009. [ Links ]

MAZA S, Rosales M, Castro R. 2003. Efecto de un proceso de lixiviación ácida salina sobre la calidad del surimi de Dosidicus gigas “Pota”. Boletín de Investigaciones Ins. Tec. Pes. Perú. 5: 81-88. ISSN: 1023-7070. http://repositorio.itp.gob.pe/handle/ITP/103. [ Links ]

MONTAÑO MIE, Hernández GLA, Lomelí MH, Mesías DFJ, Ávila AA. 2015. Caracterización del consumidor de calamar gigante en Baja California Sur, México. Ciencia y Tecnología Agropecuaria. 1):41-50. ISSN: 0122-8706. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-87062015000100004&lng=en&tlng=esLinks ]

MORALES BJE, Gonzáles AMJ, Castillo DRM, Prado ROF, Hernández VX, Menconi A, Téllez G, Marshal HB, Carrillo DS . 2013. Fatty Acid Deposition on Broiler Meat in Chickens Supplemented with Tuna Oil. Food and Nutrition Sciences. 4(9A1):5. ID:36099. https://doi.org/10.4236/fns.2013.49A1003 [ Links ]

NABER EC. 1979. The effect of nutrition on the composition of eggs. Poultry Science. 58: 518-528. ISSN: 0032-5791. https://doi.org/10.3382/ps.0580518 [ Links ]

NORMA Mexicana NMX-FF-079-SCFI-2004. Para: Productos avícolas - Huevo fresco de gallina - Especificaciones y Métodos de Prueba (Cancela a la NMX-FF-079-1991). Secretaría de Economía, Ciudad de México, México. Publicada en el Diario Oficial de la Federación del 19 de octubre de 2004.Disponible en: http://dof.gob.mx/nota_detalle_popup.php?codigo=5049464Links ]

NORMA Mexicana NMX-FF-127-SCFI-2016. Para: Productos avícolas-Huevofresco de gallina - Especificaciones y Métodos de Prueba. Secretaría de Economía, Ciudad de México, México. Publicada en el Diario Oficial de la Federación del 24 de octubre de 2016. Disponible en: www.dof.gob.mx. [ Links ]

NORMA Oficial Mexicana NOM-062-ZOO-1999. Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. Publicada en el Diario Oficial de la Federación del 18 de junio de 2001. http://www.ibt.unam.mx/computo/pdfs/bioterio.NOM-062.pdf. [ Links ]

SAS Institute Inc. 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc. ISBN: 1-59047-243-8. https://www.sas.com/es_mx/home.htmlLinks ]

STADELMAN WJ, Pratt DE. 1989. Factors influencing composition of the hen’s egg. World’s. Poultry Science Journal. 45(3): 247-266. https://agris.fao.org/agris-search/search.do?recordlD=GB9103232Links ]

TOYES VE. 2016. Aprovechamiento de subproductos marinos para la alimentación de camarón de cultivo y gallinas ponedoras. Tesis Doctoral. México, Centro de Investigaciones Biológicas del Noreste, Baja California, México. http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/215. [ Links ]

WATERS. Water AccQ-Tag Chemistry Package. 1993. Manual Number WAT052874. Millipore Corporation, Milford, MA, USA. www.waters.com. [ Links ]

1Code: 2020-19.

Received: February 26, 2020; Accepted: June 17, 2020; Published: July 05, 2020

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons