SciELO - Scientific Electronic Library Online

 
vol.101 número1Uso de imágenes aéreas de alta resolución para la detección de cambios en el almacén de carbono en biomasa aérea en comunidades semiáridas, tras la introducción de la especie exótica Cenchrus ciliaris índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.101 no.1 México ene./mar. 2023  Epub 06-Feb-2023

https://doi.org/10.17129/botsci.3072 

Review

Secondary metabolites in Viguiera (Compositae, Heliantheae, Helianthinae) and segregated genera. A review of their biological activities with chemotaxonomic observations

Metabolitos secundarios en Viguiera (Compositae, Heliantheae, Helianthinae) y géneros segregados. Una revisión de sus actividades biológicas con observaciones quimiotaxonómicas.

Amira Arciniegas, Conceptualization, Writing – review & editing, Investigation, Data curation1 
http://orcid.org/0000-0002-1527-3525

Ana-L. Pérez-Castorena, Writing – review & editing1 
http://orcid.org/0000-0002-3885-7136

Alfonso Romo de Vivar, Conceptualization, Writing – review & editing1 
http://orcid.org/0000-0003-0250-0757

Leobardo Gaona-Gaona, Data curation, Resources1 
http://orcid.org/0000-0001-7690-7926

Francisco J. Espinosa-García, Conceptualization, Formal analysis, Writing – review & editing2 
http://orcid.org/0000-0001-9173-1957

José Luis Villaseñor, Conceptualization, Formal analysis, Writing - original draft, Writing – review & editing3  * 
http://orcid.org/0000-0002-0781-8548

Guillermo Delgado, Project administration, Formal analysis, Writing - original draft, Writing – review & editing1  * 
http://orcid.org/0000-0002-1394-6300

1Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.

2Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

3Instituto de Biología, Universidad Nacional Autónoma de México, de México, México.


Abstract

Background:

The first monograph of the genus Viguiera was published in 1918 by Blake, including about 141 species. Schilling & Panero based on studies of molecular sequences of nuclear Internal Transcribed Spacer and External Transcribed Spacer, as well as cpDNA, proposed to reclassify the genus, relocating its species in at least other nine genera.

Question:

Is it possible to identify distinctive patterns between the species of the new classification of Viguiera s. l. and the results of the chemical studies reported?

Species considered:

Sixty-seven species within the wide Viguiera circumscription with chemical studies and biological activities reported.

Results:

The species of the genus Viguiera synthesize terpenoids represented mainly by sesquiterpene lactones and diterpenes, with triterpenes, polyacetylenes, volatile terpenoids and flavonoids also present. The main types of secondary metabolites were present in the studied species, although some compounds were more frequent than others in some clades.

Conclusion:

Germacrolides, heliangolides, furanoheliangolides, tetracyclic diterpenes and flavonoids are the main constituents of Viguiera and segregated genera. Some interesting chemotaxonomic relationships are noted. Nevertheless, nondistinctive clear patterns were observed between clades and chemical groups. These results are likely a consequence of the diversity of objectives and methodologies of the reported chemical studies on Viguiera.

Key words: Asteraceae; chemotaxonomy; systematics

Resumen

Antecedentes.

La primera monografía del género Viguiera fue publicada en 1918 por Blake, incluyendo alrededor de 141 especies. Schilling & Panero en sus estudios sobre la Subtribu Helianthinae (Tribu Heliantheae) basados en secuencias moleculares de los Espaciadores nucleares Transcritos Interno y Externos, así como de cpDNA, proponen reclasificar al género reubicando sus especies en al menos otros nueve géneros.

Pregunta:

¿Es posible identificar patrones distintivos entre las especies de la nueva clasificación de Viguiera s. l. y los resultados obtenidos de los estudios químicos reportados?

Especies consideradas:

Sesenta y siete especies en la circunscripción amplia de Viguiera con estudios químicos y actividades biológicas informados.

Resultados:

Las especies del género Viguiera s.l. sintetizan terpenoides, representados principalmente por lactonas sesquiterpénicas y diterpenos, aunque también se reportan triterpenos, poliacetilenos, terpenoides volátiles y flavonoides. En todas las especies estudiadas se obtuvieron los principales tipos de metabolitos, siendo algunos más frecuentes que otros en ciertos clados.

Conclusión:

Los principales constituyentes del género Viguiera s l. son germacrólidas, heliangólidas, furanoheliangólidas, diterpenos tetracíclicos y flavonoides. Se notan algunas relaciones quimiotaxonómicas interesantes. No obstante, no se observaron patrones distintivos claros entre los clados y grupos químicos de los géneros segregados. Estos resultados son probablemente consecuencia de la diversidad de objetivos y metodologías de los estudios químicos reportados.

Palabras clave: Asteraceae; quimiotaxonomía; sistemática

The tribe Heliantheae constitutes one of the 43 tribes of the Asteraceae (Compositae) family as it is currently circumscribed (Baldwin 2009). It is considered as part of the “Heliantheae Alliance” along with other 12 tribes, although their relationships remain in discussion. Taxonomically this tribe has been divided in seven subtribes, including the Helianthinae, which comprises Viguiera and another 19 genera (Table 1). Viguiera was established by Kunth (Nov. Gen. Sp., ed. Fol., 4: 176. 1818) describing one species (Viguiera helianthoides). In 1918 Blake presented the first monograph of the genus, including about 141 species (Blake 1918). Since then, many new species have been added to the genus, reaching up to 270 species distributed from the southwestern United States of America to Argentina in South America.

Table 1 Genera included in the Subtribe Helianthinae (Tribe Heliantheae) of the family Asteraceae. An asterisk indicates the monophyletic genera derived from the new classification of the genus Viguiera. Abbreviations: CAME= Central America, MEX= Mexico, SAME= South America, USA= United States of America) 

Genera Total species Distribution
*Aldama La Llave, 1824 123 SW USA to SAME
*Bahiopsis Kellogg, 1863 11 SW USA to MEX
*Calanticaria (B.L. Rob. & Greenm.) E.E. Schill. & Panero, 2002 5 MEX
*Davilanthus E.E. Schill. & Panero, 2010 7 MEX
*Dendroviguiera E.E. Schill. & Panero, 2011 15 MEX to CAME
*Gonzalezia E.E. Schill. & Panero, 2011 3 MEX
*Heiseria E.E. Schill. & Panero, 2011 3 SAME
*Heliomeris Nutt., 1848 6 NAME to MEX
*Hymenostephium Benth., 1873 22 MEX to SAMEr
Iostephane Benth., 1873 4 MEX
Lagacea Cav., 1803 9 SW USA to SAME
Pappobolus S.F. Blake, 1916 37 SAME
Phoebanthus S.F. Blake, 1916 2 USA
Scalesia Arn., 1836 15 Galapagos Islands
Sclerocarpus Jacq., 1784 9 SW USA to SME, Old World
*Sidneya E.E. Schill. & Panero, 2011 2 SW USA to MEX
Simsia Pers., 1807 29 SW USA to SAME
Syncretocarpus S.F. Blake, 1916 3 SAME
Tithonia Desf. ex Juss., 1789 12 SW USA to CAME
Viguiera Kunth, 1818 19 SW USA to SAME

Schilling & Panero (2002, 2011) studied the subtribe Helianthinae based on molecular sequences of nuclear ITS, ETS, and cpDNA, stating that the genus Viguiera Kunth, as traditionally conceived, does not constitute a monophyletic group. Among their conclusions they propose to reclassify the genus, relocating its species in at least other nine genera: Aldama La Llave, Bahiopsis Kellogg, Calanticaria (B.L. Rob. & Greenm.) E.E. Schill. & Panero, Davilanthus E.E. Schill. & Panero, Dendroviguiera E.E. Schill. & Panero, Gonzalezia E.E. Schill. & Panero, Heliomeris Nutt., Hymenostephium Benth., Sidneya E.E. Schill. & Panero and Viguiera Kunth (Table 1).

The new classification of Viguiera reduces its number of species significantly, mainly restricted to South America. For North America (United States and Mexico), the genus includes two species (Viguiera dentata (Cav.) Spreng. and V. moreliana B.L. Turner (Turner 2015). Villaseñor (2016) reports for Viguiera nine species, but probably several of them are still not assigned to the genus to which they currently belong because they were not included in the molecular study that led to the reclassification of the Viguiera species. Future studies will certainly place them appropriately in the genus to which they belong.

Regarding the chemical studies of Viguiera, in 1985 the reports of the chemical compounds characterized from around 30 of the ca. 150 species included at that time in the genus (Romo de Vivar & Delgado 1985). Here we review the published secondary metabolites found in the 67 species were compiled reclassified in the nine genera segregated from Viguiera, according to the Schilling and Panero classification, and the biological activities for their extracts and secondary metabolites. The results allowed some chemotaxonomic observations and the analysis of the incidence of secondary metabolites between clades, which is discussed.

Materials and methods

The present study was accomplished by collecting the scientific data published on chemical compounds and biological activities of species of the genus Viguiera sensu lato between 1918 and 2021, using Scifinder, Scopus, Web of Science, and Google Scholar databases.

Results

Description of the chemical constituents. This section describes the main chemical constituents reported in the Viguiera species and species of the segregated genera. The studies have been carried out over the last decades, with varying methodologies and approaches. We detected chemical studies on 67 species (Appendixes 1-10) within the large Viguiera circumscription, and 322 secondary metabolites structurally characterized. Species of the genus Viguiera s.l. biosynthetize terpenoids represented mainly by sesquiterpene lactones (SLs) and diterpenes, although monoterpenes and triterpenes have also been found. Additionally, flavonoids, polyacetylenes, steroids, fatty acids and other hydroxylated and aromatic compounds are also reported.

Sesquiterpene lactones (SLs) are major secondary metabolites in the Asteraceae family often used as chemotaxonomic markers (Da Costa et al. 2005); the Heliantheae tribe is rich in germacranolide-type compounds (Zdero & Bohlmann 1990). The characteristic SLs of the genus Viguiera s. l. have been reported in 35 of the 67 species studied and belong to the groups of germacrolides, heliangolides, furanoheliangolides, guaianolides, and eudesmanolides. Germacrolides (Figure 1A, 1-19, 51) have been reported in 12 species, heliangolides (Figure 1B, 20-50) have been isolated from 15 species, the most frequent compounds; furanoheliangolides (Figure 2A, 52-95); have been found in 27 species, guaianolides (Figure 2B, 96-107) in four species, and eudesmanolides (Figure 3A, 108-111) in five species. The presence of a 1,10-epoxy group is observed in germacrolides (7-10, 17-19) and in heliangolides (22-47). Most of them have an α-methylene 12,6-trans γ-lactone ring, except for 61 and 63, isolated from V. eriophora (=Aldama eriophora) and V. sylvatica (=Dendroviguiera sylvatica), respectively, with a saturated γ-lactone, and those isolated from V. deltoidea (=Bahiopsis deltoidea) (15), from V. pazensis and V. tucumanensis (=Aldama tucumanensis) (106 and 107), and from V. linearis (=Aldama linearis) and V. potosina (=Aldama canescens) (111), with a C-8 lactone closure.

Figure 1 A) Germacrolide-type sesquiterpene lactones from Viguiera s. l. species, B) Heliangolide-type sesquiterpene lactones from Viguiera s. l

Figure 2 A) Furanoheliangolide-type sesquiterpene lactones from Viguiera s. l. species, B) Guaianolide-type sesquiterpene lactones from Viguiera s. l. 

Figure 3 A) Eudesmanolide-type sesquiterpene lactones from Viguiera s. l. species, B) Acyclic diterpenoids in the genus Viguiera s. l., 3C: Bicyclic diterpenoids in the genus Viguiera s. l. 

Diterpenes are also extensively distributed in the genus Viguiera s.l., present in 39 out of 67 species studied. Acyclic diterpenoids are represented by six phytanes (Figure 3B, 112-117) isolated from five species. Bicyclic diterpenoids have been isolated from seven species (Figure 3C, 118-124), the ent-labdanes 118 and 119 were isolated from V. robusta (=Aldama robusta) and V. stenoloba (=Sidneya tenuifolia), respectively, 120-122 were found in V. bishopii (=Aldama bishopii) and 121 in V. dentata, V. anchusifolia (=Aldama anchusifolia), V. pilosa (=Aldama pilosa), and V. robusta (=Aldama robusta), and the ent-clerodanes 123-124, were found in V. tucumanensis (=Aldama tucumanensis). Tricyclic diterpenoids have been isolated from seven species (Figure 4A): the abietane 125 was isolated from V. procumbens (A. helianthoides), the ent-pimaranes 126-132 and 137 from V. arenaria (=Aldama arenaria), 128 from V. robusta (=Aldama robusta), 133 from V. pinnatilobata (=Sidneya pinnatilobata), 134-136 from V. discolor (=Aldama discolor), and 138 from V. anchusifolia (=Aldama. anchusifolia) and V. nudibasilaris (=Aldama nudibasilaris). Tetracyclic diterpenes have been isolated from 32 species (Figure 4B), they are represented by ent-beyeranes (139-147), ent-kauranes (148-184, 192), an ent-atisane 185, and the villanovane 186. The pentacyclic diterpenes ent-trachylobanes 187-191 have been found in five species (Figure 5A).

Figure 4 A) Tricyclic diterpenoids in the genus Viguiera s. l. species, B) Tetracyclic diterpenoids in the genus Viguiera s. l. 

Figure 5 A) Pentacyclic diterpenoids in the genus Viguiera s. l. species, B) Pentacyclic triterpenoids in the genus Viguiera s. l. 

Pentacyclic triterpenoids (Figure 5B) have been isolated from V. decurrens (=Gonzalezia decurrens) (193-198) and V. hypargyrea (=Gonzalezia hypargyrea) (193-195, 197-200), while the cycloartane hexacyclic triterpenoids (Figure 6A) 201-204 have been found in V. dentata, and 205 in V. superaxillare (=Hymenostephium superaxillare) (Appendixes 5 and 8).

Figure 6 A) Hexacyclic triterpenoids in the genus Viguiera s. l. species, B) Volatile compounds obtained from Viguiera s. l. species. 

Monoterpenoids (206-219) have been reported in essential oils. Non or low functionalized sesquiterpenoids (220-243) are also present in essential oils as well as in hexane extracts (Figure 6B).

Polyacetylenes (Figure 7A, 244-249) were also found in V. annua (=Heliomeris annua), V. procumbens (=Aldama helianthoides), V. incana (=Aldama incana), V. laceolata (=Aldama lanceolata), V. oblonguifolia (=Aldama oblongifolia), V. nervosa (=Aldama nervosa), V. pazensis, and V. stenoloba (=Sidneya tenuifolia) (Appendixes 1, 7, and 9).

Figure 7 A) Polyacetylenic compounds obtained from Viguiera s. l species. B) Flavonoids obtained from Viguiera s. l

Several studies on flavonoids content have been published as part of the systematic analysis of the series of Viguiera species included in Blake’s (1918) revision of the genus. Initially, ultraviolet patterns were used to characterize the floral flavonoids involved in UV absorption among the species included in a taxonomic group (Reiseberg & Schilling 1985). In other studies, the flavonoid data were investigated to provide chemotaxonomic evidence on species relationships, both within the series and with other members of the genus (Schilling et al. 1988, Schilling & Panero 1988, Schilling 1989, Wollenweber et al. 1995). Flavonoids are represented by 46 structures isolated from 32 species (Figure 7B, Appendixes 1-5, 7, and 10), most of them are flavones (250-254, 258-266, 271-273, 279-284) found in 27 species. There are also reports of ten flavonols present in 12 species (267-270, 274-278, 285), five of them glycosylated, seven chalcones (286-292); two aurones (294, 295), three flavanones (255-257) isolated from V. laciniata (=Bahiopsis laciniata) and one flavanol (293) obtained from V. quinqueradiata (=Dendroviguiera quinqueradiata). Other phenolic compounds such as benzofuran (311) and benzopyran derivatives (296-299, 306, 307, 310, 312), caffeic acid and some of its esters (302-305), and stilbenes (308, 309) have been isolated (Figure 8A, Appendixes 1, 5, 7, and 10). Phytosterols (313-315), fatty acids (316-318), and phenyl alanine derivatives (320-321) have also been reported (Figure 8B).

Figure 8 A) Other phenolic compounds obtained from Viguiera s. l. species, B) Other compounds obtained from Viguiera s. l. 

Description of extracts and pure compounds with biological activity. The biological activities of extracts or pure compounds from 18 species of Viguiera s.l. have been reported (Table 2).

Table 2: Biological activity of extracts and isolated compounds of the genus Viguiera s.l. 

Species Activity Extracts/Compounds References
V. anchusifolia Baker (=Aldama anchusifolia (DC.) E.E. Schill. & Panero) Trypanocidal MeOH, CH2Cl2 Selener et al. 2019
V. annua (M.E. Jones) Blake (=Heliomeris annua (M.E. Jones) Cockerell) Phototoxic 244, 245 Guillet et al. 1977
V. arenaria Baker (=Aldama arenaria (Baker) E.E. Schill. & Panero Muscle relaxant 127 Ambrosio et al. 2002, Tirapelli et al. 2004
Antimicrobial 127, 128, 131 Porto et al. 2009a, 2009b
127, 151 Soares et al. 2019a, b
127, 128 Carvalho et al. 2011, Marangoni et al. 2018, Ferreira et al. 2018
Trypanocidal 131, 127 Ambrosio et al. 2008, Rocha et al. 2022
Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas Paula et al. 2015
Anti-inflammatory and analgesic 127 Possebon et al. 2014, Mizokami et al. 2016
Antiproliferative activity CHCl3, 127, 128 De Oliveira et al. 2021
Genotoxic and anti- genotoxic effects 127 Kato et al. 2012
V. aspilioides Gardn. (=Aldama aspilioides (Baker) Schill. & Panero) Trypanocidal 151, 171, 187 Da Costa et al. 1996a
Antibacetrial 187 Da Costa et al. 1998
V. bracteata Gardner (=Aldama bracteata (Gardner) E.E. Schill. & Panero) Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas Paula et al. 2015
V. decurrens Gray (= Gonzalezia decurrens (A. Gray) E.E. Schill. & Panero) Cytotoxic Mixture of 195, 196, 315 Marquina et al. 2001
Insecticidal 195, 198
V. dentata (Cav.) Spreng. Antimicrobial 151, essential oil, hexane Canales et al. 2008
Antifungal Hexane
V. discolor Baker (= Aldama discolor (Baker) E.E. Schill. & Panero) Antiprotozoal CH2Cl2, and 134, 183 Nogueira et al. 2016
Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas-Paula et al. 2015
V. filifolia Sch. Bip. ex Baker (= Aldama filifolia (Sch.Bip. ex Baker) E.E. Schill. & Panero) Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas-Paula et al. 2015
V. gardneri Baker (= Aldama gardneri (Baker) E.E. Schill. & Panero) Anti-inflammatory 101, 103, 104 Schorr et al. 2002
V. hypargyrea (Greenm.) Blake (= Gonzalezia hypargyrea (Greenm.) E.E. Schill. & Panero) Cytotoxic 17 Arellano-Martinez & Delgado 2010
Spasmolytic Hexane, 139, 151 Zamilpa et al. 2002
Antimicrobial 139
V. linearifolia Chodat. (= Aldama linearifolia (Chodat.) E.E. Schill. & Panero) Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas-Paula et al. 2015
V. pinnatilobata (Sch. Bip.) var. megaphylla (= Sidneya pinnatilobata (Sch. Bip.) E.E. Schill. & Panero var. megaphylla (Butterw. ex B.L. Turner) E.E. Schill. & Panero) Spasmolytic 133 Campos-Lozada et al. 1993
V. robusta Gardn. (v= Aldama radula (Baker) E.E. Schill & Panero) Analgesic anti-inflammatory 52 151 Arakawa et al. 2008 Valério et al. 2007, Nicolete et al. 2009.
Analgesic, anti-inflammatory, anti-arthritic 151 Fattori et al. 2018, Zarpalon et al. 2017
Inhibition of smooth muscle contractility 127, 151 Ambrosio et al. 2006 Tirapelli et al. 2002
Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas-Paula et al. 2015 Vasconcelos Faleiro et al. 2021
V. sylvatica Klatt (= Dendroviguiera sylvatica (Klatt.) E.E. Schill. & Panero) Anti-inflammatory 52, 96 Dupuy et al. 2008
Cytotoxic Taylor et al. 2008
V. trichophylla Dusén (= Aldama trichophyla (Dusén) Magenta) Anti-inflammatory EtOH-H2O, MeOH-H2O Chagas-Paula et al. 2015, Vasconcelos Faleiro et al. 2021
V. tuberosa Griseb. (=Aldama tuberosa (Griseb.) E.E. Schill. & Panero) Trypanocidal MeOH, CH2Cl2 Selener et al. 2019
V. tucumanensis (Hook & Arn.) Griseb. (= Aldama tucumanensis (Hook. & Arn.) E.E. Schill. & Panero) Phytotoxicity 123 Vaccarini et al. 1999
Antifeedant Vaccarini et al. 2001
Cytotoxic EtOH, 1, 24 Gonzalez et al. 2018

Trypanocidal activity.- The CH2Cl2 extracts of the Argentinean species Aldama anchusifolia and A. tuberosa were more active than the MeOH extracts of the same plants against Trypanosoma cruzi; results showed 82 and 93 % of growth inhibition, respectively, with 100 µg/mL of CH2Cl2 extract (benznidazole was used as positive control) (Selener et al. 2019). A trypanocidal activity research of pimarane diterpenes isolated from Aldama arenaria described the activity of the ent-15-pimarene-8ß,19-diol (131) with IC50 of 116.5 ± 1.21 µM while that of the positive control, gentian violet, was 76 µM (Ambrosio et al. 2008). In other study ent-pimaradienoic acid (127) showed in-vitro trypanocidal activity with IC50 of 68.7 µM (reference compound: benznidazole, IC50 = 9.8 ± 0.68 µM), and the activity improved by esterification (Rocha et al. 2022). In vitro studies against T. cruzi identified the activity of compounds 151, 171, and 187 isolated from Aldama aspilioides (Da Costa et al. 1996a).

Insecticidal activity.- Phototoxic and insecticidal activities of polyacetylenes 244 and 245 isolated from V. annua (=Heliomeris annua (M.E. Jones) Cockerell) have been reported (Guillet et al. 1977). The insecticidal effect of saponins 195 and 198 isolated from Gonzalezia decurrens was evaluated on Epilachna varivestis larvae, these two saponines displayed activity with LC50 of 1380 and 80 mg/mol, respectively (Marquina et al. 2001). Clerodane 123 isolated from Aldama tucumanensis exhibited phytotoxicity against Sorghum halepense and Chenopodium album, and showed antifeedant activity (67 %) against Epilachna palentulata, (Vaccarini et al. 1999, 2001).

Anti-spasmolytic and relaxant activities.- The relaxant action on rat thoracic aorta of pimaradienoic acid (127), isolated from Aldama arenaria as well as its effect on the contraction of carotid rings were demonstrated (Ambrosio et al. 2002, Tirapelli et al. 2004). The effect on the inhibition of smooth muscle contractility by different concentrations of ent-kaurenoic acid (151) isolated from Aldama robusta was documented (Tirapelli et al. 2002). Diterpenes 127 and 151 inhibited vascular contractility mainly by blocking the extracellular Ca2+ influx (Ambrosio et al. 2006). The hexane extract of Gonzalezia hypargyrea showed spasmolytic activity, this activity was attributed to beyerenoic acid (139) by the inhibition of the electrically induced contractions of guinea pig ileum by 63.64 ± 6.1 %, with ED50 of 4.9 µg/ml (the positive control, papaverine showed inhibition of 82.8 ± 2.1 %) (Zamilpa et al. 2002). The spasmolytic effect of viguiepinol (133) obtained from V. pinnatilobata (=Sidneya pinnatilobata) was demonstrated in-vitro (Campos-Lozada et al. 1993).

Antimicrobial activity.- Dichloromethane extract of roots of Aldama arenaria and the isolated ent-pimarane derivatives 127, 128, and 131, displayed activity against gram-positive bacteria, showing the highest activities against Streptococcus agalantiae, S. dysgalantiae and Staphylococcus epidermis, with MIC values between 3.31 and 16.31 µM (vancomycin hydrochloride, used as positive control, showed MIC values between 0.34 and 0.47 µM); these compounds were also active against microorganisms responsible for dental caries with MIC values between 7.8 and 20.8 µM (chlorhexidine dihydrochloride, the positive control, showed MIC values between 0.16 and 0.64 µM) (Porto et al. 2009a, b). In other study, diterpene 127, isolated from V. arenaria was tested against clinically isolated gram-positive multi-resistant bacteria, and the results indicated that this compound was a promising antibacterial agent (Soares et al. 2019a, b). Compounds 127 and 128 showed activities against endodontic bacteria (Carvalho et al. 2011, Marangoni et al. 2018, Ferreira et al. 2018). The antibacterial activity of ent-traquilobanic acid (187), isolated from A. aspillioides, was tested against several gram positive bacteria showing the highest activity against S. aureus and S. epidermis (MIC 7.8 µg/ml, the positive control used in the screening phase was gentamicine) (Da Costa et al.1998). The antimicrobial activity of V. dentata’s essential oil, hexane extract, and 151, as well as the activity of the hexane extract was pointed out (Canales et al. 2008). Beyerenoic acid (139), isolated from Gonzalezia hypargyrea, inhibited the growth of Staphylococcus aureus and Enterococcus faecalis with a MIC of 12 µg/ml for each of them, using gentamicin as positive control (MIC 0.8 µg/mL) (Zamilpa et al. 2002).

Anti-inflammatory activity.- EtOH-H2O and MeOH-H2O extracts of Aldama arenaria, A. bracteata, A. discolor, A. filifolia, A. linearifolia, A. robusta, and A. trichophylla showed anti-inflammatory action through the inhibition of cyclooxygenase-1 (COX-1) and 5-lipoxygenase (5-LOX) (Chagas-Paula et al. 2015). A study on leaf extracts of 22 Aldama species, using LC - MS metabolomics and in vitro enzymatic assays to indentify COX-1 and 5-LOX inhibitors, showed that A. robusta and A. trichophylla inhibited these two key enzymes (Vasconcelos Faleiro et al.). Pimaradienoic acid (127), from A. arenaria, showed anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production (Mizokami et al. 2016). The analgesic effects of diterpene 127 were demonstrated and associated with the inhibition of the NF-κB factor activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-sensitive potassium signaling pathway (Possebon et al. 2014). Guaianolides 101, 103, 104, isolated from Aldama gardneri, showed anti-inflammatory activity inhibiting the transcription factor NF-κB (Schorr et al. 2002). Budlein A (52), isolated from Aldama robusta showed anti-inflammatory activity by the inhibition of inflammatory mediator release and neutrophil migration (Arakawa et al. 2008; Nicolete et al. 2009, Valério et al. 2007), inhibited the antigen-induced arthritis in mice and pain by targeting the NF-κB factor, does not induce in vivo side effects (Zarpelon et al. 2017), and reduced mechanical hypersensibility, knee joint edema pain and inflammation in a model of acute gout arthritis in mice (Fattori et al. 2018). SLs 52 and 96, isolated from Dendroviguiera sylvatica inhibited the nitric oxide production and phagocytosis of macrophages (Dupuy et al. 2008).

Genotoxic activity.- Pimaradienoic acid 127, isolated from A. arenaria, was studied for its in vitro and in vivo genotoxic and anti-genotoxic effects. In vitro results showed that 127 induces DNA damage at concentrations between 2.5 and 5.0 µg/mL, and in the in vivo evaluation of genotoxicity a significant damage was observed in the hepatocites of animals treated at 80 mg/Kg, compared with the control group (Kato et al. 2012).

Cytotoxic activity.- The CHCl3 extract of roots of A. arenaria and some fractions were evaluated in vitro for their antiproliferative activity against 10 tumor cell lines. The extract showed weak to moderate antiproliferative activities, while fractions enriched with diterpenes 127 and 128 presented moderate to potent activities in most of tested cell lines (de Olveira et al. 2021). The mixture of compounds 195, 196, and 315, isolated from Gonzalezia decurrens, showed cytotoxic activity against murine lukemia (ED50 2.3 µg/mL); however, the pure compounds were not active (Marquina et al. 2001). Hypargyrin A (17), a germacrolide from Gonzalezia hypargyrea showed mild activity against HeLa (cervical) and Hep-2 (larynx) cell lines, reported activities were IC50 35.1 ± 2.7 µM (positive control: 5-fluoro-uracil IC50 1.5 ± 0.19 µM) and IC50 39.2 ± 3.1 µM (positive control: 5-fluoro-uracil IC50 1.0 ± 0.17 µM), respectively; compound 17 displayed also a modest anti-inflammatory effect (Arellano-Martínez & Delgado 2010). The antiproliferative properties of SLs 52 and 96, isolated from V. sylvatica (=Dendroviguiera sylvatica), against cell lines in vitro and on the growth of melanoma tumors in mice were examined, results showed cytotoxicity in vitro and antitumor activity in vivo for SLs 52 (Taylor et al. 2008). Ethanol extract from V. tucumanensis (=Aldama tucumanensis) exhibited cytotoxic activity and two of its components, leptocarpin (24) and eupatolide (1), have shown significant cytotoxic properties (González et al. 2018).

Discussion

Comments on the biological activity of the secondary metabolites found in Viguiera s.l. The published biological activities of the secondary metabolites of Viguiera s.l. are but a tiny sample of the potential activities of those compounds; those activities reflect the interest of the researchers that assayed the metabolites. A common secondary metabolite trait is the ability to affect several physiological targets (Maffei et al. 2011, Hu & Bajorath 2013). Therefore, the biological activity of a secondary metabolite is usually multifunctional (Langenheim 1994; Gershenzon & Dudareva 2007), i.e., it can display activity on many wild species, pathogens or pathological processes in humans, as shown by Torres-Gurrola et al. (2016) with 364 secondary metabolites found in Persea americana.

On the relevance of phytochemical studies in Asteraceae. Phytochemical data are helpful to solve some taxonomic problems or for reinforcing certain phylogenetic relationships. Numerous publications highlight their taxonomic and ecological importance (for example, Seigler & Price 1976). In particular for the Asteraceae family, there are relevant publications on this topic, such as the results of symposia on the Biology and Chemistry of the Compositae (Heywood et al. 1977, Hind & Beentje, 1996), the contributions on its flavonoid content (Bohm & Stuessy 2001, Emerenciano et al. 2001), on its diterpenes and sesquiterpenes (Seaman 1982, Seaman et al. 1990, Spring & Buschmann 1996), and on its sesquiterpene lactones (Zidorn 2008, Shulha & Zidorn 2019). Especially noteworthy for Mexico are the summaries on the studies of secondary metabolites in the species of Viguiera and in species of the tribe Senecioneae (Romo de Vivar & Delgado et al. 1985, Romo de Vivar et al. 2007).

Figure 9 shows the placement of the species of Viguiera s.l. with chemical constituents’ reports following the phylogenetic relationships proposed by Schilling & Panero (2002, 2011). Nondistinctive patterns are observed between clades and chemical groups because all segregated genera share most main secondary metabolites (Appendixes 1-10), some of them more frequent than others in certain clades.

Figure 9 Cladogram illustrating the phylogenetic relationships between Viguiera species and segregated genera (Viguiera s. l.) with phytochemical studies discussed in this work (Adapted from Schilling & Panero (2002, 2011)). 

The commonest secondary metabolites among the studied species are the flavonoids, followed by the tetracyclic diterpenoids and the furanoheliangolide-type sesquiterpene lactones. The chemical variants of each one has been recorded for the species (Appendixes 1-10), reaching a figure of 322 different secondary metabolites in just 67 species, an average of 5 per species.

There is a close relationship between certain clades indicated in Figure 9 with the classification proposed by Blake (1918). See Table S1. For example, most North American taxa included in his Subgenus Amphilepis now belong to different monophyletic genera. In this way, species of the genus Bahiopsis Kellogg are included in his Series Dentatae, the genus Calanticaria (B.L. Rob. & Greenm.) E.E. Schill. & Panero in his Series Brevifolia, the genus Gonzalezia E.E. Schill. & Panero corresponds to his Section Hypargyrea (Subgenus Amphilepis), or the genus Sidneya E.E. Schill. & Panero to his Series Pinnatilobatae. Table S1 includes the species with phytochemical studies arranged following the Blake´s classification.

Chemotaxonomic observations. The secondary metabolites present in Viguiera s.l. species are terpenoids, polyacetylenes, flavonoids, phenols, and others. As previously noted, sesquiterpene lactones, polycyclic, diterpenes and flavonoids are the major groups of secondary metabolites in Viguiera s.l. species. Therefore, to compare the metabolic content among the segregated genera, the SLs and polycyclic diterpenes were divided according their biogenetic complexity and / or structural type, as shown in Figures 10A and 10B. Sesquiterpene lactones are biosynthesized from germacryl cation to germacrolides (i.e., budlein B), which is closely related to heliangolides (i.e., deacetylviguiestenin) and the formation of the C3-C10 epoxide affords the furanoheliangolides (i.e., budlein A). Cyclization of germacrolides produces eudesmanolides, while the 4,5-epoxy-germacrolides (i.e., parthenolide) are the precursors of guaianolides. Thus, sesquiterpene lactones were divided in five groups: germacrolides (GERM), heliangolides (HELI), furanoheliangolides (FUHE), guaianolides (GUAI) and eudesmanolides (EUDE). See Figure 10A.

Figure 10 A) Biogenetic relationships of the major type of sesquiterpene lactones found in Viguiera s. l. species and their acronyms, B) Biogenetic relationships of the major type of diterpenes found in Viguiera s. l. species and their acronyms. 

Geranyl pyrophosphate is considered the direct precursor of linear (acyclic) diterpenes, and cyclization of this compound affords the bicyclic copalyl-pyrofosfate, which in turn produces tricyclic compounds (i.e., abietane and labdane diterpenes). Cyclization of the labdane diterpenes affords tetracyclic ent-beyerane and ent-kaurane diterpenes. Additional cyclization of tetracyclic diterpenes produces pentacyclic diterpenes (i.e. trachylobanoic acid). Diterpenes were divided in acyclic and bicyclic diterpenes (ABID), tri- (TRID), tetra- (TETD) and pentacyclic diterpenes (PEND). See Figure 10B.

Table 3 provides an overview about the occurrence of different types of secondary metabolites reported per each species (distributed in Viguiera and its segregated genera).

Table 3 Distribution of the occurrence of secondary metabolites in the new genera / species segregated from Viguiera. Germacrolides (GERM), heliangolides (HELI), furanoheliangolides (FUHE), guaianolides (GUAI), eudesmanolides (EUDE), acyclic plus bicyclic diterpenes (ABID), tri- (TRID), tetra- (TETD), penta- cyclic (PEND) diterpenes, pentacyclic triterpenes (PENT), and flavonoids (FLAV). 

Species GERM HELI FUHE GUAI EUDE ABID TRID TETD PEND PENT FLAV
1 Aldama anchusifolia 0 0 0 0 0 1 1 0 0 0 0
2 Aldama angustifolia 0 0 1 0 0 0 0 0 0 0 0
3 Aldama arenaria 0 0 1 0 0 0 8 0 0 0 0
4 Aldama aspilioides 0 0 0 0 0 0 0 8 1 0 0
5 Aldama bishopii 0 0 0 0 0 3 0 5 2 0 0
6 Aldama bracteata 2 3 10 0 0 0 0 0 0 0 0
7 Aldama buddleiajiformis 1 0 1 0 0 0 0 4 0 0 3
8 Aldama canescens 0 0 0 0 1 0 0 4 0 0 0
9 Aldama cordifolia 0 0 0 0 0 0 0 2 0 0 0
10 Aldama discolor 0 0 1 0 0 0 3 1 0 0 0
11 Aldama excelsa 0 0 1 0 0 0 0 6 0 0 0
12 Aldama filifolia 0 0 0 0 0 0 0 0 0 0 0
13 Aldama gadneri 1 0 0 5 0 0 0 0 0 0 2
14 Aldama gilliesii 0 2 3 0 0 1 0 0 0 0 0
15 Aldama ghiesbreghtii 0 0 1 0 0 0 0 0 0 0 0
16 Aldama helienthoides 2 3 4 0 0 2 1 2 1 0 1
17 Aldama hypochlora 0 0 1 0 0 0 0 0 0 0 0
18 Aldama incana 0 0 0 0 0 0 0 1 0 0 0
19 Aldama lanceolata 0 0 1 0 0 0 0 1 1 0 0
20 Aldama latibracteata 0 0 2 0 0 0 0 12 0 0 0
21 Aldama linearifolia 0 0 0 0 0 0 0 1 0 0 0
22 Aldama linearis 2 4 7 0 1 0 0 4 0 0 0
23 Aldama mollis 0 0 2 0 0 0 0 0 0 0 2
24 Aldama nervosa 0 0 0 0 0 0 0 3 0 0 0
25 Aldama nudibasilaris 0 0 0 0 0 0 1 1 0 0 0
26 Aldama oblongifolia 0 0 2 0 0 0 0 0 0 0 0
27 Aldama pilosa 0 0 0 0 0 1 0 0 0 0 0
28 Aldama robusta 7 4 8 0 1 2 1 8 0 0 0
29 Aldama squarrosa 0 0 1 0 0 0 0 0 0 0 0
30 Aldama trichophyla 0 0 0 0 0 0 0 3 0 0 0
31 Aldama tucumanensis 1 3 3 2 0 2 0 1 0 0 0
32 Bahiopsis chenopodina 0 0 0 0 0 0 0 0 0 0 6
33 Bahiopsis deltoidea 1 0 2 0 0 1 0 0 0 0 7
34 Bahiopsis laciniata 0 7 0 0 1 1 0 0 0 0 9
35 Bahiopsis lanata 0 0 0 0 0 0 0 0 0 0 4
36 Bahiopsis microphylla 1 0 2 0 0 0 0 0 0 0 5
37 Bahiopsis parishii 0 0 0 0 0 0 0 0 0 0 2
38 Bahiopsis reticulata 0 0 0 0 0 0 0 0 0 0 3
39 Bahiopsis subincisa 0 0 0 0 0 0 0 0 0 0 3
40 Bahiopsis tomentosa 0 0 0 0 0 0 0 0 0 0 3
41 Bahiopsis triangularis 0 0 0 0 0 0 0 0 0 0 8
42 Calanticaria bicolor 0 0 0 0 0 0 0 0 0 0 10
43 Calanticaria brevifolia 0 0 0 0 0 0 0 0 0 0 9
44 Calanticaria graggi 0 0 3 0 0 0 0 2 0 0 15
45 Dendroviguiera adenophylla 0 0 0 0 0 0 0 0 0 0 11
46 Dendroviguiera eriophora 0 3 6 0 0 0 0 3 0 0 14
47 Dendroviguiera insisgnis 0 0 0 0 0 0 0 10 0 0 0
48 Dendroviguiera neocronquistii 0 0 0 0 0 0 0 0 0 0 4
49 Dendroviguiera oaxacana 0 0 0 0 0 0 0 2 0 0 4
50 Dendroviguiera pringlei 0 0 0 0 0 0 0 0 0 0 11
51 Dendroviguiera puruana 1 11 0 0 1 0 0 0 0 0 3
52 Dendroviguiera quinqueradiata 0 2 1 0 0 0 0 2 0 0 9
53 Dendroviguiera sphaerocephala 1 1 0 0 0 0 0 0 0 0 13
54 Dendroviguiera splendens 0 0 0 0 0 0 0 0 0 0 6
55 Dendroviguiera sylvatica 0 1 8 4 0 2 0 1 0 0 0
56 Gonzalezia decurrens 0 0 0 0 0 0 0 2 0 6 2
57 Gonzalezia hypargyrea 7 0 0 0 0 0 0 5 0 7 3
58 Gonzalezia rosei 0 0 0 0 0 0 0 0 0 0 5
59 Helianthus porteri 0 0 0 0 0 0 0 7 0 0 0
60 Heliomeris annua 0 0 0 0 0 0 0 0 0 0 0
61 Heliomeris multiflora 0 0 0 0 0 0 0 0 0 0 5
62 Hymenostephium cordatum 0 0 4 0 0 0 0 1 0 0 0
63 Hymenostephium superaxillare 0 0 0 0 0 0 0 3 0 0 0
64 Sidneya pinnatilobata 0 2 1 0 0 0 1 0 0 0 0
65 Sidneya tenuifolia 0 2 0 0 0 1 0 9 0 0 0
66 Viguiera dentata 0 0 1 0 0 1 0 9 1 4 0
67 Viguira pazensis 0 1 2 1 0 0 0 7 4 0 2

Observations on the incidence of the secondary metabolites of Viguiera s.l. species. According to the data shown in Appendixes 1-10 and Table 3, twenty five out of 31 Aldama species with chemical studies deal on the constituents of the aerial parts, and these report sesquiterpene lactones and tetracyclic triterpenes (entries 2, 3, 5-8, 10,11, 13-24, 26, 28, 29, 30, 31 of Table 3) as the main constituents. The 95 SLs reported for 20 Aldama species include 50 furanoheliangolides, 19 heliangolides, 16 germacrolides, seven guaianolides and three eudesmanolides. The roots and / or the essential oils were chemically investigated for 16 Aldama species (entries 1, 3-5, 9, 12, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30 of Table 3). For Aldama species, it is evident that furanoheliangolides (FUHE) and tetracyclic diterpenes (TETD) are the prevalent chemical groups in the leaves.

Chemical analysis of the leaves of three species of Bahiopsis (entries 33, 34, 36 of Table 3) afforded sesquiterpene lactones of several types (GERM, HELI, FUHE, GUAI, EUDE). Almost all species of this genus contain flavonoids (FLAV).

Furanoheliangolides (FUHE) and tetracyclic diterpenes (TETD) have been informed as constituents of the aerial parts of Calanticaria greggi, in addition to the flavonoids (FLAV) in the three species (entries 42-44).

The flavonoid chemistry of Dendroviguiera species (entries 45-55) was discussed previously, considering that this group was part of the Section Maculatae of the Viguiera genus s.l. (Schilling & Panero 1988). Germacrolides (GERM), heliangolides (HELI) and furanoheliangolides (FUHE) and tetracyclic diterpenes (TETD) have been characterized from Dendroviguiera species. A high infraspecific diversity in the chemical constituents has been noted in this group (considering the less abundant presence of 1-keto-2,3-unsaturated furanoheliangolides), and it has been suggested that the lack of SLs in some species (entries 47 and 49 of Table 3) may be related to the absence of glandular trichomes (Spring et al. 2000).

In addition to flavonoids (FLAV), tetracyclic ditepenes (TETD) and pentacyclic triterpenes (PENT) have been characterized in Gonzalezia. The members of Gonzalezia were recognized as a monophyletic group (Wollenweber et al. 1995). It is noteworthy that exclusively germacrolides (GERM) have been characterized from the aerial parts of G. hypargyrea (Álvarez et al. 1985, Arellano & Delgado 2010).

Heliangolides (HELI), furanoheliangolides (FUHE) and bi- and tetracyclic diterpenes are the main constituents of Sidneya.

To explore if the species segregated from Viguiera grouped according to the secondary metabolites found in those species, we performed a cluster analysis with four types of sesquiterpene lactones and bi-, tri-, and tetra-terpenoids and the 38 species remaining after eliminating those that had no sesquiterpene lactones and those terpenoids (Figure 11).

Figure 11 Classification of 38 species formerly classified in the genus Viguiera according to their content of four types of sesquiterpene lactones, and bi-, tri-, and tetra-terpenoids. The distance matrix was built with city-block (Manhattan) distances and the grouping algorithm was the unweighted pair-group average. 

The species grouping does not coincide with the phylogenetic clusters shown in Figure 9. In many cases, species classified closely belong to different genera, and the species in the same genus were classified away from their congeneric species. We do not have the certainty that all the secondary metabolites analyzed in Figure 11 used were searched and detected in all species. However, the absence of correlation between the phylogenetic and phytochemical classifications is consistent with a similar comparison made with Jacobaea species and their pyrrolizidine alkaloids, where the authors concluded that the distribution of the alkaloids was determined by ecological factors (Chen et al. 2022). Thus, we suggest that the sesquiterpene lactones and diterpenes characterized until now are not sufficiently informative as chemotaxonomic markers to make clear distinctions between the segregated genera from Viguiera.

Theoretical or methodological assumptions can explain the lack of distinctive chemotaxonomic patterns among Viguiera s.l. One is the lack of certainty that all species have been studied in the same way; for example, the studies of Schilling et al. (1988) or Schilling & Panero (1988) focused on the study of flavonoids, considerably increasing the number of species studied in this particular type of compounds, many of them poorly or never studied in search of other compounds. Other studies focused mainly on SLs, avoiding the search other compounds. Furthermore, intraspecific phytochemical variation is a generalized phenomenon found diurnal, seasonal variations, by attack of herbivores or pathogens, and by ontogeny of tissues or individuals. In addition, there is also variation within and between individuals and populations (García-Rodríguez et al. 2012, Espinosa-García et al. 2021). Furthermore, perhaps for several Viguiera s.l. species the biosynthetic route for several metabolites has been lost or blocked against other more ecologically fruitful compounds; however, the test to probe the latter rarely is assessed.

In conclusion, the review of the natural products structurally characterized from Viguiera species and newly segregated genera allowed the recognition of 322 different substances in 67 species of 10 genera. The chemical constituents most frequently found are sesquiterpene lactones, diterpenes and flavonoids, and the published biological activities of extracts and pure compounds were compiled. The detailed analysis us to identify that germacrolides, heliangolides, furanoheliangolides, and ent-kaurene-type diterpenes are the constituents that best characterize this group of plants. Some comparisons between genera allowed to establish that furanoheliangolides are the type of sesquiterpene lactones that best characterize the genus Aldama. However, no direct relationships were identified between different genera and their chemical constituents.

The data obtained from the study of secondary metabolites will continue to be an essential source in collecting of comparative data for plant systematics. Some studies discussing phylogenetic relationships have shown congruence in the data obtained from the study of micro (secondary metabolites) and macromolecules (DNA sequences) (e.g., Grayer et al. 1999). We recommend the analysis of a broader spectrum of species to reach more robust chemotaxonomic conclusions. The lack of substantial taxonomic information obtained among the secondary metabolites and species may be due to the low number of species studied to date. Therefore, complementary, large-scale phytochemistry (plant metabolomics) combined with bioinformatics undoubtedly will provide massive metabolite profiles that will have a major impact in many areas of scientific research, such as systematics (Sumner et al. 2003).

Supplementary material

Table S1. Species of Viguiera s. l. arranged according to the S. F. Blake’s (1918) classification can be accessed here: https://doi.org/10.17129/botsci.3072

Supplementary material

Acknowledgments

The authors acknowledge the support of the Universidad Nacional Autónoma de México (DGAPA PAPIIT IG200821), and we thank the students, co-workers and colleagues whose names are included in the references.

Literature cited

Álvarez L, Zamilpa A, Marquina S, González M. 2003. Two new oleanolic acid saponins from the roots of Viguiera hypargyrea. Revista de la Sociedad Química de México 47: 173-177. ISSN: 1870-249X [ Links ]

Álvarez L, Mata R, Delgado G, Romo de Vivar A. 1985. Sesquiterpene lactones from Viguiera hypargyrea. Phytochemistry 24: 2973-2976. DOI: https://doi.org/10.1016/0031-9422(85)80038-8. [ Links ]

Ambrosio SR, Arakawa NS, Esperandin VR, de Albuquerque S, Da Costa FB. 2008. Trypanocidal activity of pimarane diterpenes from Viguiera arenaria. Phytotherapy Research 22: 1413-1515. DOI: https://doi.org/10.1002/ptr.2512 [ Links ]

Ambrosio SR, Tirapelli CR, Da Costa FB, de Oliveira AM. 2006. Kaurane and pimarane-type diterpenes from the Viguiera species inhibit vascular smooth muscle contractility. Life Sciences 79: 925-933. DOI: https://doi.org/10.1016/j.lfs.2006.05.015 [ Links ]

Ambrosio SR, Schorr K, Da Costa FB. 2004. Terpenoids of Viguiera arenaria (Asteraceae). Biochemical Systematics and Ecology 32: 221-224. DOI: https://doi.org/10.1016/S0305-1978(03)00139-x [ Links ]

Ambrosio SR, Tirapelli CR, Bonaventura D, De Oliveira AM, Da Costa FB. 2002. Pimarane diterpene from Viguiera arenaria (Asteraceae) inhibit rat carotid contraction. Fitoterapia 73: 484-489. DOI: https://doi.org/10.1016/S0367326X(02)001703 [ Links ]

Arakawa NS, Schorr K, Ambrosio SR, Merfort I, Da Costa FB. 2008. Further sesquiterpene lactones from Viguiera robusta and the potential anti-inflammatory activity of a heliangolide: Inhibition of human neutrophil elastase release. Zeitschrift für Naturforschung C 63: 533-538. DOI: https://doi.org/10.1515/znc20087811 [ Links ]

Arellano-Martínez R, Delgado G. 2010. Hypargyrin A, a hemiacetalic germacrolide from Viguiera hypargyrea (Asteraceae). Biogenetic implication and biological evaluation. Journal of the Mexican Chemical Society 54: 117-121. [ Links ]

Baldwin BG. 2009. Heliantheae alliance. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ eds. Systematics, Evolution and Biogeography of the Compositae. Vienna, Austria: International Association for Plant Taxonomy (IAPT), pp. 689-711. ISBN: 978 3-9501754-3-1. [ Links ]

Blake SF. 1918. A revision of the genus Viguiera. Contributions from the Gray Herbarium of Harvard University 54: 1-205. [ Links ]

Bohlmann F, Gerke T, Jakupovic J, King R, Robinson H. 1984a. Cadina-4,11-Diene from Viguiera oblongifolia. Phytochemistry 23: 1183-1184. DOI: https://doi.org/10.1016/S0031-9422(00)82638-2 [ Links ]

Bohlmann F, Zdero C, Schmeda G, Jakupovic J, Castro V, King R, Robinson H. 1984b. Heliangolide, Trachyloban- und Villanovan-Derivate aus Viguiera- Arten. Liebigs Annalen der Chemie 495-502. [ Links ]

Bohlmann F, Jakupovic J, Ahmed M, Grenz M, Suding H, Robinson H, King R. 1981. Germacranolides and Diterpenes from Viguiera Species. Phytochemistry 20: 113-116. DOI: https://doi.org/10.1016/0031-9422(81)85228-4 [ Links ]

Bohlmann F, Zdero C, Mahanta P. 1977. Neue diterpene aus Dimorphoteca- und Viguiera-arten. Phytochemistry 16: 1073-1075. DOI: https://doi.org/10.1016/S0031-9422(00)86737-0 [ Links ]

Bohm B, Stuessy TF. 2001. Flavonoids of the Sunflower Family (Asteraceae). Wien: Springer. ISBN 3-211-834. [ Links ]

Bombo AB, Filartiga AL, Garcia VL, Appezzato-da-Gloria B. 2017. Secretory structures in Aldama species (Heliantheae-Asteraceae): morphology, histochemistry and composition of essential oils. Flora 228: 39-49. DOI: https://doi.org/10.1016/j.flora.2017.01.011 [ Links ]

Bombo AB, De Oliveira TS, De Oliveira ADSS, García RVL, Galvão MMA. 2012. Anatomy and essential oils from aerial organs in three species of Aldama (Asteraceae-Heliantheae) that have difficult delimitation. Australian Journal of Botany 60: 632-642. DOI: http://dx.doi.org/10.1071/BT12160 [ Links ]

Campos-Lozada V, Campos E, Guerrero C, Taboada J, Hernández-Falcon J, Fuentes-Pardo, B. 1993. Nonspecific anti-spasmodic action of viguiepinol. Proceedings of the Western Pharmacology Society 36: 29-32. [ Links ]

Canales M, Hernández T, Rodríguez-Monrroy MA, Jiménez-Estrada M, Flores CM, Hernández LB, Gijón IC, Quiroz S, García AM, Avila G. 2008. Antimicrobial activity of the extracts and essential oil of Viguiera dentata. Pharmaceutical Biology 46: 719-723. DOI: https://doi.org/10.1080/13880200802215727 [ Links ]

Carvalho TC, Simão MR, Ambrosio SR, Furtado NAJC, Veneziani RCS, Heleno VCG, Da Costa FB, Gomes BPFA, Souza MGM, Dos Reis EB, Martins CHG. 2011. Antimicrobial activity of diterpenes from Viguiera arenaria against endodontic bacteria. Molecules 16: 543-551. DOI: https://doi.org/10.3390/molecules160100543 [ Links ]

Chagas-Paula DA, Oliveira TB, Vasconcelos Faleiro DP, Oliveira RB, Da Costa FB. 2015. Outstanding anti-inflammatory potential of selected Asteraceae species through the potent dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. Planta Medica 81: 1296-1307. DOI: https://doi.org/10.1055/s00351546206 [ Links ]

Chen Y, Mulder PP, Schaap O, Memelink J, Klinkhamer PG, Vrieling K. 2022. The evolution of pyrrolizidine alkaloid diversity among and within Jacobaea species. Journal of Systematics and Evolution 60: 361-376. DOI https://doi.org/10.1111/jse.12671 [ Links ]

Cuevas LA, García Jiménez F, Romo de Vivar A. 1972. Structure of stenolobin. [A new diterpene from Viguiera stenoloba]. Revista Latinoamericana de Química 3: 22-27. [ Links ]

Cuevas-Glory LA, Ortiz-Vazquez E, Pino JA, Sauri-Duch E. 2012. Floral classification of Yucatan Peninsula honeys by PCA & HS_SPME/GC-MS of volatile compounds. International Journal of Food Science and Technology 47: 1378-1383. DOI: https://doi.org/10.1111/j.1365-2621.2012.02983.x [ Links ]

Cuevas-Glory LA, Pino JA, Sauri-Duch E. 2008. Volatile constituents of Tahoral flower (Viguiera dentata Blake, var. heliantioides) from Yucatan Peninsula, Mexico. Journal of Essential Oil Research 20: 432-434. DOI: https://doi.org/10.1080/10412905.2008.9700050 [ Links ]

Da Costa FB, Terfloth L, Gasteiger J. 2005. Sesquiterpene lactone-based classification of three Asteraceae tribes: A study based on self-organizing neutral networks applied to chemosystematics. Phytochemistry 66: 345-353. DOI: https://doi.org/10.1016/j.phytochem.2004.12.006 [ Links ]

Da Costa FB, Schorr K, Arakawa NS, Schilling EE, Spring O. 2001. Infraspecific variation in the glandular trichomes of two Viguiera species (Heliantheae; Asteraceae). Journal of the Brazilian Chemical Society 12: 403-407. DOI: https://doi.org/10.1509/S0103-50532001000300012 [ Links ]

Da Costa FB, Ito IY, Andre RFG, Vichnewski W. 1998. Constituents of Viguiera species with antibacterial activity. Fitoterapia 69: 86-87. [ Links ]

Da Costa FB, Albuquerque S, Vichnewsky W. 1996a. Diterpenes and synthetic derivatives from Viguiera aspillioides with trypanomicidal activity. Planta Medica 6: 557-559. DOI: https://doi.org/10.1055/s-2006-957971 [ Links ]

Da Costa FB, Vichnewsky W, Herz W. 1996b. Constituents of Viguiera aspillioides and Viguiera robusta. Biochemical Systematics and Ecology 24: 585-587. DOI: https://doi.org/10.1016/0305-1978(96)00057-9 [ Links ]

De la Fuente JR, Del Valle MI, Sosa VE. 1994. Furanoheliangolides and flavonoids from Viguiera mollis. Anales de la Asociación Química Argentina 82: 61-64. [ Links ]

Delgado G, Álvarez L, Mata R, Pereda-Miranda R, Romo de Vivar A, Villaseñor JL. 1986. Terpenoids from Viguiera latibracteata and Viguiera greggii. Journal of Natural Products 49: 1165-1166. DOI: https://doi.org/10.1021/np50048a054 [ Links ]

Delgado G, Álvarez L, Romo de Vivar A. 1985. 15-Hydroxy acetylerioflorin and other constituents from Viguiera linearis. Phytochemistry 24: 2736-2738. DOI: https://doi.org/10.1016/S0031-9422(00)80712-8 [ Links ]

Delgado G, Álvarez L, Romo de Vivar A. 1984a. 15-Oxo-zoapatlin, a diterpene lactone from Viguiera maculata. Phytochemistry 23: 2674-2675. DOI: https://doi.org/10.1016/S0031-9422(00)84125-4 [ Links ]

Delgado G, Álvarez L, Romo de Vivar A. 1984b. Terpenoids and flavan-3-ol from Viguiera quinqueradiata. Phytochemistry 23: 675-678. DOI: https://doi.org/10.1016/S0031-9422(00)80405-7 [ Links ]

Delgado G, Cárdenas H, Peláez G, Romo de Vivar A. 1984c. Terpenoids from Viguiera excelsa and Viguiera oaxacana. Jounal of Natural Products 47: 1042-1045. DOI: https://doi.org/10.1021/np50036a028 [ Links ]

Delgado G, Romo de Vivar A. 1984d. Ent-kaurenoid methyl esters from Viguiera stenoloba and its biometric conversion to zoapatlin. Chemistry Letters 1237-1240. DOI: https://doi.org/10.1246/cl.1984.1237 [ Links ]

Delgado G, Romo de Vivar A, Cárdenas J, Pereda-Miranda R, Huerta E. 1984e. Ent-beyerene and ent-atisene diterpenes from Viguiera insignis. Phytochemistry 23: 2285-22881. DOI: https://doi.org/10.1016/S0031-9422(00)80536-1 [ Links ]

Delgado G, Romo de Vivar A, Ortega A, Cárdenas J, Schlemper EO. 1983. Diterpenoids from Viguiera insignis. Phytochemistry 22:1227-1230. DOI: https://doi.org/10.1016/0031-9422(83)80227-1 [ Links ]

Delgado G, Romo de Vivar A, Herz W. 1982. Sesquiterpene lactones from Viguiera species. Phytochemistry 21: 1305-1308. DOI: https://doi.org/10.1016/0031-9422(82)80130-1 [ Links ]

De Olveira ADS, Imamura PM, Ruiz ALTG, Appezzato-da- Gloria B, de Olveira TS, García VL. 2021. Antiproliferative activity from Aldama arenaria (Baker) EE Schill. & Panero. Boletin Latinoamericano y del Caribe de Plantas Merdicinales y Aromáticas 20: 51-60. DOI: https://doi.org/10.37360/blacpma.21.20.1.4 [ Links ]

De Oliveira TS, Bombo AB, De Oliveira ADSS, Garcia VL, Appezzato da Gloria B. 2016. Seasonal variation of the essential oil from two Brazilian native Aldama La Llave (Asteraceae) species. Anais de Academia Brasileira de Ciencias 88: 1899-1907. DOI: https://doi.org/10.1590/0001-376520162015-0732 [ Links ]

Dupuy OAL, Murillo R, Bonilla JA. 2008. Lactonas sesquiterpénicas de las plantas Viguiera sylvatica y Decachaeta thieleana (Asteraceae) modulan la producción de óxido nítrico y la fagocitosis de macrófagos RAW. Revista de Biología Tropical 56: 1063-1073. [ Links ]

Domínguez XA, Ellmauerer E, Sánchez H, Franco OR, Verde SJ. 1988. Viguiera superaxillare (romerillo), a further source of cycloartanone derivative. Revista Latinoamericana de Química 19: 144. [ Links ]

Emerenciano VP, Militao JSLT, Campos CC, Romoff P, Kaplan MAC, Zambon M, Brant AJC. 2001. Flavonoids as chemotaxonomic markers for Asteraceae. Biochemical Systematics and Ecology 29: 947-957. DOI: https://doi.org/10.1016/S0305-1978(01)00033-3 [ Links ]

Espinosa-García FJ, García-Rodríguez YM, Bravo-Monzón AE, Vega-Peña EV, Delgado-Lamas G. 2021. Implications of the foliar phytochemical diversity of the avocado crop Persea americana cv. Hass in its susceptibility to pests and pathogens. PeerJ 9:e11796 pp. 1-29. DOI: https://doi.org/10.7717/peerj.11796 [ Links ]

Fattori V, Zarpelon AC, Staurengo-Ferrari, Borghi SM, Zaninelli TH, Da Costa FB, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Arakawa NS, Verri Jr WA. 2018. Budlein A, a sesquiterpene lactone from Viguiera robusta, alleviates pain and inflammation in a model of acute gout arthritis in mice. Frontiers in Pharmacology 9: 1076. DOI: https://doi.org/10.3389/fphar.2018.01076 [ Links ]

Ferreira JH, García RM, Abrao F, Fernandez YA, Pires RH, Ambrosio SR, Veneziani RCS, Martins CHG. 2018. Bactericidal kinetics and antibiofilm efficacy of pimarane-type diterpenes from Viguiera arenaria against cariogenetic bacteria. Pharmacognosy Journal 10: 429-434. DOI: https://doi.org/10.5530/pj.2018.3.70 [ Links ]

Filartiga AL, Bombo AB, García, V. L., Appezzato da Gloria, B. 2017. Belowground organs of four Brazilian Aldama (Asteraceae) species: Morphoanatomical traits and essential oil profile. South African Journal of Botany 113: 150-159. DOI: https://doi.org/10.1016/j.sajb.2017.08.008 [ Links ]

Filartiga AL, Bombo AB, García VL, Appezzato da Gloria B. 2017b. Leaf and stem anatomy and essential oil composition of four Brazilian Aldama species (Asteraceae) and their taxonomic significance. Brazilian Journal of Botany 40: 503-516. DOI: https://doi.org/10.1007/s40415-016-0350-3 [ Links ]

Gao F, Wang H, Mabry TJ, Abboud KA, Simonsen SH. 1989. Sesquiterpene lactones, flavanones and a diterpene acid from Viguiera laciniata. Phytochemistry 28: 2409-2414. DOI: https://doi.org/10.1016/S0031-9422(00)97994-9 [ Links ]

Gao F, Wang H, Mabry TJ. 1987. Diterpenoids and a sesquiterpene lactone from Viguiera ladibractate. Phytochemistry 26: 779-781. DOI: https://doi.org/10.1016/S0031-9422(00)84785-8 [ Links ]

Gao F, Mabry TJ. 1986a. Sesquiterpene lactones from Viguiera deltoidea. Phytochemistry 25: 137-140. DOI: https://doi.org/10.1016/S0031-9422(00)94518-7 [ Links ]

Gao F, Mabry TJ, Bohlmann F, Jakupovic J. 1986b. Cycloartanone derivatives from Viguiera dentata. Phytochemistry 25: 1489-1491. DOI: https://doi.org/10.1016/S0031-9422(00)81319-9 [ Links ]

Gao F, Mabry TJ. 1985a. An acyclic diterpene from Viguiera deltoidea. Phytochemistry 24: 3061-3063. DOI: https://doi.org/10.1016/0031-9422(85)80060-1 [ Links ]

Gao F, Miski M, Gage DA, Mabry TJ. 1985b. Terpenoid constituents of Viguiera dentata. Journal of Natural Products 48: 316-318. DOI: https://doi.org/10.1021/np50038a021 [ Links ]

Gao F, Miski M, Gage DA, Norris JA, Mabry TJ. 1985c. Terpenoids from Viguiera potosina. Journal of Natural Products 48: 489-490. DOI: https://doi.org/10.1021/np50039a026 [ Links ]

García-Rodríguez YM, Bravo-Monzón A, Martínez-Díaz Y, Torres-Gurrola G, Espinosa-García F J. 2012. Variación Fitoquímica Defensiva en Ecosistemas Terrestres. In JC Rojas, EA Malo (Eds.), Temas Selectos en Ecología Química de Insectos (pp. 217-252). El Colegio de la Frontera Sur, México. ISBN: 13:9786077637714. [ Links ]

Gershenzon J, Dudareva N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology 3: 408-414. DOI: https://doi.org/10.1038/nchembio.2007.5 [ Links ]

Gershenzon J, Liu YL, Mabry TJ, Korp JD, Bernal I. 1984. Germacranolides from Viguiera microphylla. Phytochemistry 23: 1281-1287. DOI: https://doi.org/10.1016/S0031-9422(00)97994-9 [ Links ]

González MLM, Joray MB, Laiolo J, Crespo MI, Palacios SM, Ruiz GM, Carpinella MC. 2018. Cytotoxic activity of extracts from plants of Central Argentina on sensitive and multidrug-resistant Leukemia cells: Isolation of an active principle from Gaillardia megapotamica. Evidence-Based Complementary and Alternative Medicine. Article ID 9185935. DOI: https://doi.org/10.1155/20189185935 [ Links ]

Grayer RJ, Chase MW, Simmonds MSJ. 1999. A comparison between chemical and molecular characters for the determination of phylogenetic relationships among plant families: an appreciation of Hegnauer’s “Chemotaxonomie der Pflanzen.” Biochemical Systematics and Ecology, 27: 369-393. DOI: https://doi.org/10.1016/S0031-9422(00)97994-9 [ Links ]

Guerreiro E. 1986. Heliangolides and acyclic diterpene from Viguiera gilliesii. Phytochemistry 25: 748-750. DOI: https://doi.org/10.1016/0031-9422(86)88040-2 [ Links ]

Guerrero C, Nava AL, Quevedo F, Toscano RA, Soriano-García M. 1986. Further constituents of Viguiera stenoloba and Viguiera pinnalobata. Revista Latinoamericana de Química 16: 126-128. [ Links ]

Guerrero C, Santana M, Romo J. 1976. Chemical study of Viguiera angustifolia H. B. K. Blake. Revista Latinoamericana de Química 7: 41-42. [ Links ]

Guerrero C, Ortega A, Díaz E, Romo de Vivar A. 1973. Structure of viguestenin and deacetylviguestenin. Revista Latinoamericana de Química 4: 118-126. [ Links ]

Guillet G, Chauret D, Arnason JT. 1997. Phototoxic polyacetylenes from Viguiera annua and adaptations of a chrysomelid beetle, Zygogramma continua, feeding on this plant. Phytochemistry 45: 695-699. DOI: https://doi.org/10.1016/S0031-9422(97)00030-7 [ Links ]

Harborne JB, Smith DM. 1978. Anthochlors and other flavonoids as honey guides in the Compositae. Biochemical Systematics and Ecology 6: 287-291. DOI: https://doi.org/10.1016/0305-1978(78)90047-9 [ Links ]

Herz W, Kulanthaivel P. 1985. Diterpenes from Viguiera porteri. Journal of Natural Products 48: 676-677. DOI: https://doi.org/10.1021/np50040a039 [ Links ]

Heywood VH, Harborne JB, Turner BL eds. 1977. The Biology and Chemistry of the Compositae. Academic Press. New York. 2 vols. ISBN: 0123468019(v.1) [ Links ]

Hind DJN, Beentje HJ. eds. 1996. Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994. The Royal Botanic Gardens, Kew. 2 vols. ISBN: 13: 9781900347006. [ Links ]

Hu Y, Bajorath J. 2013. Compound promiscuity: what can we learn from current data? Drug Disxovery Today 18: 645-650. DOI: http://dx.doi.org/10.1016/j.drudis.2013.03.002 [ Links ]

Kato FH, Viana NI, Santini CB, Gomes de Souza CG, Veneziani RES, Ambrosio SR, Tavares DC. 2012. Assessment of the in vitro and in vivogenotoxic and antigenotoxic effect of pimaradienoic acid in mammalian cells. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 749: 87-92. DOI: https://doi.org/10.1016/j.mrgentox.2012.09.001 [ Links ]

Langenheim JH. 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology 20: 1223-1280. DOI: https://doi.org/10.1007/BF02059809 [ Links ]

Liu YL, Gershenzon J, Mabry TJ. 1984. Furanoheliangolides from Viguiera greggii. Phytochemistry 23: 1967-1970. DOI: https://doi.org/10.1016/S0031-9422(00)84951-1 [ Links ]

Lüttmann-Skibinski H, Willuhn O. 1988. Diterpenes and other constituents of Viguiera buddleiaeformis. Planta Medica 54: 578. DOI: https://doi.org/10.1055/s-2006-962590 [ Links ]

Maffei M, Gertsch J, Appendino G. Plant volatiles: Production, function and pharmacology. 2011. Natural Products Reports 28: 1359-1380. DOI: https://doi.org/10.1039/c1np00021g [ Links ]

Marangoni S, Moraes TS, Utera SH, Casemiro LA, De Souza MGM, De Oliveira PF, Veneziani P S, Ambrosio SR, Tavares DC, Martins CHG. 2018. Diterpenes of the pimarane type isolated from Viguiera arenaria: Promising in vitro biological potential as therapeutic agents for endodontics. Journal of Pharmacognosy and Phytotherapy 10: 34-44. DOI: https://doi.org/10.5897/jpp2017.0475 [ Links ]

Marquina M, Maldonado N, Garduño-Ramírez ML, Aranda E, Villareal ML, Navarro V, Bye R, Delgado G, Álvarez L. 2001. Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens. Phytochemistry 56: 93-97. DOI: https://doi.org/10.1016/S0031-9422(00)00283-1 [ Links ]

Meragelman KM, Espinar LA, Sosa VE, Uriburu ML, De la Fuente JR. 1996. Terpenoid constituents of Viguiera tucumanensis. Phytochemistry 41: 499-502. DOI: https://doi.org/10.1016/S0031-9422(95)00584-6 [ Links ]

Mizokami SS, Hohmann MSN, Staurengo-Ferrari L, Carvalho TT, Zarpelon AC, Possebon MI, de Sousa AR, Veneziani RCS, Arakawa NS, Casagrande R., Verri WA. 2016. Pimaradienoic acid inhibits carrageenan-induced inflammatory leukocyte recruitment and edema in mice: Inhibition of oxidative stress, nitric oxide and cytokine production. Plos One 11: e0149656. DOI: https://doi.org/10.1371/journal.pone.0149656 [ Links ]

Nicolete R, Arakawa NS, Rius C, Nomizo A, Jose PJ, Da Costa FB, Sanz MJ, Faccioli LH. 2009. Budlein A from Viguiera robusta inhibits leukocyte-endothelial cell interactions, adhesion molecule expression and inflammatory mediators release. Phytomedicine 16: 904-915. DOI: https://doi.org/10.1016/j.phymed.2009.04.002 [ Links ]

Nogueira MS, Da Costa FB, Brun R, Kaiser M, Schmidt TJ. 2016. Ent-pimarane and ent-kaurane diterpenes from Aldama discolor (Asteraceae) and their antiprotozoal activity. Molecules 21: 1237. DOI: https://doi.org/10.3390/molecules21091237 [ Links ]

Ortega A, Lara R, Martínez R, Díaz E. 1980. Sphaerocephalin, a germacranolide isolated from Viguiera sphaerocephala. Phytochemistry 19: 1545-1546. DOI: https://doi.org/10.1016/0031-9422(80)80217-2 [ Links ]

Porto TS, Furtado NAJC, Heleno VCG, Martins CHG, Da Costa FB, Severiano ME, Silva AN, Veneziani RCS, Ambrósio SR. 2009a. Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against Gram-positive bacteria. Fitoterapia 80: 432-436. DOI: https://doi.org/10.1016//j.fitote.2009.06.003 [ Links ]

Porto TS, Rangel R, Furtado NAJC, Carvalho TC, Martins CHG, Veneziani RCS, Da Costa FB, Vinholis AHC, Cunha WR, Heleno VCG, Ambrosio SR. 2009b. Pimarane-type diterpenes: Antimicrobial activity against oral pathogens. Molecules 14: 191-199. DOI: https://doi.org/10.3390/molecules14010191 [ Links ]

Possebon MI, Mizokami SS, Carvalho TT, Zarpelon AC, Hohmann MSN, Staurengo-Ferrari L, Ferraz CR, Hayashida TH, de Souza AR, Ambrosio SR, Arakawa NS, Casagrande R, Verri WA Jr. 2014. Pimaradienoic acid inhibits inflammatory pain: Inhibition of NF-κB activation and cytokine production and activation of the NO−Cyclic GMP−Protein kinase G−ATP-Sensitive potassium channel signaling pathway. Jounal of Natural Products 77: 2488-2496. DOI: https://doi.org/10.1021/np500563b [ Links ]

Rieseberg LH, Schilling EE. 1985. Floral flavonoids and ultraviolet patterns in Viguiera (Compositae). American Journal of Botany 72: 999-1004. DOI: https://doi.org/10.2307/2443442 [ Links ]

Rocha ACFS, Morais GO, da Silva AA, Kovatch PY, Ferreira DS, Esperandim VR, Pagotti MC, Magalhães LG, Heleno VCG. 2022. Natural Product Research 36: 875-884. Doi: https://doi.org/10.1080/14786419.2020.1837824 [ Links ]

Romo de Vivar A., Pérez-Castorena AL, Arciniegas A, Villaseñor JL. 2007. Secondary metabolites from Mexican species of the Tribe Senecioneae (Asteraceae). Journal of the Mexican Chemistry Society 51: 160-172. [ Links ]

Romo de Vivar A, Delgado G. 1985. Los metabolitos secundarios de Viguiera (Compositae, Heliantheae) química e implicaciones quimiotaxonómicas. Boletín de la Sociedad Chilena de Química 30: 79-100. [ Links ]

Romo de Vivar A, Bratoeff E, Ontiveros E, Lankin DC, Bhacca NS. 1980. Viguilenin, a germacranolide from Viguiera linearis. Phytochemistry 19: 1795-1797. DOI: https://doi.org/10.1016/S0031-9422(00)83815-7 [ Links ]

Romo de Vivar A, Delgado G, Guerrero C, Reséndiz J, Ortega A. 1978. Study of Viguieras. Structure of viguiepinin and correction of viguiestenin. Revista Latinoamericana de Química 9: 171-174. [ Links ]

Romo de Vivar A, Guerrero C, Díaz E, Bratoeff EA, Jiménez L. 1976. The germacranolides of Viguiera buddleiaeformis. Structures of budlein-A and -B. Phytochemistry 15: 525-527. DOI: https://doi.org/10.1016/S0031-9422(00)88963-3 [ Links ]

Schilling EE, Panero JL. 2011. A revised classification of subtribe Helianthinae (Asteraceae: Heliantheae) II. Derived lineages. Botanical Journal of the Linnean Society, 167: 311-331. DOI: https://doi.org/10.1111/j.1095-8339.2011.01172.x [ Links ]

Schilling EE, Panero JL. 2002. A revised classification of subtribe Helianthinae (Asteraceae: Heliantheae) I. Basal lineages. Botanical Journal of the Linnean Society, 140: 65-76. DOI: https://doi.org/10.1046/j.1095-8339.2002.00079.x [ Links ]

Schilling EE. 1989. External flavonoid aglycones of Viguiera series Viguiera (Asteraceae Heliantheae). Biochemical Systematics and Ecology 17: 535-538. DOI: https://doi.org/10.1016/0305-1978(89)90096-3 [ Links ]

Schilling EE, Panero JL. 1988a. Flavonoids of Viguiera Series Brevifoliae. Biochemical Systematics and Ecology 16: 417-418. DOI: https://doi.org/10.1016/0305-1978(88)90036-1. [ Links ]

Schilling EE, Panero JL, Bhom BA. 1988b. Flavonoids of Viguiera Section Maculatae. Biochemical Systematics and Ecology 16: 413-416. DOI: https://doi.org/10.1016/0305-1978(88)90035-X [ Links ]

Schmeda-Hirschmann G, Zdero C, Baruah RN, Bohlmann. F. 1985. Further sesquiterpene lactones from Calea and Viguiera species. Phytochemistry 24: 2019-2022. DOI: https://doi.org/10.1016/S0031-9422(00)83114-3 [ Links ]

Schorr K, García-Piñeres AJ, Siedle B, Merfort I, Da Costa, FB. 2002. Guaianolides from Viguiera gardneri inhibit the transcription factor NF-κB. Phytochemistry 60: 733-740. DOI: https://doi.org/10.1016/S0031-9422(02)00128-0 [ Links ]

Seaman F, Bohlmann F, Zdero C Mabry TJ. 1990. Diterpenes of Flowering Plants: Compositae (Asteraceae). New York: Springer. ISBN-13: 978-1461279457 [ Links ]

Seaman F. 1982. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Botanical Review 48: 121-595. DOI: https://doi.org/10.1007/BF02919190 [ Links ]

Seigler D, Price PW. 1976. Secondary compounds in plants: primary functions. American Naturalist 110: 101-105. DOI: https://doi.org/10.1086/283050 [ Links ]

Selener MG, Elso O, Grosso C, Borgo J, Clavin M, Malchiodi EL, Cazorla SI, Redko F, Sülsen VP. 2019. Anti-trypanosoma cruzi activity of extracts from Argentinean Asteraceae species. Iranian Journal of Pharmaceutical Research 18: 1854-1861. DOI: http://dx.doi.org/10.22037/ijpr.2019.14491.12430 [ Links ]

Shimokoriyama M, Geissman TA. 1960. Anthochlor pigments. XIV. The pigments of Viguiera multiflora (Nutt.) and Baeria chrysostoma (F. and M.). Journal of Organic Chemistry 25: 1956-1959. DOI: https://doi.org/10.1021/jo01081a0033 [ Links ]

Shulha O, Zidorn Ch. 2019. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update. Phytochemistry 163: 149-177. https://doi.org/10.1016/j.phytochem.2019.02.001 [ Links ]

Soares ACF, Matos PM, Da Silva KF, Gomes Martins CHG, Sola Veneziani RC, Ambrosio SR, Dias, HJ, Dos Santos RA, Gomes Heleno VC. 2019a. Antimicrobial potential of natural and semi-synthetic ent-kaurane and ent-pimarane diterpenes against clinically isolated gram-positive multidrug-resistant bacteria. Journal of Brazilian Chemical Society 30: 333-341. DOI: https://doi.org/10.21577/0103-5053.20180182 [ Links ]

Soares ACF , Matos MP, Dias HJ, De Paula Aguiar G, Dos Santos ES, Gomes Martins CH, Sola Veneziani RC, Ambrosio SR, Gomes Heleno VC, 2019b. Variability of the antibacterial potential among analogue diterpenes against Gram-positive bacteria: considerations on the structure-activity relationship. Canadian Journal of Chemistry 97: 568-575. DOI: http://dx.doi.org/10.1139/cjc-2018-0369 [ Links ]

Spring O, Zipper R, Conrad J, Vogler B, Klaiber I, Da Costa FB. 2003. Sesquiterpene lactones from glandular trichomes of Viguiera radula (Heliantheae; Asteraceae). Phytochemistry 62: 1185-1189. DOI: https://doi.org/10.1016/S0031-9422(02)00747-1 [ Links ]

Spring O, Zipper R, Reeb S, Vogler B, Da Costa FB. 2001. Sesquiterpene lactones and a myoinositol from glandular trichomes of Viguiera quinqueremis. Phytochemistry 57: 267-272. DOI: https://doi.org/10.1016/S0031-9422(01)00019-X [ Links ]

Spring O, Zipper R, Klaver I, Reeb S, Vogler B. 2000. Sesquiterpene lactones from Viguiera eriophora and Viguiera puruana (Heliantheae, Asteraceae). Phytochemistry 55: 255-261. DOI: https://doi.org/10.1016/S0031-9422(00)00276-4 [ Links ]

Spring O, Buschmann H. 1996. A chemotaxonomic survey of sesquiterpene lactones in the Helianthinae (Compositae). In: Hind DJN, Beentje HJ, eds. Compositae: Systematics. Proceedings of the International Compositae Conference, Kew , Vol. 1. 1994. United Kingdom: The Royal Botanic Gardens, Kew. pp. 307-316. [ Links ]

Sumner LW, Mendes P, Dixon RA. 2003. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836. DOI: https://doi.org/10.1016/S0031-9422(02)00708-1 [ Links ]

Tamayo-Castillo G, Jakupovic J, Bohlmann F, King RM. Boldt PE. 1990. Germacranolides and diterpenes from Viguiera species. Revista Latinoamericana de Química 21: 67-69. [ Links ]

Tamayo-Castillo G, Jakupovic J, Bohlmann F, Castro V. 1989. Heliangolides from Viguiera sylvatica. Phytochemistry 28: 2737-2740. DOI: https://doi.org/10.1016/S0031-9422(00)98079-8 [ Links ]

Taylor PG, Dupuy Loo OA, Bonilla JA, Murillo R. 2008. Anticancer activities of two sesquiterpene lactones, millerenolide and thieleanin isolated from Viguiera sylvatica and Decachaeta thieleana. Fitoterapia 79: 428-432. DOI: https://doi.org/10.1159/000074240 [ Links ]

Tirapelli CR, Ambrosio SR, Da Costa FB, De Oliveira AM. 2004. Evidence for the mechanisms underlying the effects of pimaradienoic acid isolated from the roots of Viguiera arenaria on rat aorta. Pharmacology 70: 31-38. DOI: https://doi.org/10.1159/000074240 [ Links ]

Tirapelli CR, Ambrosio SR, Da Costa FB., De Oliveira AM. 2002. Inhibitory action of kaurenoic acid from Viguiera robusta (Asteraceae) on phenylephrine-induced rat carotid contraction. Fitoterapia 73: 56-62. DOI: https://doi.org/10.1016/S0367-326X(01)00365-3 [ Links ]

Torres-Gurrola G, García-Rodríguez YM, Lara-Chávez MBN, Guillen-Andrade H, Delgado G, Espinosa-García FJ. 2016. Análisis de la riqueza de metabolitos secundarios de Persea spp., bajo algunas hipótesis que proponen explicar la función de la diversidad fitoquímica, Capítulo 5, pp. 195-292. In: Anaya AL, Espinosa-García FJ, Reigosa Roger MJ (Coord.). Ecología Química y Alelopatía: Avances y Perspectivas. Instituto de Ecología, Universidad Nacional Autónoma de México-Plaza y Valdés, México, D.F. ISBN: 978-607-402-912-3. [ Links ]

Turner BL. 2015. Recension of Viguiera (sensu stricto) (Asteracese: Heliantheae) of Mexico. Phytologia 97: 16-24. [ Links ]

Uriburu ML, Gil RR, Sosa VE, De la Fuente JR. 2008. Caffeoyl esters of threonic acid and its lactone from Viguiera pazensis. The Journal of Argentinian Chemical Society 96: 55-61. [ Links ]

Vaccarini CE, Palacios SM, Meragelman KM, Sosa VE. 2002. Antifeedant activity of metabolites from Viguiera tucumanensis. Natural Products Letters 16: 323-327. DOI: https://doi.org/10.1080/10575630290030711 [ Links ]

Vaccarini CE, Palacios SM, Meragelman KM, Sosa VE. 1999. Phytogrowth-inhibitory activities of a clerodane from Viguiera tucumanensis. Phytochemistry 50: 227-230. DOI: https://doi.org/10.1016/S0031-9422(98)00518-4 [ Links ]

Valério DAR, Cunha TM, Arakawa NS, Lemos HP, Da Costa FB, Parada CA, Ferreira SH, Cunha FQ, Verri WA. 2007. Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: Inhibition of cytokine production-dependent mechanism. European Journal of Pharmacology 562: 155-163. DOI: https://doi.org/10.1016/j.ejphar.2007.01.029 [ Links ]

Vasconcelos Faleiro DP, Casoti R, Chagas-Paula DA, Padilla-González GF, Barbosa de Olveira R, Da Costa FB. 2021. Metabolomic studies of Aldama spp and other Asteraceae species to identify dual inhibitors of cyclooxygenase-1 and 5-lipoxygenase. Phytochemistry letters 44: 210-215. Doi: https://doi.org/10.1016j.phytol.2021.06.028 [ Links ]

Villaseñor JL. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI: http://dx.doi.org/10.1016/j.rmb.2016.06.017 [ Links ]

Wollenweber E, Dörr M, Roitman JN, Schilling E. 1995. External flavonoids of three species of Viguiera section Hypargyrea (Asteraceae). Zeitschrift fuer Naturforschung C 50: 588-590. DOI: https://doi.org/10.1515/znc-1995-7-819 [ Links ]

Zamilpa A, Tortoriello J, Navarro V, Delgado G, Álvarez L. 2002. Antispasmodic and antimicrobial diterpenic acids from Viguiera hypargyrea roots. Planta medica 68: 281-283. DOI: https://doi.org/10.1055/s-2002-23146 [ Links ]

Zarpelon AC, Fattori V, Souto FO, Pinto LG, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Turato WM, Cunha TM, da Costa FB, Cunha FQ, Casagrande R, Arakawa NS, Verri Jr WA. 2017. The sesquiterpene lactone, budlein A, inhibits antigen-induced arthritis in mice: Role of NF-κB and Cytokines. Inflammation 40: 2020-2032. DOI: https://doi.org/10.1007/s10753-017-0642-1 [ Links ]

Zdero C, Bohlmann F. 1990. Systematics and Evolution within the Compositeae, seen from the eyes of a chemist. Plant Systematics Evolution 171: 1-14. DOI: https://doi.org/10.1007/BF00940593 [ Links ]

Zidorn Ch. 2008. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69: 2270-2296. DOI: https://doi.org/10.1016/j.phytochem.2008.06.013. [ Links ]

Appendix 1.

Secondary metabolites isolated from species of genus Aldama, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Aldama anchusifolia (DC.) E.E. Schill. & Panero (=Viguiera anchusifolia (DC.) Baker) 121, 138 206-208, 212, 215, 216, 221, 228, 229, 241 SAM: Arg, Bol Filartiga et al. 2017a, 2017b
Aldama angustifolia (Hook. & Arn.) Schill. & Panero (=Viguiera angustifolia (Hook. & Arn.) S.F. Blake) 52 MEX Guerrero et al. 1976
Aldama arenaria (Baker) Schill. & Panero (=Viguiera arenaria Baker) 52 125-132, 137 206-208, 211, 215, 216, 224, 229-231, 237, 239, 241, 243 SAM: Braz Ambrosio et al. 2004, Carvalho et al. 2011, De Oliveira et al. 2016
Aldama aspillioides (Baker) Schill. & Panero (=Viguiera aspillioides Baker) 151, 159, 161-163, 166, 171, 173, 187 229 SAM: Braz Da Costa et al. 1996a, b
Aldama bishopii (H. Rob.) E.E. Schill. & Panero (=Viguiera bishopii H. Rob.) 120-122, 139, 146, 151, 171, 177, 187, 191 206, 229, 233, 243, 300, 301 SAM: Bol Bohlmann et al. 1981
Aldama bracteata (Gardner) E.E. Schill. & Panero (=Aldama quinqueremis (S.F. Blake) E.E. Schill. & Panero; =Viguiera quinqueremis S.F. Blake) 5, 6, 48-50, 52, 55, 69, 70, 74, 77-79, 87, 88 322 SAM: Braz Spring et al. 2001
Aldama buddlejiformis (DC) E.E. Schill. & Panero (=Viguiera buddlejiformis (DC.) Hemsl.) 3, 52 148, 171, 173, 175 250, 286, 295 MEX Romo de Vivar et al. 1976, Lüttman-Skibinski & Willuhn 1988
Aldama canescens (B.L. Rob.) E.E. Schill. & Panero (=Viguiera potosina S.F. Blake 111 148, 150, 169 170 MEX Gao et al. 1985c
Aldama cordifolia (A. Gray) E.E. Schill. & Panero (=Viguiera cordifolia A. Gray) 139, 151 206, 207 SW USA to MEX Bohlmann et al. 1977
Aldama discolor (Baker) E.E. Schill. & Panero (=Viguiera discolor Baker) 52 134-136, 183 206-208, 212, 214, 216, 218, 229, 232, 238, 242 SAM: Braz Nogueira et al. 2016, Bombo et al. 2017
Aldama excelsa (Willd.) E.E. Schill. & Panero (=Viguiera excelsa (Willd.) Benth. & Hook. f.) 52 151, 172, 177-179, 184 234, 313 MEX Delgado et al. 1984c
Aldama filifolia (Sch.Bip. ex Baker) E.E. Schill. & Panero (=Viguiera filifolia Sch. Bip. ex Baker) 206, 208, 211, 229, 243 SAM: Braz, Para Bombo et al. 2012
Aldama gardneri (Baker) E.E. Schill. & Panero (=Viguiera gardneri Baker) 16, 101-105 259, 285, 310 SAM: Braz Schorr et al. 2002
Aldama gilliesii (Hook & Arn.) E.E. Schill. & Panero (=Viguiera gilliesii (Hook. & Arn.) Hieron. 20, 21, 70, 72, 73 113 SAM: Arg Guerreiro 1986
Aldama ghiesbreghtii (Hemsl) E.E. Schill. & Panero (=Viguiera hemsleyana S.F. Blake) 55 MEX Delgado et al. 1982
Aldama helianthoides (Rich.) E.E. Schill. & Panero (=Viguiera procumbens (Pers.) S.F. Blake) 3, 35, 36, 38, 51, 55, 69, 70, 93 114, 115, 125, 151, 177, 187 227, 238, 242, 243, 246-248, 252, 308, 309 SAM: Peru to Arg Bohlmann et al. 1981, Schmeda-Hirschmann et al. 1985, Tamayo-Castillo et al. 1990
Aldama hypochlora (S.F. Blake) E.E. Schill. & Panero (=Viguiera hypochlora (S.F. Blake) S.F. Blake 52 MEX Delgado et al. 1982
Aldama incana (Pers.) E.E. Schill. & Panero (=Viguiera incana (Pers.) S.F. Blake 151 246, 247 SAM. Ecu to Bol Bohlmann et al. 1981
Aldama lanceolata (Britton) E.E. Schill. & Panero (=Viguiera lanceolata Britton) 55 151, 187 246- 248 SAM: Peru to Bol Bohlmann et al. 1981, 1984a
Aldama latibracteata (Hemsl.) E.E. Schill. & Panero (=Viguiera latibracteata (Hemsl.) S.F. Blake 64, 91 148, 149, 151, 152, 166, 169, 172, 174, 175 178, 181, 184 234, 313, 314 MEX Delgado et al. 1986, Gao et al. 1987
Aldama linearifolia (Chodat.) E.E. Schill. & Panero (=Viguiera linearifolia Chodat) 151 206-208, 211-215, 217, 218, 222, 228, 229, 231, 241, 243 SAM: Braz to Para Tamayo-Castillo et al. 1990, Bombo et al. 2012
Aldama linearis (Cav.) E.E. Schill. & Panero (=Viguiera linearis (Cav.) Sch. Bip. ex Hemsl.) 1, 3, 24, 26, 37, 38, 52, 54, 56, 57, 65, 68, 94, 111 151, 168, 177, 178 229, 234 MEX Romo de Vivar et al. 1980, Delgado et al. 1985, Schmeda-Hirschmann et al. 1985
Aldama mollis (Griseb.) E.E. Schill. & Panero (=Viguiera mollis Griseb.) 58, 76 251, 252 SAM: Bol to NW Arg De la Fuente et al. 1994
Aldama nervosa (Gardner) E.E. Schill. & Panero (=Viguiera nervosa Gardner) 139, 150, 151 246 SAM: Braz Tamayo-Castillo et al. 1990
Aldama nudibasilaris (S.F. Blake) E.E. Schill & Panero (=Viguiera nudibasilaris S.F. Blake) 138, 165 206, 211, 216, 218, 221, 229 SAM: Braz Filartiga et al. 2017a, 2017b
Aldama oblongifolia (Gardner) E.E. Schill. & Panero (=Viguiera oblongifolia Gardner) 57, 59 223, 225, 235, 246 SAM: Braz Bohlmann et al. 1984a, Tamayo-Castillo et al. 1990
Aldama pilosa (Baker) E.E. Schill. & Panero (=Viguiera pilosa Baker) 121 206-208, 215. 216, 229, 243 SAM: Braz Filartiga et al. 2017a, 2017b
Aldama robusta (Gardner) E.E. Schill. & Panero (=Aldama radula (Baker) E.E. Schill & Panero; =Viguiera radula Baker; =Viguiera robusta Gardner) 3, 10-14, 24, 26, 40, 41, 51,52, 54, 56, 57, 62, 64, 77, 95, 110 118, 121, 128, 148, 151, 159, 161, 162, 166, 175, 177, 206-209, 211, 214, 215, 218, 219, 227, 229, 232, 241, 242, 306, 307, 310, 312 SAM: Braz Da Costa et al. 1996a, 2001, Arakawa et al. 2008, Tirapelli et al. 2002, De Nicolete et al. 2009, De Oliveira et al. 2016, Spring et al. 2003
Aldama squarrosa (Sch. Bip.) E.E. Schill. & Panero (=Viguiera schultzii S.F. Blake) 52 MEX Delgado et al. 1982
Aldama trichophylla (Dusén) Magenta (=Viguiera trichophylla Dusén) 139, 149, 151 206-208, 211- 215, 217, 219, 229, 243 SAM: Braz Tamayo-Castillo et al. 1990, Bombo et al. 2012
Aldama tucumanensis (Hook. & Arn.) E.E. Schill. & Panero (=Viguiera tucumanensis (Hook. & Arn.) Griseb. 1, 24, 35, 39, 69, 70, 77, 100, 107 123, 124, 151, 176, 179 236, 306 SAM: Bol to Arg Meragelman et al. 1996, Vaccarini et al. 1999, 2002

Appendix 2.

Secondary metabolites isolated from species of genus Bahiopsis, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Bahiopsis chenopodina (Greene) E.E. Schill. & Panero (=Viguiera chenopodina Greene) 259, 260, 271, 281-283 MEX Schilling 1989
Bahiopsis deltoidea (A. Gray) E.E. Schill. & Panero (=Viguiera deltoidea (A. Gray) A. Gray) 15, 69, 70 112 258-260, 271, 281-283 MEX Gao & Mabry, 1985a, 1986a, Schilling 1989
Bahiopsis laciniata (A. Gray) E.E. Schill. & Panero (=Viguiera laciniata A. Gray) 24, 42-47, 108 112 255-258, 263, 268-270, 287, 294 MEX Harborne et al. 1978, Gao et al. 1989, Schilling, 1989
Bahiopsis lanata Kellogg (=Viguiera lanata (Kellogg) A. Gray) 259, 260, 281, 283 MEX Schilling 1989
Bahiopsis microphylla (Vasey & Rose) E.E. Schill. & Panero (=Viguiera microphylla Vasey & Rose) 19, 80, 86 258-260, 271, 282 MEX Gershenzon et al. 1984, Schilling 1989
Bahiopsis parishii (Greene) E.E. Schill. & Panero (=Viguiera parishii Greene) 282, 291 SW USA to MEX Schilling 1989
Bahiopsis reticulata (S. Watson) E.E. Schill. & Panero (=Viguiera reticulata S. Watson) 258, 279, 284 USA Schilling 1989
Bahiopsis subincisa (Benth.) E.E. Schill. & Panero (=Viguiera subincisa Benth.) 259, 260, 264 MEX Schilling 1989
Bahiopsis tomentosa (A. Gray) E.E. Schill. & Panero (=Viguiera tomentosa A. Gray) 258, 271, 282 MEX Schilling 1989
Bahiopsis triangularis (M.E. Jones) E.E. Schill. & Panero (=Viguiera triangularis M.E. Jones) 258-260, 271, 281-283, 291 MEX Schilling 1989

Appendix 3.

Secondary metabolites isolated from species of genus Calanticaria, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Calanticaria bicolor (Blake) E.E. Schill. & Panero (=Viguiera bicolor S.F. Blake) 252, 267, 277, 278, 286, 287, 289, 290, 294, 295 MEX Schilling & Panero 1988a
Calanticaria brevifolia (Greemn.) E.E. Schill. & Panero (=Viguiera brevifolia Greenm.) 267, 277, 278, 286, 287, 289, 290, 294, 295 MEX Schilling & Panero 1988a
Calanticaria greggii (A. Gray) E.E. Schill. & Panero (=Viguiera greggii (A. Gray) S.F. Blake) 66, 83, 89 151, 152 252, 253, 258-260, 265, 267, 272, 274, 282, 286, 287, 289, 294, 295 MEX Liu et al. 1984, Delgado et al. 1986, Schilling & Panero 1988a

Appendix 4.

Secondary metabolites isolated from species of genus Dendroviguiera, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Dendroviguiera adenophylla (S.F. Blake) E.E. Schill. & Panero (=Viguiera adenophylla S.F. Blake) 258-260, 267, 273, 274, 286, 287, 290, 294, 295 MEX Schilling et al. 1988b
Dendroviguiera eriophora (Greenm.) E.E. Schill. & Panero (=Viguiera eriophora Greenm.; =Viguiera maculata (Brandegee) S.F. Blake) 22-24, 52, 54, 60, 61, 67, 82 148, 151, 182 258-260, 267, 273-276, 286, 287, 290, 292, 294, 295 MEX Delgado et al, 1982, 1984a Schilling et al. 1988b, Spring et al. 2000
Dendroviguiera insignis (Miranda) E.E. Schill. & Panero (=Viguiera insignis Miranda) 139-142, 144, 145, 151, 177, 185 258, 259, 267, 273-275, 286, 287, 290, 292, 294, 295 MEX Delgado et al. 1983, 1984e, Schilling et al. 1988b
Dendroviguiera neocronquistii (B.L. Turner) E.E. Schill. & Panero (=Viguiera neocronquistii B.L. Turner) 286, 287, 294, 295 MEX Schilling et al. 1988b
Dendroviguiera oaxacana (Greenm.) E.E. Schill. & Panero (=Viguiera oaxacana S.F. Blake) 151, 177 286, 287, 294, 295, 313 MEX Delgado et al. 1984c, Schilling et al. 1988b
Dendroviguiera pringlei (Fernald) E.E. Schill. & Panero (=Viguiera trachyphylla S.F. Blake) 258-260, 267, 274, 286, 287, 290, 292, 294, 295 MEX Schilling et al., 1988b
Dendroviguiera puruana (Paray) E.E. Schill. & Panero (=Viguiera puruana Paray) 18, 22, 24, 26-34, 109 258, 259, 274 MEX Schilling et al. 1988b, Spring et al. 2000
Dendroviguiera quinqueradiata (Cav.) E.E. Schill. & Panero (=Viguiera quinqueradiata (Cav.) A. Gray ex S. Watson 24, 26, 52 149, 152 258-260, 273, 286, 287, 293, 294, 313 MEX Delgado et al. 1984b, Schilling et al. 1988b
Dendroviguiera sphaerocephala (DC.) E.E. Schill. & Panero (=Viguiera sphaerocephala (DC.) Hemsl. 8, 22 258-260, 267, 274-276, 286, 287, 290, 292, 294, 295 MEX Ortega et al. 1980, Schilling et al. 1988b
Dendroviguiera splendens (Panero & E.E. Schill.) E.E. Schill. & Panero (=Viguiera splendens Panero & E.E. Schill.) 286-289, 294, 295 MEX Schilling et al. 1988b
Dendroviguiera sylvatica (Klatt.) E.E. Schill. & Panero (=Viguiera sylvatica Klatt) 24, 52, 57, 63, 75, 81, 84, 90, 92, 96-99 116, 117, 151 320, 321 CAM: CRica to Panamá Tamayo-Castillo et al. 1989, Taylor et al. 2008

Appendix 5.

Secondary metabolites isolated from species of genus Gonzalezia, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Gonzalezia decurrens (A. Gray) E.E. Schill. & Panero (=Viguiera decurrens (A. Gray) A. Gray) 151, 152 193-198, 258, 262, 299, 315 MEX Wollenweber et al. 1995, Marquina et al. 2001
Gonzalezia hypargyrea (Greenm.) E.E. Schill. & Panero (=Viguiera hypargyrea Greenm.) 1-4, 7, 9, 17 139, 151, 158, 177, 184 193-195, 197-200, 234, 239, 258-260, 313, 314 MEX Álvarez et al. 2003, 1985, Wollenweber et al. 1995, Zamilpa et al. 2002, Arellano-Martínez & Delgado 2010
Gonzalezia rosei (Greenm.) E.E. Schill. & Panero (=Viguiera rosei Greenm.) 252, 253, 259, 261, 286 MEX Wollenweber et al. 1995

Appendix 6.

Secondary metabolites isolated from species of genus Helianthus, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Helianthus porteri (A. Gray) Pruski (=Viguiera porteri S.F. Blake) 148, 149, 151, 155, 157, 164, 175 313, 314, 316-318 SE USA Herz et al. 1985, Tamayo-Castillo et al. 1990

Apendix 7.

Secondary metabolites isolated from species of genus Heliomeris, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Heliomeris annua (M.E. Jones) Cockerell (=Heliomeris longifolia Cockerell var. annua (M.E. Jones) W.F. Yates; = Viguiera annua (M.E. Jones) S.F. Blake) 244, 245 SW USA to MEX Guillet et al. 1977
Heliomeris multiflora Nutt. (=Viguiera multiflora (Nutt.) S.F. Blake) 267, 286, 287, 294, 295, 302, 305 USA to MEX Shimokoriyama et al. 1960

Appendix 8.

Secondary metabolites isolated from species of genus Hymenostephium, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Hymenostephium cordatum (Hook. & Arn.) S.F. Blake (=Viguiera cordata (Hook. & Arn.) D’Arcy) 52, 68, 85, 91 151 227 MEX to SAM: Colombia Bohlmann et al. 1984b
Hymenostephium superaxillare S.F. Blake (=Viguiera superaxillaris (S.F. Blake) B.L. Turner 139, 151, 177 205, 226 MEX Domínguez et al. 1988

Appendix 9.

Secondary metabolites isolated from species of genus Sidneya, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Sidneya pinnatilobata (Sch. Bip.) E.E. Schill. & Panero var. megaphylla (Butterw. ex B.L. Turner) E.E. Schill. & Panero (=Viguiera pinnatilobata (Sch. Bip.) S.F. Blake var. megaphylla Butterw. ex B.L. Turner) 22, 23, 54 133 MEX Romo de Vivar et al. 1978, Guerrero et al. 1986
Sidneya tenuifolia (A. Gray) E.E. Schill. & Panero (=Viguiera stenoloba S.F. Blake) 25, 38 119, 139, 149, 151-153, 156, 176, 177, 180 239 USA to CAM: El Salvador Cuevas et al. 1972, Guerrero et al. 1973, 1986, Delgado & Romo de Vivar 1984d, Tamayo-Castillo et al. 1990
Sidneya tenuifolia (A. Gray) E.E. Schill. & Panero var. chihuahuensis B.L. Turner (=Viguiera stenoloba S.F. Blake var. chihuahuensis Butterw.) 149-152, 192 244, 249 Bohlmann et al. 1977

Appendix 10.

Secondary metabolites isolated from species of genus Viguiera, arranged according to the new taxonomic circumscriptions and their geographical distribution. SAM= South America, MEX= Mexico, USA= United States of America. Numbers indicate the structure of the chemical constituent (see formulae below), considering the type of main constituents (SLs, diterpenes and others). 

Accepted name SLs Diterpenes Others Distribution References
Viguiera dentata (Cav.) Spreng. (=Viguiera grammatoglossa DC.) 71 121, 139, 143, 144, 148, 151, 152, 167, 171, 177, 187 201-204, 206-209, 211, 214, 215, 217, 219, 220-222, 225, 227, 229, 237, 240, 241, 316 SW USA to CA: Honduras Bohlmann et al. 1977, 1981, Gao et al. 1985b, 1986b, Canales et al. 2008, Cuevas-Glory et al. 2008, 2012
Viguiera pazensis Rusby 25, 53, 58, 106 139, 144, 149, 152-154, 186, 190 246, 248, 254, 266, 296-299, 302-304, 311, 319 SAM: Perú to Chile Bohlmann et al. 1981, 1984b, Uriburo et al. 2008

Received: November 24, 2021; Accepted: May 23, 2022; Published: November 15, 2022

*Authors of correspondence: vrios@ib.unam.mx; delgado@unam.mx

Associate editor: Arturo de Nova Vázquez

Author contributions:

AA, research design, data collection, writing of original draft; ALPC, review and editing; ARV, research design, review; LGG, data collection; FJEG, conceptualization, data analysis, review; JLV, conceptualization, data analysis, writing, review; GD, coordination, data analysis, writing, review. All authors have made substantial intellectual contributions for the data analyses and have approved the final version to be published

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License