SciELO - Scientific Electronic Library Online

 
vol.99 número3Panbiogeografía de los matorrales de la Región Xerofítica MexicanaLas plantas vasculares endémicas de la Sierra Madre del Sur, México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Botanical Sciences

versão On-line ISSN 2007-4476versão impressa ISSN 2007-4298

Bot. sci vol.99 no.3 México Jul./Set. 2021  Epub 25-Jun-2021

https://doi.org/10.17129/botsci.2802 

Systematic

Fossil record of Celastraceae: evaluation and potential use in molecular calibrations

Registro fósil de Celastraceae: evaluación y uso potencial en calibraciones moleculares

Ana Lilia Hernández-Damián1  * 
http://orcid.org/0000-0001-7827-9847

Sandra Luz Gómez-Acevedo2 
http://orcid.org/0000-0002-6473-2505

Sergio Rafael Silvestre Cevallos-Ferriz3 
http://orcid.org/0000-0002-8205-8526

1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, México.

2Unidad de Morfología y Función. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.

3Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, CDMX, México.


Abstract

Background:

Celastraceae is a morphologically heterogeneous family. For this reason, the inclusion of some taxa within this group is controversial. Recently this problem has become significant since its fossil record is recognized as an important source of information for evolutionary studies, especially those using molecular clocks which require a robust, reliable fossil record.

Questions:

What are the most reliable fossil records of Celastraceae? What morphological characters are used to assign fossils in the family?

Study site and dates:

Compilation of records contained in paleontological databases, and paleobotanical literature, covering publications from 1869 to 2018.

Methods:

Published information on the Celastraceae fossil record was compiled and analyzed using the most recent classification system and specialized literature on the family.

Results:

A total of 168 fossil records were examined, of which nine are proposed for use as molecular clock calibration points. Each specimen has a description based on a character set used for its identification, a photograph and/or illustration, their geological age is well supported, their geographic origin is known, and the specimens are in accredited home institutions with publicly accessible collections.

Conclusions:

The identification and establishment of relationships between fossil and extant taxa have important limitations that depend on the critical interpretation of morphology in a phylogenetic context. Therefore, it is essential to incorporate only those morphological studies in Celastraceae that help clarify its fossil record.

Keywords: fossil plants; morphology; reliable record

Resumen

Antecedentes:

Celastraceae es una familia morfológicamente heterogénea. Por esta razón, la inclusión de algunos taxones actuales dentro de este grupo es controversial. Recientemente, este problema se ha acentuado en su registro fósil, considerado como una fuente importante de información para estudios evolutivos, como es el caso del reloj molecular, que requiere de un registro fósil confiable y robusto.

Preguntas:

¿Cuáles son los registros fósiles más confiables de Celastraceae? ¿Cuáles caracteres morfológicos son usados para asignar fósiles en la familia?

Sitio de estudio y fechas:

Recopilación de registros contenidos en bases de datos paleontológicas y literatura paleobotánica, abarcando publicaciones de 1869 hasta el 2018.

Métodos:

Se compiló y analizó la información publicada del registro fósil de Celastraceae usando el sistema de clasificación más reciente de la familia, así como literatura especializada del grupo.

Resultados:

De un total de 168 registros fósiles examinados, sólo nueve son considerados como puntos de calibración confiables. Cada uno de los especímenes incluye una descripción del órgano de la planta a través del cual se identificó, una fotografía y/o ilustración, edad geológica y provincia geográfica, así como su acreditación en una institución de resguardo con colecciones públicas accesibles.

Conclusiones:

La identificación y el establecimiento de las relaciones entre los taxones fósiles y actuales son limitantes importantes, y ambas dependen fundamentalmente de la interpretación de los caracteres morfológicos en un contexto filogenético. Por esta razón, es fundamental realizar estudios morfológicos profundos en Celastraceae, estos podrían permitir el esclarecimiento de su registro fósil.

Palabras clave: morfología; plantas fósiles; registros confiables

Celastraceae sensu lato is a subcosmopolitan family composed of ca. 98 genera and 1,211 species. The most recent classification of Celastraceae proposed by Simmons (2004) is strongly supported by molecular data (e.g., Simmons & Hedin 1999, Simmons et al. 2001a, b, Islam et al. 2006, Zhang & Simmons 2006, Coughenour et al. 2010, 2011). It recognizes three monophyletic subfamilies: Hippocrateoideae, Salacioideae and Stackhousioideae, each one derived independently from Celastroideae, which is paraphyletic.

Traditionally, Celastraceae has been recognized as a morphologically variable group where the inclusion of some taxa is controversial. This problem has been particularly highlighted in its fossil record (Estrada-Ruiz et al. 2012, Bacon et al. 2016, Zhu et al. 2020). Since fossils rarely are preserved as complete plants or in organic connection their identification and classification is restricted and doubtful in comparison to extant plants (Nixon 1996, Crepet 2008). Despite its inherent limitations, the fossil record has become highly relevant in supporting or refuting evolutionary scenarios including the dating of clades (Donoghue & Benton 2007, Parham et al. 2012, Magallón et al. 2015). Therefore, the availability of a reliable fossil record is crucial since errors in phylogenetic analyses have resulted from incorrect identifications and/or incorrect age assignments to fossil material (Parham et al. 2012).

According to the most recent revision of Celastraceae by Bacon et al. (2016), the family has an extensive fossil record. However, many of the fossils do not show diagnostic characters or their descriptions lack enough detail to consider them as reliable reports. Nevertheless, several newly published records are relevant for the history of the family (e.g., Chambers & Poinar 2016, Franco 2018).

Therefore, our objective is to build on previous work by providing a review of the Celastraceae fossil record in order to establish reliable reports, which can potentially be used to calibrate molecular clocks.

Material and Methods

Revision of literature. We evaluated a total of 168 reports of fossils with affinity to Celastraceae or referred to the family, covering publication dates from 1869 to 2018. The reports of this revision were published in specialized literature and include the original descriptions (see Supplementary Material, Table S1).

The consistency of the identification of the Celastraceae fossils was determined considering the criteria proposed by Martínez-Millán (2010), which are mentioned in order of decreasing reliability: (1) inclusion of the fossil in a phylogenetic analysis, (2) discussion of key characters to place fossils in the group, (3) list of characters to include the fossil in a certain group, (4) complete description and diagnosis of the fossil, (5) photographs of the specimen, (6) drawings, diagrams and reconstructions of the fossils, (7) specimen information, home institution, collection number, and holotype designation, (8) collection information; locality, formation, and age. Manchester et al. (2015) indicated that the system proposed by Martínez-Millán (2010) is questionable since criteria (2) and (3) include similarities without indicating if they are unique and/or constitute a synapomorphy. For this reason, we included a discussion of these points. Furthermore, the selected fossils correspond to the oldest ones within the linage (Donoghue & Benton 2007, Parham et al. 2012), which is based on the Global Stratigraphic Chart 2020 (Cohen et al. 2020). Finally, the phylogenetic position of each fossil was established according to its comparison to extant taxa, recognizing that their similarity suggests a relationship between them (Wiens 2003, Sauquet et al. 2012).

Results

A total of 168 records were found, of which 139 are vegetative, with 120 leaves and 19 woods. They have a temporal range that extends from the Cenomanian (Cretaceous) to the Pliocene (Neogene). Likewise, the record of reproductive structures that includes pollen (19), fruits and seeds (6), as well as inflorescences and flowers (4) have been recognized from the Maastrichtian (Cretaceous) to the Pliocene (Neogene) (Figure 1A, B).

Figure 1 A. Abundance of leaves, woods, fruit-seeds, pollen, inflorescences, and flowers fossils assigned to Celastraceae by geologic time. B. Map showing the distribution of fossilized organs of plants identified as a member of Celastraceae. 

In the next paragraphs, we discuss fossil taxa identified through vegetative and reproductive organs. Each one of them has a brief introduction and a discussion of the character or character set that supports their inclusion in Celastraceae. The results are summarized in Table 1 with nine fossil record recognized here as reliable (see Supplementary Material, Table S2). Figure 2 displays the phylogenetic positions of each one based on the topology reported by Coughenour et al. (2010).

Table 1 Fossils records proposed as molecular clock calibration points arranged in alphabetic order. *Absolute age is available. 

Fossil name Plant part Geological
Age (Ma)
System Series Provenance Reference Relationship-Compared to
Baasia armendarisense wood 73.5* Upper Cretaceous McRae Formation, USA Estrada-Ruiz et al. 2012 Cassine
Cathispermum pulchrum fruit and seeds 33.9 Eocene London Clay, England Reid & Chandler 1933 Catha edulis
Celastrus comparabilis leaves 33.9 middle Eocene Kushtaka Formation, USA Wolfe 1977 Celastrus
Elaeodendroxylon sp. wood 33.9 Eocene Braunkohlen-Tagebau, Germany Gottwald 1992 Elaeodendron
Hippocrateaceaedi-tes sp. pollen 33.9 Eocene Laki Basin, India Venkatachala & Kar 1969 Loseneriella
Lobocyclas anomala flower 23-30* middle Oligocene-lower Miocene Dominican Republic Chambers & Poinar 2016 Prionostemma, Hippocratea
Maytenoxylon perforatum wood 5.3 Miocene Ituzaingó Formation, Argentina Franco 2018 Maytenus
Salacia lombardii flower 23-15* middle-early Miocene Simojovel de Allende, Mexico Hernández-Damián et al. 2018 Salacia
Wuyunanthus hexapetalus flower 66.0-61.6* lower Paleocene Wuyun, China Wang et al. 2001 Euonymus, Celastrus

Figure 2 Assignment of Celastraceae fossils as molecular clock calibration points based on topology of Coughenour et al. (2010). 1. Baasia armendarisense (Estrada-Ruiz et al. 2012), 2. Cathispermum pulchrum (Reid & Chandler 1933), 3. Celastrus comparabilis (Wolfe 1977), 4. Elaeodendroxylon sp. (Gottwald 1992), 5. Hippocrateaceaedites sp. (Venkatachala & Kar 1969), 6. Lobocyclas anomala (Chambers & Poinar 2016), 7. Maytenoxylon perforatum (Franco 2018), 8. Salacia lombardii (Hernández-Damián et al. 2018), 9. Wuyunanthus hexapetalus (Wang et al. 2001). 

Leaves. Leaves are the most abundant fossil record of Celastraceae (Bacon et al. 2016). These have been related to extant members of Celastroideae (Simmons 2004) and they are widespread in strata of Cretaceous and Paleogene (Figure 1A). The fossil leaves of Celastraceae represent artificial forms because they had been described under strictly morphological criteria (Dilcher 1974). Celastrophyllum (Göppert 1854) and Celastrinites Saporta (Saporta 1865) represent extinct genera of Celastraceae that had been compared with Celastrus. They are mainly distributed in Europe (e.g., Vachrameev 1952, Samylina 1968, 1984) and high latitudes in America (e.g., Lee & Knowlton 1917, Knowlton 1919, 1922, Berry 1925). Doweld (2017) noted that there are two more descriptions associated with Celastrophyllum: Celastrophyllum Ettingsh. ex Saporta & Marion, and Celastrophyllum Ettingsh. ex Schimp.

Upchurch & Dilcher (1990) suggested that the type species of the genus should be Celastrophyllum attenuatum Göpp. It was described as a leaf with an entire margin and distinctive petiole, causing the expansion of the Celastrophyllum concept to include entire and toothed leaves, an apparently logical aspect since Celastrus has extreme foliar variation (Upchurch & Dilcher 1990, Mu et al. 2012, Liang et al. 2016). These include for example, the shape of the lamina ranging from elliptical to oblong or broadly ovate to orbicular; apex acute to obtuse or round and base rounded to acute (Bacon et al. 2016); however, morphologies overlap at intra and interspecific levels (Mu et al. 2012).

Recently, Herendeen (2020) suggested that Celastrophyllum obtusum Heer. is the species that validates the name Celastrophyllum, but its typification is necessary. Unfortunately, none of the three reports of Celastrophyllum are valid. Several of these reports are probably part of other families or genera since they have no diagnostic characteristics of the group (Doweld 2017, Herendeen 2020). Other members of Celastraceae have been reported from the Paleogene, including Maytenus (Berry 1938, Rüffle & Litke 2008) and Euonymus (Berry 1924, Brown 1937). Despite this, these records are also unresolved, because they are morphologically indistinguishable (Mu et al. 2012).

A diagnosis based on the foliar architecture of Celastraceae was proposed by Hickey & Wolfe (1975). Based on this, the leaves of Celastraceae sensu stricto typically have a theoid tooth, which has a median vein. This vein runs toward the apex and expands on the tooth, so that the apex is covered by an opaque deciduous seta. Moreover, brochidodromous secondary veins as well as percurrent tertiary veins are common in the group (Hickey & Wolfe 1975). Subsequently, Upchurch & Dilcher (1990) indicated that all these characters are enough evidence to establish the identification of fossil leaves to Celastrus. More recently, Liang et al. (2016) indicated that the secondary venation of Celastrus varies from camptodromous to craspedodromus and semicraspedodromus types. Fossil leaves of the middle Eocene from the Green River Flora, USA, described by Hollick (1936) and reexamined by Wolfe (1977) are considered reliable records of Celastrus (Upchurch & Dilcher 1990).

Woods. Celastraceae often has woods with small, numerous and solitary vessels with simple or scalariform perforation plates; alternate bordered intervascular pits; and parenchyma variable in type and quantity, that sometimes can have scattered or even absent (Metcalfe & Chalk 1983). Additionally, the presence or absence of scalariform perforation plates is an informative character for the generic delimitation within the family (Archer & van Wyk 1993).

Family has few reports of fossil woods with Cretaceous age, and most of them are from Africa, Egypt, Ethiopia, and North America (Figure 1). As well as fossil leaves, the fossil record of woods have been related to extant genera of Celastroideae. For example, Celastrinoxylon (Schenk) Kräusel was identified by Schenk (1888) and reexamined by Kräusel (1939) (e.g., Kräusel 1939, Schӧnfeld 1955, Poole 2000, Kamal El-Din et al. 2006). It was recognized as a fossil wood with simple perforation plates, small vessels and rays composed entirely of square or erect cells, nevertheless, it has doubtful records. Such is the case of a fossil wood of Celastrinoxylon from India (Ramanujam 1960), which was reexamined and reassigned to Ailanthoxylon (Simaroubaceae) by Awasthi (1975). Additionally, Kamal El-Din (2003) described Celastrinoxylon as a wood with scalariform perforation plates from the Cretaceous of Egypt, but it contrasts to the diagnosis proposed by Kräusel (1939).

According to Poole & Wilkinson (1999)Celastrinoxylon has more resemblance to Catha because both have small vessels, simple perforation plate, tiny intervascular pits with an opposite arrangement, thin-walled fibers, and uniseriate rays with erect cells. This combination of characters differs from Celastrus, which has vessel dimorphism, broad rays, and other forms of the parenchyma commonly present in scandents and lianas (Carlquist 1988).

Other fossil taxa that have a simple perforation plate are Lophopetalumoxylon (Mehrotra et al. 1983) and Maytenoxylon (Franco 2018). The first one is characterized by the presence of diffuse porosity, solitary vessels, bordered and alternate intervascular pits, thin apotracheal bands of parenchyma, uniseriate homocellular rays, non-septate thick-walled fibers, and intercellular canals. Lophopetalumoxylon was compared closely to Lophopetalum, which commonly has multiple radial vessels (Mehrotra et al. 1983). Wheeler et al. (2017) suggested that Lophopetalumoxylon probably belongs to Sapindales since its features occur in other families.

On the other hand, Maytenoxylon is a wood with diffuse porosity, mainly solitary vessels, intervascular pits that vary from alternate to opposite, bands of fiber resembling parenchyma that alternate with ordinary fibers, both non-septate and septate ones, diffuse and scanty parenchyma, homocellular rays with some perforated cells (Franco 2018). The identification of Maytenoxylon is supported by the presence of perforated ray cells, which are restricted to Maytenus (Joffily et al. 2007).

Scalariform perforation plates have been rarely reported in the family (Metcalfe & Chalk 1983, Archer & van Wyk 1993), such is the case of Elaeodendroxylon (Gottwald 1992). It has been closely compared to extant Elaeondrendron because both have growth rings and numerous isolated or multiple radial vessels. Baasia (Estrada-Ruiz et al. 2012) is another taxon with a scalariform perforation plate. It has been considered as the most reliable record of Celastraceae until now, but its relationship to an extant taxon has not been established (Bacon et al. 2016).

Pollen. Celastraceae has spheroidal oblate or prolate radially symmetrical, isopolar, tricolporate pollen grains, and endoaperturate monads that are generally elongated and sometimes oblong (Bogotá & Sánchez 2001). Typically, three types of pollen grains have been recognized in the family: (1) polyads in groups of four tetrads, (2) simple tetrads and (3) monads (Erdtman 1952, Campo & Hallé 1959, Hallé 1960, Hou 1969, Lobreau-Callen 1977). All types have been recognized in the fossil record.

According to Ding Hou (1969) polyads and/or tetrads are common in Hippocrateoideae, Salacioideae, and Lophopetalum. For example, Salard-Cheboldaeff (1974) described Polyadopollenites macroreticulatus, P. microreticulatus and P. micropoliada from the Miocene of Cameroon as polyads of sixteen pollen grains, each one of them lacking an annulus and cross-linked exine, characters that are comparable to Hippocratea volubilis and H. myriantha. However, Polyadopollenites is a morphogenus assigned to circular and oval polyads, variable symmetry accounts for the aggrupation of sixteen monads, but it has been related with Fabaceae (Barreda & Caccavari 1992).

Furthermore, tetrads identified as Triporotetradites campylostemonoides, T. hoekenii, T. letouzeyi, and T. scabratus (Hoeken-Klinkenberg 1964, Salard-Cheboldaeff 1974, 1978, 1979) have been related to Campylostemon; however, similar tetrads are common in other families (Copenhaver 2005). Retitricoporites is another tetrad described by Salard-Cheboldaeff (1974) based on its tricolporate pollen grains with apparent endexin, whose morphology is close to Loseneriella.

Finally, Muller (1981) reported tricolporate monads recognized as Microtropis and Peritassa from the Oligocene of France (Lobreau-Callen & Caratini 1973). Additionally, Ramanujam (1966) assigned tricolporate pollen grains with elongate ectoapertures to Hippocrateaceaedites, it was latter recognized from the Eocene of India by Venkatachala & Kar (1969).

Fruits and seeds. Celastraceae exhibits a substantial morphological variation in fruits and seeds. Traditionally these have been used to subdivide the family taxonomically (e.g.,Loesener 1942, Takhtajan 1997, Cronquist 1981). According to Simmons et al. (2001a) the fruits can be capsules (with great variability in forms and types of dehiscence), schizocarpal mericarps (Stackhousiaceae), berries (e.g., Cassine, Maurocenia), drupes (e.g., Acanthothamnus, Elaeodendron), walnuts (e.g., Mortonia, Pleurostylia) or samaras (e.g., Rzedowskia, Tripterygium). Seeds are 1-12 in number, smooth or occasionally furrowed, albuminous or exalbuminous, sometimes winged, and the wing may be membranous or basal, exarillate or aril basal to completely enveloping the seed, and this can be membranous, fleshy, or rarely mucilaginous (Ma et al. 2008).

Reproductive organs have diagnostic characteristics, for this reason they have a high degree of reliability in taxonomic work and are highly useful for plant identification (Tiffney 1990, Wiens 2004). Berry (1930) described a loculicidal capsule with three rough leaflets as Celastrocarpus from the Eocene of Tennessee. As well as, Euonymus was tentatively assigned to a dehiscent capsule with four round lobes and separated by a sinuate sulcus (Berry 1930). Likewise, Euonymus moskenbergensis a fruit with five lobes from the Miocene of Australia was reported by Ettingshausen (1869). Fruits with seeds from the early Eocene (52-49 Ma) were reported by Reid & Chandler (1933) in the London Clay Formation (United Kingdom). These reproductive structures were described as small, subovoid and lobate fruits, containing seeds with a winged extension. In the same work, Canthicarpum celastroides was recognized as a loculicidal capsule with three leaflets and seeds whose testa has three layers, the outermost composed of large polygonal cells, and a fourth layer interpreted as a possible aril.

Tripterygium kabutoiwanum from the Pliocene of Japan (Ozaki 1991) was described as composed of winged fruits and leaves closely comparable with Tripterygium regelii. We were not able to obtain the original publication; however, other fossil records of the genus have been reexamined and assigned to Craigia (Malvaceae) (Kvaček et al. 2005, Manchester et al. 2009).

Flowers. The flowers are generally bisexual, with a conspicuous nectarial disk, five or fewer stamens immersed in the ovary (Stevens 2001). However, this general pattern is modified within the lineage, because the number of parts of the floral whorls, or merism, has been changed in some members (Matthews & Endress 2005). For example, flowers with a pentamerous perianth and a trimerous androecium are common in Hippocrateoideae and Salacioideae. It has been considered as a distinctive pattern in Celastraceae (Ronse De Craene 2010, 2016). Even more, modifications in the number of stamens have been reported in Salacioideae. Flowers with five (e.g., Cheiloclinium anomalum) or two (e.g., Salacia annettae and S. lebrunii) (Hou 1969, Hallé 1986, 1990, Coughenour et al. 2010) stamens are well known, and each type had an independent origin (Coughenour et al. 2010).

There are few records of fossil flowers of Celastraceae, among them the oldest one is Celastrinanthium hauchecornei, a cymose inflorescence preserved in Baltic amber (Conwentz 1886). According to Conwentz (1886) it includes bisexual flowers with a differentiated perianth with four sepals and petals, a disk, and an ovary with four locules. Other flower reports include Wuyunanthus hexapetalus from the Paleocene of China (Wang et al. 2001), Lobocyclas anomala (Hippocrateoideae) preserved in Miocene amber from the Dominican Republic (Chambers & Poinar 2016), and Salacia lombardii (Salacioideae) from Miocene of Simojovel de Allende, Mexico (Hernández-Damián et al. 2018). All these records have the general structural pattern of the family as they are bisexual flowers with a biseriate perianth and a conspicuous disk (Stevens 2001, Simmons 2004).

Discussion

Fossil record of Celastraceae has been recognized in the early scientific literature. It has abundant and diverse fossil evidence, but only a few records have enough information to be recognized as credible records. They are relevant in comparative analysis as dated phylogenies since these provide important information for the inference of the origin and diversification of a lineage. Different origin ages of the crown group Celastraceae have been estimated as 71.6 Ma (Magallón & Castillo 2009), (89) 76-71(60) Ma (Bell et al. 2010) and (109.85) 92.61 (76.98) (Magallón et al. 2015), but none of these analyses had as their main objective the family Celastraceae.

The most recently dated phylogeny of Celastraceae was proposed by Bacon et al. (2016). This work is relevant because it includes a revision of the fossil record of Celastraceae. But does not include newly reported fossil taxa that can change the phylogenetic interpretations when considering such taxa as Maytenoxylon perforatum (Franco 2018), Lobocyclas anomala (Chambers & Poinar 2016), and Salacia lombardii (Hernández-Damián et al. 2018).

In this revision, we recognize nine fossil records of Celastraceae as potential calibration points as each one represents the oldest age recognized for a lineage to date (Table 1). Most of these fossils have an age established through correlation rather than direct dating. Therefore, it is necessary to consider that these could change in the future. These nine fossil records have most of the criteria established by Martínez-Millán (2010) (see Supplementary Material, Table S2), but their acceptance for calibrating points needs to be carefully evaluated. The first criterion of Martínez-Millán (2010) refers to the inclusion of the fossils in a phylogenetic analysis, but none of the fossil records of Celastraceae have been subject to this type of study since the use of morphological data has been limited in a phylogenetic context (Simmons & Hedin 1999, Simmons et al. 2001a, b).

On the other hand, the second and third criteria refer to the character or character set that supports the identification of the fossil as a member of Celastraceae. This information requires an interpretation within a phylogenetic context (Manchester et al. 2015), because the morphological synapomorphies are considered critical data to establish the relationship between fossil and extant taxa (Parham et al. 2012). Unfortunately, few morphological characters have been identified as synapomorphies in the lineage (e.g., Simmons & Hedin 1999), and most of them are restricted to reproductive structures. For example, Hippocrateoideae is easily recognized by the synapomorphies of transversely, flattened, deeply lobed capsules and seeds with membranous basal wings or narrow stipes, while Salacioideae is identified by berries with mucilaginous pulp (Coughenour et al. 2010, 2011).

Due to the above, the phylogenetic position of the nine fossil taxa is supported through morphological comparison with extant taxa (Figure 2). Morphological similarity recognized in fossil and extant taxa suggests a relationship between them, but this situation may change drastically as more in-depth morphological studies are integrated into a phylogenetic context. Such is the case of Cathispermum pulchrum Reid & Chandler (1933) a five-lobed fruit with winged seeds that have been interpreted as a potential aril. However, presence of an aril is difficult to discern among extant plants and even more difficult in the fossil material. The definition of an aril is complicated to establish (Simmons & Hedin 1999, Simmons 2004, Zhang et al. 2012, 2014). Nevertheless, it typically has been defined for the family as a structure that derives from the funiculus during development (Loesener 1942, Corner 1976). Thus, C. pulchrum, while morphologically like Celastraceae, needs a closer morphological comparison of the aril as discussed in the next paragraph.

According to Simmons (2004), winged seeds have been interpreted as homologues to arilated seeds, as in the case of Catha edulis, which was compared to Cathispermum pulchrum. However, Zhang et al. (2012, 2014) recognized that the tissue surrounding the seed in Catha edulis derives from the micropyle, not from the funiculus. For this reason, it is necessary to consider that the interpretation of C. pulchrum could change as new morphological data or interpretations become available. The biased, incomplete nature of the fossil record is a limitation for its interpretation. In the same way, the lack of detailed morphological studies of extant taxa limits the identification of the fossil record. In Celastraceae, the study of the development of the winged seed is essential to interpret the evolution of this structure (Zhang et al. 2014), as well as the fossil record.

In general, the fossils of reproductive structures are considered reliable records, such is the case of fossil flowers of Celastraceae. All of them are bisexual flowers, with biserial perianth and nectarial disk. Nevertheless, Wuyunanthus has been considered a doubtful record due to its merosity, or the number of parts of the perianth (6 vs. 4-5, Friis et al. 2011). The meristic pattern within the group has modifications that have been little explored (Ronse De Craene 2016).

Identification of fossil flowers could be supported with higher reliability through the recognizing of potential morphological synapomorphies, these include a bulge in the dorsal part of the ovary with an apical septum, and the presence of calcium oxalate druses in floral tissue (Matthews & Endress 2005), but the type of fossilization is a limiting factor for what anatomical characters get preserved. Flowers preserved in amber such as Lobocyclas anomala and Salacia lombardii are exceptional records because they are in three dimensions with relatively little distortion. Access to anatomical characters of plant inclusions in amber has been documented through non-destructive techniques such as microtomography (e.g., Moreau et al. 2016). Further observations on these fossil flowers will help to add support to our suggestion of good calibration point fossils.

Pollen is the most abundant part of the plant fossil record. It is generally identified with relatively low taxonomic resolution (Sauquet et al. 2012). According to Hallé (1960) the characters of pollen have a higher value at the infrageneric level, but these require the integration of information from other organs of the plant for a reliable taxonomic determination.

Tetrads and polyads have been considered as diagnostic characters of Hippocrateoideae, but these are not exclusive to the group. For example, Triporotetradites sp. was related to Campylostemon, but this record has been reexamined and related to other taxa. Such is the case of Triporotetradites letouzeyi from the lower of Miocene of Cameroon (Salard-Cheboldaeff 1978), which is comparable to the pollen of species of Gardenia (Muller 1981). Additionally, unlike in extant plants, it is often difficult to determine in fossil pollen taxa their range of morphological variation (Cleal & Thomas 2010), as in the case of Lophopetalum an extant genus that has both polyads and tetrads (Hou 1969).

Macrofossils are abundant in the fossil record of Celastraceae (Bacon et al. 2016). Specifically, the leaves have been rejected in taxonomic work because they are plastic organs that respond to environmental pressures (Hickey 1973, Hickey & Wolfe 1975). Furthermore, leaf dimorphism is a factor that complicates the taxonomic determination in Celastraceae (Simmons 2004). For instance, Elaeodendron orientale has lanceolate leaves with an entire margin, but when it is a mature plant, its leaves are elliptical with a serrated margin (Simmons 2004). In addition, the lack of a precise description and diagnosis, such is the case of Celastrophyllum, has generated a highly doubtful abundant record in North America and Europe (Doweld 2017, Herendeen 2020). Despite of these limitations, the presence of Celastrus based on fossil leaves can be considered a reliable record based on consistent characters, such as the theoid tooth and camptodromous, craspedodromus or semicraspedodromus venation (Liang et al. 2016).

Woods are recognized as the second organ most abundant in the fossil record of Celastraceae. Their structure and cellular organization under fossilization preserves well providing detailed anatomical data for their identification (Poole 2000). A combination of characters that includes small to medium-sized vessels, apotracheal bands of parenchyma, fine homogeneous rays, and non-septate fibers strongly indicate its affinities with the family Celastraceae (Mehrotra et al. 1983). Moreover, the scalariform perforation plate has been considered diagnostic for the group; however, the phylogenetic context of anatomical data has changed the interpretation of some records. For example, Perrottetioxylon mahurzari (Chitaley & Patel 1971) and Gondwanoxylon (Saksena 1962) were closely compared to Perrottetia, a genus traditionally considered an atypical member of Celastraceae. Its inclusion within Celastraceae was supported by anatomical characters, such as the presence of scalariform perforation plate, paratracheal parenchyma and absence of fiber tracheids (Metcalfe & Chalk 1983, Simmons & Hedin 1999). However, Zhang & Simmons (2006) determined the exclusion of Perrottetia from this family through a phylogenetic analysis using molecular characters.

Although the fossil record of Celastraceae is scarce as point calibration according to criteria proposed by Martínez-Millán (2010), their geographic distribution suggest the dispersion between North America, Europe and Asia during the early Paleogene to the Pliocene (Wolfe 1975, Tiffney & Manchester 2001, Graham 2018). This hypothesis is supported by Magallón et al. (2019) that suggested that the diversification of the lineage was as a relevant event for angiosperms during the Paleogene ca. (68.40) 51.1 (42.83) Ma.

The selection of reliable fossils as calibration points is critical for reconstructing robust phylogenies. Unfortunately, the inherent fragmentary nature of fossil plants limits access to molecular characters and other sources of information, with morphology and anatomy being the most frequent source of information available for study (Wiens 2004). Consequently, an in-depth study of the morphological characters in a phylogenetic context in Celastraceae is essential (e.g., Simmons & Hedin 1999), since only through this will it be possible to generate a better interpretation and evaluation of their fossil record. It is also necessary to increase the value of fossils through the reconstruction of complete plants, as this work will significantly complement the understanding of plants in terms of variability and distribution of characters over time. After detailed evaluation and discussion, we propose nine fossil reports of Celastraceae as reliable and well supported to be used as calibration points. However, further studies need to be conducted towards phylogeny of the family.

Supplementary material

Supplemental data for this article can be accessed here: https://doi.org/10.17129/botsci.2802

Supplementary material

Acknowledgments

The authors recognize the guidance and comments of Drs. S. A. Quiroz Barroso, H. Flores-Olvera, S. Vásquez-Santana, H. Ochoterena and M. Martínez-Gordillo, Universidad Nacional Autónoma de México (UNAM). English grammar was improved with assistance of Dr. D. Erwin, University of California, Berkeley. We thank Dr. T. Terrazas chief editor and Dra. Silvia Aguilar Rodríguez associated editor of Botanical Sciences, Dr. M.P. Simmons, University of Colorado, Boulder, and two anonymous reviewers for several suggestions that improved the manuscript. This work was supported by the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), PAPIIT-UNAM (project IN 210416) and the Consejo Nacional de Ciencia y Tecnología (CONACYT) projects 221129 and CF61501 and a scholarship (325158) for postgraduate studies to ALHD.

Literature cited

Archer RIL, van Wyk AE. 1993. Wood structure and generic status of some southern African Cassinoideae (Celastraceae). International Association of Wood Anatomists Journal 14: 373-389. DOI: https://doi.org/10.1163/22941932-90000592 [ Links ]

Awasthi N. 1975. Revision of some dicotyledonous woods from the Tertiary of South India. The Palaeobotanist 22: 186-191. [ Links ]

Bacon CD, Simmons MP, Archer RH, Zhao LC, Andriantiana J. 2016. Biogeography of the Malagasy Celastraceae: Multiple independent origins followed by widespread dispersal of genera from Madagascar. Molecular Phylogenetics and Evolution 94: 365-382. DOI: https://doi.org/10.1016/j.ympev.2015.09.013 [ Links ]

Barreda VD, Caccavari M. 1992. Mimosoideae (Leguminosae) occurrences in the Early Miocene of Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 94: 243-252. DOI: https://doi.org/10.1016/0031-0182(92)90121-K [ Links ]

Bell CD, Soltis DE, Soltis, PS. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97: 1296-1303. DOI: https://doi.org/10.3732/ajb.0900346 [ Links ]

Berry EW. 1924.The Middle and Upper Eocene floras of south eastern America. United States Geological Survey Professional Paper 92: 1-206. DOI: https://doi.org/10.3133/pp92 [ Links ]

Berry EW. 1925. The flora of the Ripley Formation. United States Geological Survey Professional Paper 129: 199-226. DOI: https://doi.org/10.3133/pp136 [ Links ]

Berry EW. 1930. Revision of the lower Eocene Wilcox flora of the southeastern States, with descriptions of new species, chiefly from Tennessee and Kentucky. United States Geological Survey Professional Paper 156: 1-189. DOI: https://doi.org/10.3133/pp156 [ Links ]

Berry EW. 1938. Tertiary Flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1-149. DOI: https://doi.org/10.1130/SPE12 [ Links ]

Bogotá ARG, Sánchez LR. 2001. Caracterización palinológica de la familia Celastraceae para Colombia. Caldasia 23: 269-280. [ Links ]

Brown RW. 1937. Additions to some fossil floras of the western United States. United States Geological Survey Professional Paper 186: 163-206. DOI: https://doi.org/10.3133/pp186J [ Links ]

Campo M, Hallé Nv. 1959. Lees grains de pollen des Hippocratéacées d’Afrique de l`Ouest. Pollen et Spores 1: 191-192. [ Links ]

Carlquist S. 1988. Comparative Wood Anatomy Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Germany, Berlin: Springer Series in Wood Science. ISBN: 978-3-662-21714-6. [ Links ]

Chambers KL, Poinar Jr GO. 2016. Lobocyclas anomala, a new genus and species of Celastraceae subfamily Hippocrateoideae in Dominican amber. Journal of the Botanical Research Institute of Texas 10: 137-140. [ Links ]

Chitaley SD, Patel MZ. 1971. A fossil dicotyledonous stem from the Deccan Intertrappean cherts of Mohgaon Kalan, India. Journal of Biological Sciences (Bombay) 14: 50-57. [ Links ]

Cleal CJ, Thomas BA. 2010. Botanical nomenclature and plant fossils. Taxon 59: 261-268. [ Links ]

Cohen KM, Finney SC, Gibbard PL, Fan JX. 2020. The ICS International Chronostratigraphic Chart. Episodes 36: 199-204. [ Links ]

Copenhaver GP. 2005. A compendium of plant species producing pollen tetrads. Journal of the North Carolina Academy of Science 121: 17-35. [ Links ]

Conwentz H. 1886. Die Angiospermen des Bernsteins. In: Göppert HR, Menge A, eds. Die Flora des Bernsteins und ihre Beziehungen zur Flora der Tertiärformation und der Gegenwart 2. Danzig: Engelmann, pp. 1-140. [ Links ]

Corner EJH. 1976. The Seeds of Dicotyledons. United Kingdom, London: Cambridge University Press. ISBN: 0521116058 [ Links ]

Coughenour JM, Simmons MP, Lombardi JA, Cappa JJ. 2010. Phylogeny of Celastraceae subfamily Salacioideae and tribe Lophopetaleae inferred from morphological characters and nuclear and plastid genes. Systematic Botany 35: 358-366. DOI: https://doi.org/10.1600/036364410791638289 [ Links ]

Coughenour JM, Simmons MP, Lombardi JA, Yakobson K, Archer RH. 2011. Phylogeny of Celastraceae subfamily Hippocrateoideae inferred from morphological characters and nuclear and plastid genes. Molecular Phylogenetics and Evolution 59: 320-330. DOI: https://doi.org/10.1016/j.ympev.2011.02.017 [ Links ]

Crepet WL. 2008. The Fossil record of angiosperms: requiem or renaissance? Annals of the Missouri Botanical Garden 95: 3-33. DOI: https://doi.org/10.3417/2007065 [ Links ]

Cronquist A. 1981. An Integrated System of Classification of Flowering Plants. USA, New York: Columbia University Press. ISBN: 0-231-03880-1. [ Links ]

Dilcher DL. 1974. Approaches to the identification of angiosperm leaf remains. The Botanical Review 40: 1-157. DOI: https://doi.org/10.1007/BF02860067 [ Links ]

Donoghue PCJ, Benton MJ. 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology & Evolution 22: 424-431. DOI: https://doi.org/10.1016/j.tree.2007.05.005 [ Links ]

Doweld AB. 2017. (60-62) Requests for binding decisions on the descriptive statements associated with Celastrophyllum Göpp., Celastrophyllum Ettingsh. ex Saporta & Marion, and Celastrophyllum Ettingsh. ex Schimp. (fossil plants). Taxon 66: 1484-1485. DOI: https://doi.org/10.12705/666.28 [ Links ]

Erdtman G. 1952. Pollen Morphology and Plant Taxonomy-Angiosperms. Stockholm: Almqvist and Wiksell. [ Links ]

Estrada-Ruiz E, Upchurch GR, Wheeler EA, Mack GH. 2012. Late cretaceous angiosperm woods from the crevasse canyon and McRae formations, south-central New Mexico, USA: Part 1. International Journal of Plant Sciences 173: 412-428. DOI: https://doi.org/10.1086/664714 [ Links ]

Ettingshausen C. von. 1869. Beiträge zur Kenntniss der Tertiärflora Steiermarks. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 60: 17-100. [ Links ]

Ettingshausen C. von. 1883. Beiträge zur Kenntniss der Tertiärflora Australiens. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematische-naturwissenschaftliche. 47:1-48. [ Links ]

Ettingshausen C von. 1887. Beitraege zur Kenntnis der Fossilen Flora Neuseelands. Denkschriften der Akademie der Wissenschaften, Wien 53:143-194. [ Links ]

Franco MJ. 2018. Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina. Historical Biology 30: 646-660. DOI: https://doi.org/10.1080/08912963.2017.1313840 [ Links ]

Friis EM, Pedersen KR, Crane PR. 2011. Early Flowers and Angiosperm. United Kingdom, London: Cambridge University Press. ISBN: 9780521592833. [ Links ]

Göppert HR. 1854. Die Tertiärflora auf der Insel Java nach den Entdeckungen des Herrn Fr. Junghuhn beschrieben und erörtert in ihrem Verhältnisse zur Gesammtflora der Tertiärperiode. Germany: Nabu Press. ISBN: 978-1276014632. [ Links ]

Gottwald H. 1992. Hӧlzer aus marinen Sanden des oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica Abteilung B 225: 27-103. [ Links ]

Graham A. 2018. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution 56: 405-429. DOI: https://doi.org/10.1111/jse.12302 [ Links ]

Hallé N. 1960. Essai de clé pour la detérmination des pollens des Hippocratéacées Ouest-Africaines. Pollen et Spores 2: 5-12. [ Links ]

Hallé N. 1986. Celastraceae-Hippocrateoideae. In: Morat P, ed. Flore du Gabon (avec complements pour dáutres pays d´Afrique et Madagascar) (avec complements pour d'autres pays d'Afrique et Madagascar). France, Paris: Bulletin du Museum National d'Histoire Naturelle, Laboratoire de Phanérogamie. pp 1-287. [ Links ]

Hallé N. 1990. Celastracées (Hippocratéoidées). In: B. Satabie, Morat P, eds. Flore du Cameroun. France, Paris: Ministere de l'Enseignement Supérieur de l'Informatique et de la Recherche Scientifique Mesires, Yaoundé. pp. 3-243. [ Links ]

Herendeen P. 2020. Report of the Nomenclature Committee for Fossils: 13. TAXON 69: 398-402. DOI: https://doi.org/10.1002/tax.12218 [ Links ]

Hernández-Damián AL, Gómez-Acevedo SL, Cevallos-Ferriz SRS. 2018. Fossil flower of Salacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico. Review of Palaeobotany and Palynology 252: 1-9. DOI: https://doi.org/10.1016/j.revpalbo.2018.02.003 [ Links ]

Hickey LJ. 1973. Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60: 17-33. DOI: https://doi.org/10.1002/j.1537-2197.1973.tb10192.x [ Links ]

Hickey LJ, Wolfe JA. 1975. The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden 62: 538-589. DOI: https://doi.org/10.2307/2395267 [ Links ]

Hoeken-Klinkenberg PMJ van. 1964. A palynological investigation of some Upper- Cretaceous sediments in Nigeria. Pollen et Spores 6: 209-231. [ Links ]

Hou D. 1969. Pollen of Sarawakodendron (Celastraceae) and some related genera, with notes on techniques. Blumea 17:97-120. [ Links ]

Islam MB, Simmons MP, Archer RH. 2006. Phylogeny of the Elaeodendron group (Celastraceae) inferred from morphological characters and nuclear and plastid genes. Systematic Botany 31: 512-524. DOI: https://doi.org/10.1043/05-68.1 [ Links ]

Joffily A, Freire Domingues D, Cardoso Vieira R. 2007. Perforated ray cells in the root and stem of Maytenus (Celastroideae-Celastraceae). International Association of Wood Anatomists Journal 28: 311-314. DOI: https://doi.org/10.1163/22941932-90001642 [ Links ]

Kamal El-Din MM. 2003. Petrified wood from the Farafra Oasis, Egypt. International Association of Wood Anatomists Journal 24: 163-172. DOI: https://doi.org/10.1163/22941932-90000329 [ Links ]

Kamal El-Din MM, Wheeler EA, Bartlett JA. 2006. Cretaceous Woods from the Farafra Oasis, Egypt. International Association of Wood Anatomists Journal 27: 137-143. DOI: https://doi.org/10.1163/22941932-90000143 [ Links ]

Knowlton FH. 1919. A catalogue of the Mesozoic and Cenozoic plants of North America. United States Geological Survey Professional Paper 696: 1-815. DOI: https://doi.org/10.3133/b696 [ Links ]

Knowlton FH. 1922. The Laramie Flora of the Denver basin with a review of the Laramie problem. United States Geological Survey Professional Paper 130: 1-175. DOI: https://doi.org/10.3133/pp130 [ Links ]

Kräusel R. 1939. Der Bayerischen Akademie der Wissenschaften Ergebnisse der Forschungsreisen Prof. E. Stromers. Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung 47: 1-140. [ Links ]

Kvaček Z, Manchester SR, Akhmetiev MA. 2005. Review of the fossil history of Craigia (Malvaceae s.l.) in the northern hemisphere based on fruits and co-occurring foliage. In: Akhmetiev MA, Herman AB, eds. Modern Problems of Palaeofloristics, Palaeophytogeography, and Phytostratigraphy. Russia: Moscow: GEOS, Moscow. pp. 114-140. [ Links ]

Lee TW, Knowlton FH. 1917. Geology and paleontology of the Raton Mesa and other regions in Colorado and New Mexico. United States Geological Survey Professional Paper 101: 1-561. DOI: https://doi.org/10.3133/pp101 [ Links ]

Liang XQ, Ferguson DK, Jacques FMB, Su T, Wang L, Zhou ZK. 2016. A new Celastrus species from the middle Miocene of Yunnan, China and its palaeoclimatic and palaeobiogeographic implications. Review of Palaeobotany and Palynology 225: 43-52. DOI: https://doi.org/10.1016/j.revpalbo.2015.11.005 [ Links ]

Lobreau-Callen D. 1977. Les pollens des Celastrales (illustrations, commentaries). Mémoires et travaux de l'Institut de Montpellier 3: 1-116. [ Links ]

Lobreau-Callen D, Caratini C. 1973. Pollens de "Celastraceae" à l'Oligocène en Gironde (France). Bulletin de la Société Linnéenne de Bordeaux 3: 227-231. [ Links ]

Loesener T. 1942. Celastraceae. In: Engler A, Prantl K, eds. Die nattirlichen Pflanzenfamilien von A. Engler und K. Prantl, zweite stark vermehrte und verbes- serte Auflage herausgegeben von Adolf Engler. Germany, Berlin: Duncker & Humblot. pp. 87-197. [ Links ]

Ma M, Zhang Z, Quanru L, Peng H, Funston M. 2008. Celastraceae. In: Wu ZY, Raven PH Hong DY, eds. Flora of China. Vol. 11 (Oxalidaceae through Aceraceae). Beijing: Science Press, and St. Louis: Missouri Botanical Garden Press, pp. 439-492. ISBN: 1930723733 [ Links ]

Magallón S, Castillo A. 2009. Angiosperm diversification through time. American Journal of Botany 96: 349-365. DOI: https://doi.org/10.3732/ajb.0800060 [ Links ]

Magallón S, Gómez-Acevedo SL, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437-453. DOI: https://doi.org/10.1111/nph.13264 [ Links ]

Magallón S, Sánchez-Reyes LL, Gómez-Acevedo SL. 2019. Thirty clues to the exceptional diversification of flowering plants. Annals of Botany 123: 491-503. DOI: https://doi.org/10.1093/aob/mcy182 [ Links ]

Manchester SR, Chen ZD, Lu AM, Uemura K. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47: 1-42. DOI: https://doi.org/10.1111/j.1759-6831.2009.00001.x [ Links ]

Manchester SR, Grímsson F, Zetter R. 2015. Assessing the fossil record of Asterids in the context of our current phylogenetic framework. Annals of the Missouri Botanical Garden 100: 329-363. DOI: https://doi.org/10.3417/2014033 [ Links ]

Martínez-Millán M. 2010. Fossil record and age of the Asteridae. The Botanical Review 76: 83-135. DOI: https://doi.org/10.1007/s12229-010-9040-1 [ Links ]

Matthews ML, Endress PK. 2005. Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Botanical Journal of the Linnean Society 149: 129-194. DOI: https://doi.org/10.1111/j.1095-8339.2005.00445.x [ Links ]

Mehrotra RC, Prakash U, Bande MB. 1983. Fossil woods of Lophopetalum and Artocarpus from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh, India. The Palaeobotanist 32: 310-320. [ Links ]

Metcalfe C, Chalk L. 1983. Anatomy of the Dicotyledons, 2nd Ed. Vol. II. Wood structure and conclusion of the general introduction. United Kingdom, Oxford: Clarendon Press. ISBN: 978-0198545590. [ Links ]

Moreau JD, Néraudeau D, Perrichot V, Tafforeau P. 2016. 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Annals of Botany 119: 117-128. DOI: https://doi.org/10.1093/aob/mcw225 [ Links ]

Mu XY, Zhao LC, Zhang ZX. 2012. Phylogeny of Celastrus L. (Celastraceae) inferred from two nuclear and three plastid markers. Journal of Plant Research 125: 619-30. DOI: https://doi.org/10.1007/s10265-012-0484-8 [ Links ]

Muller J. 1981. Fossil pollen records of extant angiosperms. The Botanical Review 47: 1-141. DOI: https://doi.org/10.1007/BF02860537 [ Links ]

Nixon KC. 1996. Paleobotany in cladistics and cladistics in paleobotany: enlightenment and uncertainty. Review of Paleobotany and Palynology 90: 361-373. DOI: https://doi.org/10.1016/0034-6667(95)00092-5 [ Links ]

Ozaki K. 1991. Late Miocene and Pliocene floras in central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum. Special Issue. 1: 1-188. [ Links ]

Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis R B, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ. 2012. Best practices for justifying fossil calibrations. Systematic Biology 61: 346-359. DOI: https://doi.org/10.1093/sysbio/syr107 [ Links ]

Poole I. 2000. Fossil angiosperm wood: its role in the reconstruction of biodiversity and Palaeoenvironment. Botanical Journal of the Linnean Society 134: 361-381. DOI: https://doi.org/10.1006/bojl.2000.0377 [ Links ]

Poole I, Wilkinson HP. 1999. A celastraceous twig from the Eocene London Clay of south-east England. Botanical Journal of the Linnean Society 129: 165-176. DOI: https://doi.org/10.1006/bojl.1998.0215 [ Links ]

Ramanujam CGK. 1960. Silicified woods from the Tertiary rocks of South India. Palaeontographica Abteilung B 106: 99-140. [ Links ]

Ramanujam CGK. 1966. Palynology of the Miocene Lignite from south Arcot District, Madras, India. Pollen et Spores 8: 149- 203. [ Links ]

Reid EM, Chandler MEJ. 1933. The London Clay Flora. United Kingdom, London. The British Museum. [ Links ]

Ronse De Craene LP. 2010. Floral Diagrams an Aid to Understanding Flower Morphology and Evolution. United Kingdom, London: Cambridge University Press. ISBN: 9780521729451 [ Links ]

Ronse De Craene LP. 2016. Meristic changes in flowering plants: How flowers play with numbers. Flora 221: 22-37. DOI: https://doi.org/10.1016/j.flora.2015.08.005 [ Links ]

Rüffle L, Litke R. 2008. Ergänzungen zur Eozän-Flora des Geistales, Deutschland, und einigir weiterer Eozän-Fundstätten. Feddes Repertorium 111: 449-463. DOI: https://doi.org/10.1002/fedr.20001110711 [ Links ]

Saksena S. 1962. On two fossil dicotyledonous woods from south Rewa, Central India. The Palaeobotanist 11: 30-37. [ Links ]

Salard-Cheboldaeff M. 1974. Pollens Tertiaires du Cameroun rapporttés à la famille des Hippocratéacées. Pollen et Spores 16: 499-506. [ Links ]

Salard-Cheboldaeff M. 1978. Sur la palynoflore Maestrichtienne et Tertiaire du bassin sedimentaire littoral du Cameroun. Pollen et Spores 20: 215-260. [ Links ]

Salard-Cheboldaeff M. 1979. Palynologie maestrichtienne et tertiaire du cameroun. Etude qualitative et repartition verticale des principales especes. Review of Palaeobotany and Palynology 28: 365-388. DOI: https://doi.org/10.1016/0034-6667(79)90032-0 [ Links ]

Samylina VA. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit remains. Botanical Journal of the Linnean Society 61: 207-218. DOI: https://doi.org/10.1111/j.1095-8339.1968.tb00119.x [ Links ]

Samylina VA. 1984. Late Cretaceous flora of the Tap River (Northern part of the sea of Okhotsk area). Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshchestva 27: 236-247. [ Links ]

Saporta G de. 1865. Etudes sur la végétation du Sud-Est de la France à l' époque tertiaire. Annales des Sciences Naturelles Botanique 4: 5-264. [ Links ]

Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JMK, Udovicic F. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: The case of Nothofagus (Fagales). Systematic Biology 61: 289-313. DOI: https://doi.org/10.1093/sysbio/syr116 [ Links ]

Schenk A. 1888. Fossile Hölzer aus Ostasien und Aegypten. BihangKunglia Svenska Vetmkapsakadiens 14: 1-24. [ Links ]

Schӧnfeld E. 1955. Die Kieselhӧlzer aus der Braunkohle von Bӧhle bei Leipzig. Palaeontographica Abteilung B 99: 1-83. [ Links ]

Simmons MP. 2004. Celastraceae. In: Kubitzki K, ed. The Families and Genera of Vascular Plants. VI. Flowering Plants: Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. Berlin Germany: Springer, pp. 29-64. [ Links ]

Simmons MP, Clevinger CC, Savolainen V, Archer RH, Mathews S. Doyle JJ. 2001a. Phylogeny of the Celastraceae inferred from Phytochrome B gene sequence and morphology. American Journal of Botany 88: 313-325. DOI: https://doi.org/10.2307/2657021 [ Links ]

Simmons MP, Hedin JP. 1999. Relationships and morphological character change among genera of Celastraceae sensu lato (including Hippocrateaceae). Annals of the Missouri Botanical Garden 86: 723-757. DOI: https://doi.org/10.2307/2666152 [ Links ]

Simmons MP, Savolainen V, Clevinger CC, Archer RH, Davis JI. 2001b. Phylogeny of the Celastraceae inferred from 26S nuclear ribosomal DNA, phytochrome B, rbcl, atpB, and morphology. Molecular Phylogenetics and Evolution 19: 353-366. DOI: https://doi.org/10.1006/mpev.2001.0937 [ Links ]

Stevens PF. 2001. Onwards. Angiosperm Phylogeny WebsiteVersion. http://www.mobot.org/MOBOT/research/APweb/ (accessed July 14, 2017) [ Links ]

Takhtajan AL.1997. Diversity and Classification of Flowering Plants. USA, New York: Columbia University Press. ISBN: 9780231100984 [ Links ]

Tiffney BH. 1990. The collection and study of dispersed angiosperm fruits and seeds. Palaios 5: 499-519. DOI: http://dx.doi.org/10.2307/3514859 [ Links ]

Tiffney BH, Manchester SR. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Science 1626: S3-S17 DOI: https://doi.org/10.1086/323880 [ Links ]

Upchurch GR Jr, Dilcher DL. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. United States Geological Survey Professional Paper 1915: 1-55.DOI: https://doi.org/10.3133/b1915 [ Links ]

Vachrameev VA. 1952. Stratigrafiya i iskopaemaya flora melovyh otlozhenij zapadnogo Kazahstana. Regionalnaya stratigrafiya SSSR 1:1-340. [ Links ]

Venkatachala BS. Kar RK. 1969. Palynology of the Tertiary sediments of Kutch-1. Spores and pollen from Borehole No.14. The Palaeobotanist 17: 157-178. [ Links ]

Wang YF, Li Fls CS, Li ZY, DZ Fu. 2001. Wuyunanthus gen. nov., a flower of Celastraceae from the Palaeocene of north-east China. Botanical Journal of the Linnean Society 136: 323-327. DOI: https://doi.org/10.1111/j.1095-8339.2001.tb00576.x [ Links ]

Wheeler EA, Srivastava R, Manchester SR, Baas P. 2017. Surprisingly modern latest Cretaceous-earliest Paleocene woods of India. International Association of Wood Anatomists Journal 38: 456-542. DOI: https://doi.org/10.1163/22941932-20170174 [ Links ]

Wiens JJ. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528-538. DOI: https://doi.org/10.1080/10635150390218330 [ Links ]

Wiens JJ. 2004. The role of morphological data in phylogeny reconstruction. Systematic Biology 53: 653-61. DOI: https://doi.org/10.1080/10635150490472959 [ Links ]

Wolfe JA. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62: 264-279. DOI: https://doi.org/10.2307/2395198 [ Links ]

Wolfe JA. 1977. Paleogene floras from the Gulf of Alaska region. United States Geological Survey Professional Paper 997: 1-108. DOI: https://doi.org/10.3133/pp997 [ Links ]

Zhang LB, Simmons MP. 2006. Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Systematic Botany 31, 122-137. DOI: https://doi.org/10.1600/036364406775971778 [ Links ]

Zhang X, Zhang Z, Stützel T. 2012. Aril development in Celastraceae. Feddes Repertorium 122: 445-455. DOI: https://doi.org/10.1002/fedr.201200007 [ Links ]

Zhang X, Zhang Z, Stützel T. 2014. Ontogeny of the ovule and seed wing in Catha edulis (Vahl) Endl. (Celastraceae). Flora 209: 179-184. DOI: https://doi.org/10.1016/j.flora.2014.01.002 [ Links ]

Zhu YX, Lei FW, Tong L, Mu XY, Wen J. Zhang ZX. 2020. Animal‐mediated long‐distance dispersals and migrations shaping the intercontinental disjunctions of Celastrus (Celastraceae) among five continents. Journal of Systematics and Evolution 58: 945-957. DOI: https://doi.org/10.1111/jse.12661 [ Links ]

Supplementary material

Table S1 List of fossils assigned and/or compared to Celastraceae 

Fossil name Plant
part
Age Country Province Reference
Celastrophyllum aff. hunteri leaves Cretaceous (Albian) Siberia Toptanskaja suite Samylina (1968)
Celastrinites alatus leaves Late Cretaceous USA Laramie Formation Knowlton (1922)
Celastrinites ambiguus leaves Eocene USA Denver: Golden Lesquereux (1878)
Celastrinites artocarpidioides leaves Eocene USA Denver: Golden Lesquereux (1878)
Celastrinites cowanensis leaves Late Cretaceous USA Laramie Formation Knowlton (1922)
Celastrinites elegans leaves Miocene USA Florissant Formation Lesquereux (1883)
Celastrinites eriensis leaves Late Cretaceous USA Laramie Formation Knowlton (1922)
Celastrinites laevigatus leaves Late Cretaceous USA Laramie Lesquereux (1883)
Celastrinites populifolius leaves Eocene USA Denver: Golden Knowlton (1930)
Celastrinites venulosus leaves Paleogene France ? Saporta (1865)
Celastrophyllum acutidens leaves Cretaceous USA Patapsco Formation Fontaine (1889)
Celastrophyllum alabamensis leaves Cretaceous USA ? Berry (1919)
Celastrophyllum albadomus leaves Cretaceous USA ? Ward (1905)
Celastrophyllum angustifolium leaves Cretaceous USA ? Newberry (1895)
Celastrophyllum arcinerve leaves Cretaceous USA Patapsco Formation Fontaine (1889)
Celastrophyllum attenuatum leaves Paleogene Java ? Göppert (1854)
Celastrophyllum australe leaves Eocene New Zealand Grey River Ettingshausen (1887)
Celastrophyllum brittonianum leaves Late Cretaceous USA Redmond Formation Newberry (1895)
Celastrophyllum carolinensis leaves Late Cretaceous USA Ripley Formation Berry (1925)
Celastrophyllum carolinensis leaves Cretaceous USA Dakota Formation Berry (1914)
Celastrophyllum columbianum leaves middle Eocene USA Yegua Formation Berry (1924)
Celastrophyllum crassipes leaves Cretaceous USA Dakota Formation Lesquereux (1891)
Celastrophyllum crenatum leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum cretaceum leaves Cretaceous USA Dakota Formation Lesquereux (1891)
Celastrophyllum cunninghamii leaves Eocene Australia Dalton Ettingshausen (1883)
Celastrophyllum decurrens leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum denticulatum leaves Cretaceous USA Patapsco Formation Fontaine (1889)
Celastrophyllum elaeodendriforme leaves Eocene Argentina Rio Pichileufu Berry (1938)
Celastrophyllum elegans leaves Cretaceous USA Montawan Formation Berry (1903)
Celastrophyllum ensifolium leaves Eocene USA Dakota Group Lesquereux (1878)
Celastrophyllum fraunhoferifolium leaves Eocene Argentina Rio Pichileufu Berry (1938)
Celastrophyllum grandifolium leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum gymindoides leaves middle Eocene USA Lisbon Formation Berry (1924)
Celastrophyllum hunteri leaves Cretaceous USA Potomac Formation Ward (1895)
Celastrophyllum hymnoides leaves Eocene USA Cleinborn Berry (1924)
Celastrophyllum integrifolium leaves Eocene USA Dakota Group Lesquereux (1878)
Celastrophyllum japonicum leaves Late Cretaceous Japan Kotsuki, Sasu-mura, Shimogata-gun, Tsushima Province Tataiwa (1933)
Celastrophyllum kazachstanense leaves Cretaceous Russia Chushkakul Mountains, Western Kazachstan. Vachrameev (1952)
Celastrophyllum kryshtofovichii leaves Late Cretaceous Russia Tap river, left tributary of Viliga river, Magadan region Samylina (1984)
Celastrophyllum lanceolatum leaves Eocene USA Dakota Group Lesquereux (1878)
Celastrophyllum latifolium leaves Cretaceous USA Patapsco Formation Fontaine (1889)
Celastrophyllum maytenoides leaves Miocene Hungary Bánhorváti locality Kovács (1957)
Celastrophyllum minus leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum myrsinoides leaves Cretaceous USA Dakota Formation Lesquereux (1891)
Celastrophyllum newberryanum leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum obliquum leaves Cretaceous USA Dakota Formation Lesquereux (1891)
Celastrophyllum obtusum leaves Eocene USA Dakota Lesquereux (1878)
Celastrophyllum obtusum leaves Cretaceous Greenland Atane Formation Heer (1882)
Celastrophyllum parvifolium leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum praecrassipes leaves Cretaceous USA ? Berry (1919)
Celastrophyllum retinerve leaves Late Cretaceous Russia Konglomeratovyj cape, North-Western Kamchatka territory Herman (1987)
Celastrophyllum robustum leaves Late Cretaceous USA Redmond Formation Newberry (1895)
Celastrophyllum salicifolium leaves Late Cretaceous Russia Viljuj river, Lena river basin Budantsev (1968)
Celastrophyllum serrulatue leaves Cretaceous Siberia Toptanskaja suite Samylina (1968)
Celastrophyllum spatulatum leaves Late Cretaceous USA Raritan Formation Berry (1911)
Celastrophyllum subundulatum leaves Late Cretaceous Russia Siljap river, Kolyma river basin, Yakutia (Saha) republi Kryshtofovich (1938)
Celastrophyllum yokoyamae leaves Late Cretaceous Russia Mgachi, Aleksandrovsk-Sakhalinsky district, Sakhalin region Kryshtofovich (1918)
Celastrus comparabilis leaves middle Eocene USA Kushtaka Formation Wolfe (1977)
Celastrus borealis leaves Eoceno USA Kenai: Nenana coal field, Tanana region, Coal Creek Hollick & Smith (1936)
Celastrus bruckmannifolia leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus bruckmannii leaves Miocene USA Virginia coastal Berry (1909)
Celastrus caducidentatus leaves middle Miocene China Dajie Formation Liang et al. (2016)
Celastrus confluens leaves middle Eocene USA John Day Basin Knowlton (1902)
Celastrus culveri leaves Paleocene USA Yellowstone River Knowlton (1899)
Celastrus culveri leaves Eocene USA Fort Union: Elk Creek, Yellowstone National Park Knowlton (1919)
Celastrus curvinervis leaves Eocene USA Fort Union: Elk Creek, Yellowstone National Park Knowlton (1919)
Celastrus dignatus leaves Miocene USA Mascall: Van Horn's ranch, John Day Basin Knowlton (1902)
Celastrus ellipticus leaves Eocene USA Fort Union: Elk Creek, Yellowstone National Park Knowlton (1919)
Celastrus eolignitica leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus ferquisti leaves middle Miocene USA Latah Formation Berry (1929)
Celastrus ferrugineus leaves Eocene USA Fort Union: Burns's ranch and Iron Bluff, near Glendive and Bull Mountains, Mont. Knowlton (1919)
Celastrus fraxinifolius leaves Miocene USA Florissant, Colorado Lesquereux (1883)
Celastrus gaudini leaves Eoceno USA Denver: Golden Knowlton (1930)
Celastrus grewiopsis leaves Eocene USA Fort Union: Burns's ranch, Glendive, Mont. Knowlton (1919)
Celastrus haddeni leaves Late Cretaceous USA Vermejo Formation Lee & Knowlton (1917)
Celastrus herendeenensis leaves Late Cretaceous (Santonian) USA Coal Bluff, Herendeen Bay, Yukon River region Hollick & Martin (1930)
Celastrus hesperius leaves Late Cretaceous USA Vermejo Formation Knowlton (1919)
Celastrus inaequalis leaves Eocene USA Fort Union: Elk Creek, Yellowstone National Park. Knowlton (1919)
Celastrus lacoei leaves middle Miocene USA Latah Formation Berry (1929)
Celastrus lanceolatus leaves Paleocene Germany Eisleben Mai (1995)
Celastrus laurinensis leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus lindgreni leaves Eocene USA Payette: Idaho City, Idaho Knowlton (1919)
Celastrus minor leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus minor leaves Eocene USA Wilcox (Rockdale Formation) Berry (1930)
Celastrus minutus leaves early Oligocene (52-49 My) Bulgaria Satovcha Graben Bozukov (2000)
Celastrus mioangulata leaves Miocene (17-15 Ma) China Shanwang Formation Hu & Chaney (1940)
Celastrus oeningensis leaves late Oligocene-early Miocene Bulgaria Valche Pole Molasse Formation Bozukov & Palamare (2008)
Celastrus pseudocurvinervis leaves Late Cretaceous (Santonian) USA Coal Bluff, Herendeen Bay, Yukon River region Hollick & Martin (1930)
Celastrus pterospermoides leaves Eocene USA ? Ward (1887)
Celastrus serratus leaves Eocene USA Raton: Primero and Woolton. Knowlton (1919)
Celastrus sp. leaves Late Cretaceous USA Mesaverde Formation Knowlton (1919)
Celastrus sp. leaves Eocene Japan Yubari, Hokkaido, Japan Huzioka (1961)
Celastrus spokanensis leaves middle Miocene USA Latah Formation Berry (1929)
Celastrus taurinensis leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus taurinensis leaves Eocene USA Fort Union: Bull Mountains and Burns's ranch, near Glendive, Mont. Knowlton (1919)
Celastrus typica leaves Oligocene USA Florissant Formation MacGinitie (1953)
Celastrus veatchi leaves Eocene USA Wilcox Knowlton (1919)
Celastrus veatchi leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Celastrus veatchi leaves Eocene USA Wilcox (Rockdale Formation) Berry (1930)
Celastrus wardii leaves Eocene USA Big Horn County, Wyo. Knowlton (1919)
Cellastrophyllum elaeodendriforme leaves early Eocene/late Miocene Argentina ? Berry (1938)
Cellastrophyllum fraunhoferifolium leaves early Eocene/late Miocene Argentina ? Berry (1938)
Cetrastrophyllum cassinoides leaves Late Cretaceous USA Ripley Formation Berry (1925)
Cetrastrophyllum minimum leaves Late Cretaceous USA Ripley Formation Berry (1925)
Cetrastrophyllum perryi leaves Late Cretaceous USA Ripley Formation Berry (1925)
Cetrastrophyllum ripleyanum leaves Late Cretaceous USA Ripley Formation Berry (1925)
Cetrastrophyllum variabilis leaves Late Cretaceous USA Ripley Formation Berry (1925)
Euonymus glanduliferus leaves late Paleocene-early Eocene USA Elgin Standard (Rockdale Formation) Irving & Stuessy (1971)
Euonymus knowlton leaves middle Miocene USA Latah Formation Berry (1929)
Euonymus pacificus leaves Miocene 21.3-12.1 USA Latah Formation Brown (1937)
Euonymus protobungeana leaves Miocene (17-15 Ma) China Shanwang Formation Hu & Chaney (1940)
Euonymus santotomaserisis leaves middle Eocene USA Mount Selman Formation Berry (1924)
Euonymus splendes leaves Eocene USA Wilcox (Rockdale Formation) Berry (1916)
Maytenoides papillosa leaves middle Eocene Germany Geiseltal Rüffle & Litke (2008)
Maytenus ellipticus leaves Eocene Argentina Rio Pichileufu Berry (1938)
Maytenus latifolioides leaves Eocene Argentina Rio Pichileufu Berry (1938)
Paxistima deweyensis leaves Eocene 50-43 USA Thunder Mountain caldera Axelrod (1998)
Salacia floribundifolia leaves early Eocene/late Miocene Argentina Pichileufu Berry (1938)
Baasia armendarisense woods Late Cretaceous USA McRae Estrada-Ruiz et al. (2012)
Celastrinoxylon celastroides woods Late Cretaceous Egypt Hefhuf Formation Kamal El-Din (2003)
Celastrinoxylon celastroides woods Late Cretaceous Egypt Hefhuf Formation Kamal El-Din et al. (2006)
Celastrinoxylon celastroides woods Late Cretaceous Egypt Hefhuf Formation Kräusel (1939)
Celastrinoxylon celastroides woods Eocene Ethiopia Harar Beauchamp & Lemoigne (1973)
Celastrinoxylon meyeri woods Eocene Egypt ? Schӧnfeld (1955)
Celastrinoxylon ramunculiformis woods late Eocene United Kingdom London Clay Poole & Wilkinson (1999)
Celastrinoxylon sp. woods lower Miocene-late Pliocene Sumatra ? Kramer (1974)
Elaeodendroxylon polymorphum woods Miocene USA Yellowstone National Park Platen (1907)
Elaeodendroxylon sp. woods late Eocene Germany Braunkohlen-Tagebau Gottwald (1992)
Gondwanoxylon ghiarii woods Late Cretaceous India Kathotia village Saksena (1962)
Gondwanoxylon kathotiai woods Late Cretaceous India Ghiar village Saksena (1962)
Gymnosporioxylon paleoemarginatum woods late Miocene India ? Lalitha & Prakash (1984)
Hippocrateoxylon javanicum woods Paleogene Europa ? Hoffmann (1884)
Lophopetalumoxylon woods early Pliocene India Subansiri Formation Srivastava et al. (2018)
Lophopetalumoxylon indicum woods Late Cretaceous India Deccan Intertrappean Beds Mehrotra et al. (1983)
Maytenoxylon perforatum woods late Miocene Argentina Ituzaingó Formation Franco (2018)
Perrottetioxylon mahurzari woods Cretaceous India Mahurzari Chitaley & Patel (1971)
Celastrus capellinii pollen late Miocene Italy Sarzana basin Federici (1973)
Euonymoipites pollen Miocene-Pliocene China Donghai Song (1985)
Hippocrateaceaedites leizhouensis pollen Pliocene (1.806 My) China Wanglugang Formation Song et al. (2004)
Hippocrateaceaedites sp. pollen Miocene Cameroon Kwa-Kwa Salard-Cheboldaeff (1974)
Hippocrateaceaedites sp. pollen Eocene India Laki basin Venkatachala & Kar (1969)
Hippocrateaceaedites sp. pollen lower Eocene India Naredi Formation Kar (1978)
Hippocrateaceaedites sp. pollen Middle Eocene USA New Madrid Frederiksen et al. (1982)
Hippocrateaceaedites sp. pollen Ypresian-Eocene India ? Kar (1985)
Hippocrateaceaedites sp. pollen middle-Miocene India ? Varma et al. (1986)
Hippocrateaceaedites van compoae pollen Miocene India Neyveli Ramanujam (1966)
Microtropis pollen lower Oligocene France Aquitaine Lobreau-Callen & Caratini (1973)
Microtropis fokienensis pollen Pliocene France ? Suc (1976)
Peritassa pollen lower Oligocene France Aquitaine Lobreau-Callen & Caratini (1973)
Polyadopollenites macroreticulatus pollen Miocene Cameroon Kwa-Kwa Salard-Cheboldaeff (1974)
Polyadopollenites microreticulatus pollen Miocene Cameroon Kwa-Kwa Salard-Cheboldaeff (1974)
Retitricoporites sp. pollen Miocene Cameroon Kwa-Kwa Salard-Cheboldaeff (1974)
Triporotetradites campylostemonoides pollen Miocene Cameroon Kwa-Kwa Salard-Cheboldaeff (1974)
Triporotetradites scabratus pollen Cretaceous Nigeria Borehole Hoeken-Klinkenberg (1964)
Triporotetradites sp. pollen Cretaceous Nigeria ? Van der Hammen & Garcia de Mutis (1964)
Canthicarpum celastroides fruits and/or seeds Eocene (52-49 My) England London Clay Reid & Chandler (1933)
Cathispermum pulchrum fruits and/or seeds Eocene (52-49 My) England London Clay Reid & Chandler (1933)
Celastrocarpus eocenicus fruits and/or seeds Eocene USA Wilcox (Rockdale Formation) Berry (1930)
Euonymus fruits and/or seeds Eocene USA Wilcox (Rockdale Formation) Berry (1930)
Euonymus moskenbergensis fruits and/or seeds Miocene Austria Styria Ettingshausen (1869)
Tripterygium kabutoiwanum fruits and/or seeds Pliocene (3.4 ± 0.2 My) Japan Kabutoiwa Formation Ozaki (1991)
Celastrinanthium hauchecornei inflorescence early Paleogene Prusia Russia Conwentz (1886)
Lobocyclas anomala flower middle Oligocene-lower Miocene Dominican Republic Dominican amber Chambers & Poinar (2016)
Salacia lombardii flower early-middle Miocene Mexico Simojovel de Allende Hernández-Damián et al. (2018)
Wuyunanthus hexapetalus flower Paleocene Danian 66.0-61.6 My) China Wuyun Wang et al. (2001)

Table S2 Details of fossil records proposed as calibration points in molecular clock according to criteria of Martínez-Millán (2010)

Fossil name Discussion of key characters Character or set characters supports identification Description and diagnosis of fossil Photographs of the specimen Drawings, diagrams, and reconstructions of the fossils Safeguard institution collection number, holotype designation
Baasia armendarisense present solitary vessels; scalariform perforation plates. present 8 absent TXSTATE 1200. Texas State University, San Marcos.
Cathispermum pulchrum present wing-like arils; testa seed present 6 absent V. 22576.Natural History Museum, London
Celastrus comparabilis present serrate margins; camptodrome secondary veins; intercostal tertiary veins present 5 absent USNM 38744, 43356, 43357, 245728 National Museum of Natural History, Washington
Elaeodendroxylon sp. present scalariform perforation plates present 4 absent Die Geologisch- Paläontologische Sammlung der Universität Leipzig
Hippocrateaceaedites sp. present pollen grains subtriangular; tricolporate. present 1 absent Birbal Sahni Institute of Palaeobotany, Lucknow.
Lobocyclas anomala present nectarial disk; matured into the kind of trilobed capsular fruit present 3 absent Cat. No. Sd-9-62, Poinar amber collection, Oregon State University
Maytenoxylon perforatum present Diffuse porous, simple perforation plates, fibers dimorphic, band of thin-walled septate fibers resembling parenchyma, homo and heterocellular, uni and multiseriate rays and perfored ray cells present 24 absent CIDPALBO-MEG 94, CIDPALBO-MIC 1133. Colección de Paleobotánica del Laboratorio de Paleobotánica, CICYTTP-CONICET’, Argentina.
Salacia lombardii present bisexual flower; pentamerous periant; nectarial disk present 5 absent GMPB-1351 Colección Nacional de Paleontología, Museo Ma. Carmen Perrilliat M., del Instituto de Geología, Mexico.
Wuyunanthus hexapetalus present bisexual flower, nectarial disk present 3 present wy-92-101a&b National Museum of Plant History of Institute of Botany. Chinese Academy of Sciences, Xiangshan, Beijing, P. R. China.

Literature cited

Axelrod DI. 1998. The Eocene Thunder Mountain Flora of Central Idaho. University of California Publications in Geological Sciences 143:1-160. [ Links ]

Beauchamp J, Lemoigne Y. 1973. Description d’une paléoflore du Crétacé terminal-Éocène dans le Massif du Chercher (province d’Harar, Éthiopie). Documents des laboratoires de géologie de la Faculté des Sciences de Lyon 56:167-179. [ Links ]

Berry EW.1903. The flora of the Montawan Formation. Bulletin of the New York Botanical Garden 3:45-103. [ Links ]

Berry EW. 1909. Miocene flora from the Virginia coastal Plain. The Journal of Geology 17:19-30. [ Links ]

Berry EW. 1911. The Flora of the Raritan Formation. The Geology of New Jersey Bulletin 3:1-233. [ Links ]

Berry EW. 1914. The Upper Cretaceous and Eocene floras of South Carolina and Georgia. United States Geological Survey Professional Paper 84: 1-200. DOI: https://doi.org/10.3133/pp84 [ Links ]

Berry EW. 1916. The Lower Eocene floras of Southeastern North America. United States Geological Survey Professional Paper 91: 1-481. DOI: https://doi.org/10.3133/pp91 [ Links ]

Berry EW. 1919. Upper Cretaceous floras of the eastern Gulf region in Tennessee, Mississippi, Alabama, and Georgia. United States Geological Survey Professional Paper 112:1-177. DOI: https://doi.org/10.3133/pp112 [ Links ]

Berry EW. 1924.The Middle and Upper Eocene floras of south eastern America. United States Geological Survey Professional Paper 92: 1-206. DOI: https://doi.org/10.3133/pp92 [ Links ]

Berry EW. 1925. The flora of the Ripley Formation. United States Geological Survey Professional Paper 129: 199-226. DOI: https://doi.org/10.3133/pp136 [ Links ]

Berry EW. 1929. A revision of the flora of the Latah Formation. United States Geological Survey Professional Paper 154: 225-267. DOI: https://doi.org/10.3133/pp154H [ Links ]

Berry EW. 1930. Revision of the lower Eocene Wilcox flora of the southeastern States, with descriptions of new species, chiefly from Tennessee and Kentucky. United States Geological Survey Professional Paper 156: 1-189. DOI: https://doi.org/10.3133/pp156 [ Links ]

Berry EW. 1938. Tertiary Flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1-149. DOI: https://doi.org/10.1130/SPE12 [ Links ]

Brown RW. 1937. Additions to some fossil floras of the western United States. United States Geological Survey Professional Paper 186: 163-206. DOI: https://doi.org/10.3133/pp186J [ Links ]

Bozukov V. 2000. Miocene macroflora of the Satocha Graben (Western Rhodopes). I. Sytematics.5. Magnoliophyta: Araliaceae, Aquifoliaceae, Celastraceae, Rhamnaceae, Vitaceae, Apocynaceae, Caprifoliaceae, Convolvulaceae, Smilacaceae, Cyperaceae, Sparganiaceae, Typhaceae. Phytologia Balcanica 6:15-30. [ Links ]

Bozukov V, Palamare PA. 2008. The fossil macroflora of the Vulche Pole Molasse Formation (SE Bulgaria). Phytologia Balcan 14: 173-184. [ Links ]

Budantsev LY. 1968. Pozdnemelovaja flora Viljujskoj vpadiny. Botanicheskij Zhurnal 53: 3-16. [ Links ]

Chambers KL, Poinar Jr GO. 2016. Lobocyclas anomala, a new genus and species of Celastraceae subfamily Hippocrateoideae in Dominican amber. Journal of the Botanical Research Institute of Texas 10: 137-140. [ Links ]

Chitaley SD, Patel MZ. 1971. A fossil dicotyledonous stem from the Deccan Intertrappean cherts of Mohgaon Kalan, India. Journal of Biological Sciences (Bombay) 14: 50-57. [ Links ]

Conwentz H. 1886. Die Angiospermen des Bernsteins. In: Göppert HR, Menge A, eds. Die Flora des Bernsteins und ihre Beziehungen zur Flora der Tertiärformation und der Gegenwart 2. Danzig: Engelmann, pp. 1-140. [ Links ]

Estrada-Ruiz E, Upchurch GR, Wheeler EA, Mack GH. 2012. Late cretaceous angiosperm woods from the crevasse canyon and McRae formations, south-central New Mexico, USA: Part 1. International Journal of Plant Sciences 173: 412-428. DOI: https://doi.org/10.1086/664714 [ Links ]

Ettingshausen C. von. 1869. Beiträge zur Kenntniss der Tertiärflora Steiermarks. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 60: 17-100. [ Links ]

Ettingshausen C. von. 1883. Beiträge zur Kenntniss der Tertiärflora Australiens. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematische-naturwissenschaftliche. 47:1-48. [ Links ]

Ettingshausen C von. 1887. Beitraege zur Kenntnis der Fossilen Flora Neuseelands. Denkschriften der Akademie der Wissenschaften, Wien 53:143-194. [ Links ]

Federici PR. 1973. La tettonica recente dell'Appenino. I. II bacino Villafranchiano di Sarzana e il suo significato nel quadro dei movimenti distensivi a nord-ovest delle Alpi Apuane. Bollettino della Società geologica italiana 92:287-301. [ Links ]

Fontaine WM. 1889. The Potomac or younger Mesozoic Flora. United States Geological Survey, Monographs 15: 1-377. DOI: https://doi.org/10.3133/m15 [ Links ]

Franco MJ. 2018. Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina. Historical Biology 30: 646-660. DOI: https://doi.org/10.1080/08912963.2017.1313840 [ Links ]

Frederiksen NO, Bybell LM, Christopher RA, Crone AJ, Edwards LE, Gibson TG, Hazel JE, Repetski JE, Russ DP, Smith CC, Ward LW. 1982. Biostratigraphy and paleoecology of Lower Paleozoic, Upper Cretaceous and Lower Tertiary rocks in U.S. Geological Survey New Madrid test wells, southeastern Missouri. Tulane Studies in Geology and Paleontology 2: 23-45. [ Links ]

Gottwald H. 1992. Hӧlzer aus marinen Sanden des oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica Abteilung B 225: 27-103. [ Links ]

Göppert HR. 1854. Die Tertiärflora auf der Insel Java nach den Entdeckungen des Herrn Fr. Junghuhn beschrieben und erörtert in ihrem Verhältnisse zur Gesammtflora der Tertiärperiode. Germany: Nabu Press. ISBN: 978-1276014632. [ Links ]

Heer von O. 1882. Flora Fossilis Greenlandica. Flora Fossilis Arctica 6:1-112. [ Links ]

Herman AB. 1987. Novye pokrytosemennye iz turona Severo-Zapadnoj Kamchatki. Paleontologicheskii Zhurnal 4:96-106. [ Links ]

Hernández-Damián AL, Gómez-Acevedo SL, Cevallos-Ferriz SRS. 2018. Fossil flower of Salacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico. Review of Palaeobotany and Palynology 252: 1-9. DOI: https://doi.org/10.1016/j.revpalbo.2018.02.003 [ Links ]

Hoeken-Klinkenberg PMJ van. 1964. A palynological investigation of some Upper- Cretaceous sediments in Nigeria. Pollen et Spores 6: 209-231. [ Links ]

Hoffmann H. 1884. Untersuchngen über fossile Hӧlzer. Zeitschrift für Naturwissenschaften 57:156-195. [ Links ]

Hollick A, Martin GC. 1930. The Upper Cretaceous Floras of Alaska, with a description of the plant-bearing beds. United States Geological Survey Professional Paper 159:1-123. DOI: https://doi.org/10.3133/pp159. [ Links ]

Hollick A, Smith PS. 1936. The Tertiary floras of Alaska, with a chapter on the geology of the Tertiary deposits. United States Geological Survey Professional Paper 182: 1-171. DOI: https://doi.org/10.3133/pp182 [ Links ]

Hu HH, Chaney RW. 1940. A Miocene Flora from Shantung Province, China. Part I. Introduction and Systematic Considerations.USA, Washington DC: Carnegie Institution of Washington. [ Links ]

Huzioka K. 1961. A new Palaeogene species of the genus Eucommia from Hokkaido, Japan. Transactions and Proceedings of Palaeontological Society of Japan, New Series 41: 9-12. [ Links ]

Irving RS, Stuessy TF. 1971. A New paratropical Angiosperm Florule in the Eocene Rockdale Formation of Bastrop County Texas. The Southwestern Naturalist 16:111-116. [ Links ]

Kamal El-Din MM. 2003. Petrified wood from the Farafra Oasis, Egypt. International Association of Wood Anatomists Journal 24: 163-172. DOI: https://doi.org/10.1163/22941932-90000329 [ Links ]

Kamal El-Din MM, Wheeler EA, Bartlett JA. 2006. Cretaceous Woods from the Farafra Oasis, Egypt. International Association of Wood Anatomists Journal 27: 137-143. DOI: https://doi.org/10.1163/22941932-90000143 [ Links ]

Kar RK. 1978. Palynostratigraphy of the Naredi (Lower Eocene) and the Narudi (Middle Eocene) Formations in the District of Kutch, India. The Palaeobotanist 25: 161-178. [ Links ]

Kar RK. 1985. The fossil floras of Kachchh. IV. Tertiary palynostratigraphy. The Palaeobotanist 34: 1-279. [ Links ]

Knowlton FH. 1899. Fossil flora of the Yellowstone national Park. United States Geological Survey of the Territories, Monographs 32:651-882. [ Links ]

Knowlton FH. 1902. Fossil Flora of the John Day Basin, Oregon. United States Geological Survey Bulletin 204:1-153. DOI: https://doi.org/10.3133/b204 [ Links ]

Knowlton FH. 1919. A catalogue of the Mesozoic and Cenozoic plants of North America. United States Geological Survey Professional Paper 696: 1-815. DOI: https://doi.org/10.3133/b696 [ Links ]

Knowlton FH. 1922. The Laramie Flora of the Denver basin with a review of the Laramie problem. United States Geological Survey Professional Paper 130: 1-175. DOI: https://doi.org/10.3133/pp130 [ Links ]

Knowlton FH. 1930. The Flora of the Denver and associated Formations of Colorado. United States Geological Survey Professional Paper 155:1-141. DOI: https://doi.org/10.3133/pp155 [ Links ]

Kovács É. 1957. Összehasonlító flóra- és vegetációtanulmányok Bánhorváti és környékének szarmata növénymaradványai alapján. Földtani közlöny 87: 425-446. [ Links ]

Kramer K. 1974. Die Tertiären Hölzer Südost-Asiens (Unter Ausschluss Der Dipterocarpaceae). 2. Teil. Palaeontographica Abteilung B 145: 1-150. [ Links ]

Kräusel R. 1939. Der Bayerischen Akademie der Wissenschaften Ergebnisse der Forschungsreisen Prof. E. Stromers. Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung 47: 1-140. [ Links ]

Kryshtofovich AN. 1918. On the Cretaceous flora of Russian Sakhalin. Journal of the College of Science, Imperial University of Tokyo 40:1-73. [ Links ]

Kryshtofovich AN. 1938. Cretaceous plants of Kolyma: contributions to the Knowledge of the Kolima-Indigirka Land. Ser 2. Geology and geomorphology 15:1-26. [ Links ]

Lalitha C, Prakash U. 1984. Gymnosporia, a new addition to the fossil record. In: Sharma AK, Mitra GC, Banerjee M. eds. Proc. Symp. Evolutionary Botany and Biostratigraphy (A.K. Ghosh Commem. Vol.). New Delhi: Today and Tomorrow’s Print.and Publ, pp. 121-127. [ Links ]

Lee TW, Knowlton FH. 1917. Geology and paleontology of the Raton Mesa and other regions in Colorado and New Mexico. United States Geological Survey Professional Paper 101: 1-561. DOI: https://doi.org/10.3133/pp101 [ Links ]

Lesquereux L. 1878. Contributions to the fossil flora of the western territories, part II. The Tertiary flora. Report of the United States Geological Survey of the Territories 7:1-366 [ Links ]

Lesquereux L. 1883. Contribution to the fossil flora of the Western Territories, part III: The Cretaceous and Tertiary floras. Report of the United States Geological Survey of the Territories 8: 1-283. [ Links ]

Lesquereux L. 1891. Flora of the Dakota Group. United States Geological Survey, Monographs 17:1-400. DOI: https://doi.org/10.3133/m17 [ Links ]

Liang XQ, Ferguson DK, Jacques FMB, Su T, Wang L, Zhou ZK. 2016. A new Celastrus species from the middle Miocene of Yunnan, China and its palaeoclimatic and palaeobiogeographic implications. Review of Palaeobotany and Palynology 225: 43-52. DOI: https://doi.org/10.1016/j.revpalbo.2015.11.005 [ Links ]

Lobreau-Callen D, Caratini C. 1973. Pollens de "Celastraceae" à l'Oligocène en Gironde (France). Bulletin de la Société Linnéenne de Bordeaux 3: 227-231. [ Links ]

MacGinitie HD. 1953. Fossil Plants of the Florissant Beds, Colorado. USA Washington, DC: Carnegie Institution of Washington. [ Links ]

Mai DH. 1995. Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. New York, USA: Gustav Fischer Verlag, Jena, Stuttgart. ISBN: 3‐334‐60456‐X [ Links ]

Mehrotra RC, Prakash U, Bande MB. 1983. Fossil woods of Lophopetalum and Artocarpus from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh, India. The Palaeobotanist 32: 310-320. [ Links ]

Newberry JS. 1895. The Flora of the Amboy Clays. United States Geological Survey, Monographs 26:1-260. DOI: https://doi.org/10.3133/m26 [ Links ]

Ozaki K. 1991. Late Miocene and Pliocene floras in central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum. Special Issue. 1: 1-188. [ Links ]

Platen P. 1907. Untersuchungen fossiler Hblzer aus dem Westen der Vereinigten Staaten von Noordamerika. Naturforschende Gesellschaft Lkptlg Sitzusber 34: 1-173. [ Links ]

Poole I, Wilkinson HP. 1999. A celastraceous twig from the Eocene London Clay of south-east England. Botanical Journal of the Linnean Society 129: 165-176. DOI: https://doi.org/10.1006/bojl.1998.0215 [ Links ]

Ramanujam CGK. 1966. Palynology of the Miocene Lignite from south Arcot District, Madras, India. Pollen et Spores 8: 149- 203. [ Links ]

Reid EM, Chandler MEJ. 1933. The London Clay Flora. United Kingdom, London. The British Museum. [ Links ]

Rüffle L, Litke R. 2008. Ergänzungen zur Eozän-Flora des Geistales, Deutschland, und einigir weiterer Eozän-Fundstätten. Feddes Repertorium 111: 449-463. DOI: https://doi.org/10.1002/fedr.20001110711 [ Links ]

Saksena S. 1962. On two fossil dicotyledonous woods from south Rewa, Central India. The Palaeobotanist 11: 30-37. [ Links ]

Salard-Cheboldaeff M. 1974. Pollens Tertiaires du Cameroun rapporttés à la famille des Hippocratéacées. Pollen et Spores 16: 499-506. [ Links ]

Samylina VA. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit remains. Botanical Journal of the Linnean Society 61: 207-218. DOI: https://doi.org/10.1111/j.1095-8339.1968.tb00119.x [ Links ]

Samylina VA. 1984. Late Cretaceous flora of the Tap River (Northern part of the sea of Okhotsk area). Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshchestva 27: 236-247. [ Links ]

Saporta G de. 1865. Etudes sur la végétation du Sud-Est de la France à l' époque tertiaire. Annales des Sciences Naturelles Botanique 4: 5-264. [ Links ]

Schӧnfeld E. 1955. Die Kieselhӧlzer aus der Braunkohle von Bӧhle bei Leipzig. Palaeontographica Abteilung B 99: 1-83. [ Links ]

Song Z. 1985. Cenozoic-Mesozoic Palaeontology and Stratigraphy of east China (Series 1). A Research on Cenozoic Palynology of the Longjing Structural Area in the Shelf Basin of the East China Sea (Donghai) Region. China: Anhui Science and Technology Publishing House. ISBN: 7305004693. [ Links ]

Song Z.-C., Wang WM, Fei H. 2004. Fossil pollen records of extant angiosperms in China. Botanical Review 70: 425-458. [ Links ]

Srivastava G, Mehrotra RC, Srikarni C. 2018. Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance. Journal of Earth System Science 127: 2. DOI: http://doi.org/10.1007/s12040-017-0903-2 [ Links ]

Suc JP. 1976. Quelques taxons-guides dans l' étude paléoclimatique du Pliocbne et du Pleistocéne infrieur du Languedoc (France). Revue de Micropaléontologie 18: 246-255. [ Links ]

Tataiwa I. 1933. Cretaceous Flora of Tsushima Japan. Japanese journal of geology and geography 11:185-211. [ Links ]

Vachrameev VA. 1952. Stratigrafiya i iskopaemaya flora melovyh otlozhenij zapadnogo Kazahstana. Regionalnaya stratigrafiya SSSR 1:1-340. [ Links ]

Van der Hammen Th, Garcia de Mutis C. 1964. A palynological investigation of some Upper Cretaceous sediments in Nigeria. Pollen et Spores 6:209-231. [ Links ]

Varma YNR, Ramanujam CGK, Patil RS. 1986. Palynoflora of Tertiary sediments of Tonakkal area, Kerala. Journal of Palynology 22: 39-53. [ Links ]

Venkatachala BS. Kar RK. 1969. Palynology of the Tertiary sediments of Kutch-1. Spores and pollen from Borehole No.14. The Palaeobotanist 17: 157-178. [ Links ]

Wang YF, Li Fls CS, Li ZY, DZ Fu. 2001. Wuyunanthus gen. nov., a flower of Celastraceae from the Palaeocene of north-east China. Botanical Journal of the Linnean Society 136: 323-327. DOI: https://doi.org/10.1111/j.1095-8339.2001.tb00576.x [ Links ]

Ward LF. 1887. Types of the Laramie Flora. United States Geological Survey Annual Report 37:1-354. DOI: https://doi.org/10.3133/b37 [ Links ]

Ward LF. 1895. The Potomac Formation. United States Geological Survey Bulletin 37: 1-115. [ Links ]

Ward LF. 1905. Status of the Mesozoic floras of the United States, Second paper: Part I.-Text, Part II.-Plates. United States Geological Survey, Monographs 48:1-616. DOI: https://doi.org/10.3133/m48 [ Links ]

Wolfe JA. 1977. Paleogene floras from the Gulf of Alaska region. United States Geological Survey Professional Paper 997: 1-108. DOI: https://doi.org/10.3133/pp997 [ Links ]

Received: November 26, 2020; Accepted: February 02, 2021; Published: May 18, 2021

*Author for correspondence: hdez_damian@ciencias.unam.mx

Associate editor: Silvia Aguilar Rodríguez

Author contributions: ALHD, wrote manuscript and compilation of the database; SLGA; SRSCF, coordinated, designed the research, and revised manuscript.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License