SciELO - Scientific Electronic Library Online

 
vol.99 número3Actividad fitotóxica de extractos acuosos de plantas ruderales y su potencial aplicación en el cultivo del jitomate índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.99 no.3 México jul./sep. 2021  Epub 25-Jun-2021

https://doi.org/10.17129/botsci.2715 

Review

Ethnopharmacology of the Asteraceae family in Mexico

La etnofarmacología de la familia Asteraceae en México

Virginia Gabriela Cilia-López1  * 
http://orcid.org/0000-0003-0064-4490

Raquel Cariño-Cortés2 
http://orcid.org/0000-0003-4776-3534

Luis Ricardo Zurita-Salinas3 
http://orcid.org/0000-0001-6127-9103

1 Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, México.

2 Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, México.

3 Licenciatura en Ciencias Ambientales y Salud, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México.


Abstract

Background:

In Mexico, the Asteraceae are part of traditional knowledge where its members have several uses, but they are particularly remarkable in traditional medicine and are used for different purposes.

Questions:

What pharmacologically studies have been carried out with Asteraceae species used in Mexican traditional medicine? What pharmacological activities have been tested? What compounds are responsible for the tested activities?

Species studied:

Asteraceae species used in Mexican traditional medicine pharmacologically tested.

Methods:

A database including scientific studies on Asteraceae species which studies on pharmacological activity or phytochemical characterization was compiled and analyzed.

Results:

From 249 reviewed studies only 202 fulfilled the criteria for our analysis. A total of 101 species distributed in 65 genera and 16 tribes were registered. The tribes Heliantheae and Senecioneae were the most studied. Ageratina pichinchensis, Artemisia ludoviciana, Heliopsis longipes, and Heterotheca inuloides were the most studied species. In Mexico, the Asteraceae family is mainly used in the treatment of diseases or symptoms related to the digestive and respiratory systems. In 48 % of the studies some biocidal activity was evaluated but only 21.8 % included phytochemical characterizations.

Conclusions:

The antimicrobial activity and phytochemical characterizations are the main kind of ethnopharmacological studies for Asteraceae in Mexico. Most of the compounds responsible for the activities have not been identified yet. The uses of Asteraceae in Mexico are similar to other countries emphasizing its cultural importance in the world. Mexican Asteraceae should be prioritized in conservation and bioscreening schemes.

Key words: Compositae; ethnobotany; herbal medicine; natural compounds; traditional knowledge

Resumen

Antecedentes:

En México la familia Asteraceae es parte del conocimiento tradicional, sus miembros tienen varios usos, especialmente en la medicina tradicional con diferentes propósitos.

Preguntas:

¿Qué estudios farmacológicos se han realizado con especies de Asteraceae usadas en la medicina tradicional mexicana? ¿Cuáles son las actividades farmacológicas comprobadas? ¿Cuáles son los compuestos responsables de las actividades comprobadas?

Especies en estudio:

Especies de Asteraceae usadas en la medicina tradicional mexicana probadas farmacológicamente.

Métodos:

Se construyó y analizó una base de datos con estudios de asteráceas en los que se realizaron caracterizaciones fitoquímicas o estudiaron actividades farmacológicas.

Resultados:

De 249 estudios revisados solo 202 cubrieron los criterios de inclusión del análisis. Se registraron 101 especies distribuidas en 65 géneros y 16 tribus. Heliantheae y Senecioneae fueron las tribus más estudiadas. Ageratina pichinchensis, Artemisia ludoviciana, Heliopsis longipes y Heterotheca inuloides fueron las especies más estudiadas. En México, la familia Asteraceae se utiliza principalmente en el tratamiento de enfermedades o síntomas relacionados con los sistemas digestivo y respiratorio. El 48 % de los estudios evaluó alguna actividad biocida y el 21.8 % incluyen caracterizaciones fitoquímicas.

Conclusiones:

la actividad antimicrobiana y caracterizaciones fitoquímicas son los principales estudios realizados con asteráceas mexicanas. La mayoría de los compuestos responsables de las actividades farmacológicas evaluadas aún no han sido identificados. Los usos de Asteraceae en México son similares a los de otros países, lo que resalta su importancia cultural en el mundo. Las Asteraceae mexicanas debe ser priorizadas en planes de conservación y en estudios de bioprospección.

Palabras clave: Compositae; compuestos naturales; conocimiento tradicional; etnobotánica; herbolaria

Historically, the plant kingdom has been the best source of remedies for a variety of diseases and pain. Plants are primary therapeutic agents used for treating illness, an integral element of health care systems, and the best testimony of cultural importance (Mata et al. 2019). In many cultures, plants are elemental for ancient traditional medicine systems and continue enriching our modern knowledge of herbal medicine. Therefore, medicinal plants have a fundamental role in the maintenance of global human health (Egamberdieva & Teixeira da Silva 2015). Traditional medicine is part of the evolutionary process where humans and plants interact; communities and individuals continue to discover practices and transforming techniques. Many modern drugs have origin in ethnopharmacology and traditional medicine (Helmstädter & Staiger 2014). Pharmaceutical and scientific communities have paid particular attention to medicinal plants; numerous studies have validated the traditional use of plants and characterized phytochemically large species (Salazar-Aranda et al. 2013, Buenz et al. 2018).

The Mexican diversity of vascular plants has been estimated at 23,314 species (Villaseñor 2018), and more than 50 % are endemic to the country. More than 3,000 are used as medicinal plants but only a small proportion (1-2 %) has been studied (Villaseñor 1993, Espejo-Serna et al. 2004, Salazar-Aranda et al. 2013). Many members of Asteraceae are part of the traditional knowledge of our country where they are used as food, live fences, construction materials, and source of oils, insecticides, and garden ornamentals; however, they are specially used in traditional medicine (Heinrich et al. 1998, Leonti et al. 2003, Canales et al. 2005, Paredes-Flores et al. 2007, Estrada-Castillón et al. 2012, Gómez 2012, Ávila-Uribe et al. 2016, Casas et al. 2016, Vibrans 2016, Lara Reimers et al. 2019).

The Asteraceae or Compositae is one of the largest and most diverse families, comprising 10 % of all flowering plant species, rivaled only by Orchidaceae and Fabaceae (Mandel et al. 2019). It includes between 950 and 1,450 genera, with an estimated 25,000 to 35,000 species in the world and is the richest family of Mexican flora in genera and species (Villaseñor 2016, Mandel et al. 2019). Mexico is considered a center of diversification of this family with 417 genera and 3,113 species and it is the richest country for the family in Neotropics (Villaseñor 2018). Its wide distribution, from sea level (dunes or coastal vegetation) to the mountains, is attributed to its excellent dispersal capacity, genetic plasticity, and the presence of a wide variety of secondary metabolites synthesized as a protection strategy against predators or competitors (Villaseñor 2018). The members of Asteraceae are identified by inflorescences arranged in a capitulum or head, surrounded by an involucre with involucral bracts or phyllaries. On the capitulum there are two kinds of flowers: the outermost or ray flowers and the central or disc flowers. All the flowers are gamopetalous and lack of calyx or modified in a variable and peculiar structure called pappus (Villaseñor 1993). Due to its diversity, the Asteraceae family is divided in 36-38 tribes (Funk et al. 2005). In Mexico, there are 24 tribes of native species and two (Arctotideae and Calenduleae) of introduced species (Villaseñor 2018).

The vast diversity in Asteraceae is too reflected in the presence of different bioactive compounds important for the pharmaceutical industry (Kostić et al. 2020). Members of Asteraceae are known by their pharmacological activities as antibacterial, anti-inflammatory, wound-healing, anti-hemorrhagic, antipyretic, hepatoprotective, anti-tussive, antitumor, antiparasitic, and antispasmodic (Carvalho et al. 2018, Panda & Luyten 2018). Several species are used in Mexican traditional medicine since its antibacterial properties (Sharma et al. 2017) and they are mainly used in the treatment of gastrointestinal, respiratory, and dental infectious diseases (Heinrich et al. 1998, Murillo-Álvarez et al. 2001, Hernández et al. 2003, Leonti et al. 2003, Canales et al. 2005, Paredes-Flores et al. 2007, Alonso-Castro et al. 2011, Rosas-Piñón et al. 2012, Sharma et al. 2017, Lara Reimers et al. 2019). Some of the most popular medicinal plants used in México are estafiate (Artemisia ludoviciana), Mexican arnica (Heterotheca inuloides), zoapatle (Montanoa tomentosa), and cempazúchitl (Tagetes erecta).

More than 5,000 compounds have been identified in Asteraceae, generally associated with some pharmacological activity. The presence of sesquiterpene lactones (SQLs), diterpenes, triterpenes, inulin-type fructans, polyacetylenes, pentacyclic triterpene alcohols, benzofurans, flavones, flavonoids, and unsaturated fatty acids are common compounds in Asteraceae (Heywood et al. 1977a, b, Calabria et al. 2009). The SQLs are the major chemical compounds in Asteraceae, with at least 3,000 known structures involved in the defense against herbivores and parasites The SQLs, acetylenic compounds, and inulin-type fructans are as characteristic of Asteraceae as their inflorescences (Heywood et al. 1977a, b, Heinrich et al. 1998).

Despite the discovery of several secondary metabolites in Asteraceae, they attracted disproportionately little attention in the context of ethnopharmacological research, resulting in few systematic explorations and few commercialized products (Panda et al. 2019, Kostić et al. 2020). In this review we answer the following questions: What pharmacologically studies have been carried out with Asteraceae species used in Mexican traditional medicine? What pharmacological activities have been tested? What compounds are responsible for the tested activities? The goal of our research was to synthesize the knowledge of the ethnopharmacology of the Asteraceae in Mexico.

Materials and methods

We conducted systematics searches for scientific studies of the pharmacological activity, or the phytochemical characterization of Asteraceae used in Mexican traditional medicine. The information was collected from scientific databases including ScienceDirect, Springerlink, Scopus, PubMed, Redalyc, Scielo, EBSCO, ACS Publications, BioMed Central, and Wiley online library, for entries published from 1983 to 2020. The keywords for our searches included: Mexican Asteraceae, medicinal Asteraceae, asteráceas mexicanas, asteráceas medicinales, Mexican traditional medicine, Asteraceae, Compositae. We only include studies that provide information on the collection site, the part used, the species identified, and the herbarium specimen, as recommended by the Guidelines on Good Herbal Processing Practices for Herbal Medicines (WHO 2018).

Species were classified based on the tribe scheme for Mexican Asteraceae by Villaseñor (2018). The nomenclature was based on taxonomic studies for the family including Ortiz-Bermudez et al. (1998), Cabrera (2001), Funk et al. (2009), Estrada-Castillón & Villarreal-Quintanilla (2010), Schilling & Panero, 2011, Villaseñor & Ortiz (2012), García-Sánchez et al. 2014, Redonda-Martínez (2017), Redonda-Martínez (2020), and Villarreal-Quintanilla et al. (2020). To identify the native species to Mexico, the studies of Sosa & De-Nova (2012) and Villaseñor (2016) were consulted. The information was arranged alphabetically by tribe, genus, species, traditional uses, and pharmacological/phytochemical studies.

Results

A total of 249 studies where pharmacological activities and/or phytochemical characterizations were assessed for Asteraceae were found. The analysis of the information was carried out with 202 studies that fulfilled the recommendations of the Guidelines on Good Herbal Processing Practices for Herbal Medicines (Appendix 1, Table A1). Forty-seven studies were not included since they were conducted with parts of plants (leaves, roots, etc.) or plant material purchased or acquired from laboratories, markets, supermarkets or they did not provide information about herbarium specimen.

A total of 101 species with ethnopharmacological and/or phytochemical studies from 16 tribes and 65 genera were recorded. Heliantheae has been the most studied tribe with 30 species and 19 genera, followed by Senecioneae with 17 species and seven genera (Appendix 1, Table A1). The remaining tribes registered less than 10 species. The states where the specimens were collected are Morelos (23), Estado de Mexico (20), Puebla (11), Mexico City (10), San Luis Potosi (10), Nuevo Leon (10), and Veracruz (10). Yucatan and Jalisco are less explored by one mention each one (Figure 1).

Figure 1 Number of collections by state of Mexican Asteraceae with ethnopharmacological studies. 

The traditional uses referred in the reviewed studies are mainly on diseases or symptoms related to the digestive system (20.73 %), followed by treatment of different types of pain (15 %), and for the treatment of diseases associated to the respiratory system (10.2 %). Other uses were anti-inflammatory (7.6 %), and skin infections (7.3 %) (Table 1, Appendix 1, Table A1). From the 202 reviewed studies, 62 (30.7 %) analyzed antibacterial activity and 44 (21.8 %) were phytochemical characterizations. Other assessed activities were cytotoxicity (12.4 %) and anti-inflammatory (7 %). Some activities, such as healing, diuretic, antimalarial, aphrodisiac, immunostimulant, among others, were evaluated only once. From 101 species, 21 were evaluated for their antibacterial activity, 13 were only characterized phytochemically, and five to assess their analgesic activity. Thirty-nine were studied only once. The most studied species have been Heliopsis longipes (18 studies, Figure 2C), Ageratina pichinchensis (16, Figure 2A), Artemisia ludoviciana (13, Figure 2B), and Heterotheca inuloides (10, Figure 2D). These species were mentioned in the 28.1 % of the reviewed studies. According to their distribution, 54 species are native to Mexico, 41 are endemic, and five are introduced. The Heliantheae presented the highest proportion of native (13) and endemic (17) species, followed by Senecioneae with five native and 12 endemics (Appendix 1, Table A1).

Table 1 Traditional uses and ethnopharmacological studies of Asteraceae in Mexico 

Traditional use (illness/affection/symptom) Mentions in the reviewed studies % (*) Activity evaluated Studies performed % (*)
Gastrointestinal disorders/diseases: diarrhea, stomachache, dysentery, gastritis, indigestion, vomit, dyspepsia, deworming, lack of appetite, tapeworm, purge 20.73 (57)* Antibacterial 30.7 (62)*
Aches, pain, analgesic, toothache, lumbago, migraine 15 (41)* Phytochemical characterization 21.8 (44)*
Respiratory infections: cough, bronchitis, expectorant, flu, tuberculosis, cold, asthma 10.2 (28)* Cytotoxity 12.4 (25)*
Anti-inflamatory, neuritis, bruises 7.6 (21)* Antifungal 8.0 (16)*
Skin infections: welts herpes, sores, scabies, skin wounds, baby rash, dermatophytosis, astringent 7.3 (20)* Anti-inflamatory 7.0 (14)*
Fever 5.1 (14)* Antiprotozoal 4.95 (10)
Spasmolityc 4.95 (10)*
Colic, spasmolytic 4 (11)* Analgesic 4.46 (9)*
Diabetes 3.6 (10)* Antioxidant 4.46 (9)*
Anxiolytic 2.2 (6)* Antimicrobial 3.96 (8)*
Labor 2.2 (6)*

*Number of mentions in the reviewed studies.

Figure 2 Most studied Asteraceae in the Mexican ethnopharmacology. A) Ageratina pichinchensis (Eupatorieae), B) Artemisia ludoviciana (Anthemideae), C) Heliopsis longipes (Heliantheae), D) Heterotheca inuloides (Astereae). Images from Enciclovida. Credits: A) Neptalí Ramírez Marcial, C) Arturo de Nova, D) Bodo Nuñez Oberg. 

Discussion

Traditional knowledge is the best evidence of the efficacy of medicinal plants in treating diseases, their symptoms, and other ailments (Firenzuoli & Gori 2007, Helmstädter & Staiger 2014). Ethnobotany and traditional knowledge about the preparation and administration of medicinal plants provide valuable information around active compounds. Several phytochemical compounds with biological activities were discovered from traditional knowledge and they have been a starting point for new therapeutics (Salazar-Aranda et al. 2013, Buenz et al. 2018). From the 122 plant-derived chemical products currently used in medicine, 80 % are used congruently to their ethnomedical application (Saslis-Lagoudakis et al. 2011). These compounds have played a crucial role in treating and preventing human diseases. The artemisinin drug against parasitic diseases such as malaria was isolated from Artemisia annua used in traditional medicine for the treatment of respiratory diseases (Helmstädter & Staiger 2014, Helmstädter 2017). This is a prominent example of how the traditional knowledge regarding medicinal plants plays a key role in the identification of new bioactive agents or new drugs.

Ethnopharmacology of the Asteraceae in Mexico. Heliantheae, Senecioneae, Eupatorieae, and Astereae are the tribes with the highest number of genera and species in Mexico (Villaseñor 2018) and they are well represented in the reviewed ethnopharmacological and phytochemical studies. The species of Heliantheae and Senecioneae are the most evaluated and include most of the endemic studied species. On the other hand, from 26 tribes in México only 16 are represented in ethnopharmacological studies, possibly because some of them have a few species (e.g., Arctotideae, Chaenactideae, Gochnatieae, Liabeae, Onoserideae). But other tribes, such as Astereae and Eupatorieae are among the largest tribes in Asteraceae, with well-recognized species in Mexican traditional medicine. However, genera like Ageratina, Conyza, Erigeron, Eupatorium, Gymnosperma, Solidago, and Stevia, among others, are scarcely represented in ethnopharmacological studies.

From the best represented species in Mexican ethnopharmacological studies Ageratina pichinchensis (Figure 2A), named axihuitl or manrrubio, is a plant widely used in Mexican traditional medicine, whose pharmacological activities have been confirmed in preclinical and clinical studies (Aguilar-Guadarrama et al. 2009, Sánchez-Mendoza et al. 2013, Romero-Cerecero et al. 2017). This species is used in the treatment of diseases caused by or related to fungal and skin infections, wounds, and to treat pain and gastric ulcers (Aguilar-Guadarrama et al. 2009, Sánchez-Mendoza et al. 2013, Romero-Cerecero et al. 2017). Additionally, A. pichinchensis has wound healing, antiulcer, gastroprotective, antinociceptive, and anti-inflammatory effects (Sánchez-Mendoza et al. 2010, Romero-Cerecero et al. 2012a, Romero-Cerecero et al. 2013, Sánchez-Mendoza et al. 2013). Pharmacological evaluations showed that its extracts exhibit antifungal activity against Trichophyton mentagrophytes, T. rubrum, and Candida albicans (Ríos et al. 2003), and have shown therapeutic and mycological effectiveness in patients with vulvovaginal candidiasis (Romero-Cerecero et al. 2017). The antimicrobial activity of encecalin, taraxerol, β-sitosterol, and stigmasterol isolated from this species has been demonstrated (Aguilar-Guadarrama et al. 2009). The antinociceptive activity and gastroprotective effect of A. pichinchensis are related to the presence of 3,5-diprenyl-4-hydroxyacetophenone (HYDP) isolated from its leaves (Sánchez-Mendoza et al. 2013). Studies showed that 7-O-(b-D-glucopyranosyl)-galactin is the compound associated with the effects of A. pichinchensis in cell proliferation and healing activity in skin lesions in an animal model of diabetes (Romero-Cerecero et al. 2013, Romero-Cerecero 2014). The healing properties of A. pichinchensis have been assessed in human clinical trials. It has demonstrated effectiveness in the treatment of chronic venous leg ulcers (Romero-Cerecero et al. 2012a), and diabetic foot ulcers (Romero-Cerecero et al. 2015b).

Artemisia ludoviciana (Figure 2B) has been used in Mexican traditional medicine since pre-Hispanic times. It is commonly named estafiate, ajenjo del país, azumate, or iztauhyatl (Calzada et al. 2007, Estrada-Soto et al. 2012, Anaya-Eugenio et al. 2016). This species is widely used to treat gastrointestinal disorders as parasites, indigestion, diarrhea, and dysentery. Also, it is used in the treatment of colic, bronchitis, dandruff, inflammation, diabetes, antimalarial, and analgesic (Calzada et al. 2007, Estrada-Soto et al. 2012, Anaya-Eugenio et al. 2016). Studies in animal models have described antidiarrheal and antispasmodic activities of the essential oil obtained from aerial parts from A. ludoviciana (Said Fernández et al. 2005, Calzada et al. 2010, Estrada-Soto et al. 2012). Leaf extracts from this plant have antimicrobial activity against microorganisms responsible for gastrointestinal diseases such as Entamoeba histolytica, Escherichia coli, Giardia lamblia, Vibrio cholerae, and other responsible for infectious diseases as Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus (Navarro et al. 1996, Said Fernández et al. 2005, Damián-Badillo et al. 2008). Most relevant is the activity of A. ludociviana against Helicobacter pylori, the major etiological agent of chronic gastritis and peptic ulcer disease linked to gastric carcinoma (Castillo-Juárez et al. 2009). It has been documented its anti-Mycobacterium tuberculosis activity (Jiménez-Arellanes et al. 2003). However, the compounds responsible for the mentioned antimicrobial activities have not elucidated yet. Additionally, Anaya-Eugenio et al. (2014) demonstrated the hypoglycemic and antihyperglycemic effects of arglanin and salvinine isolated from A. ludoviciana in mice, which supports its effectiveness in the treatment of diabetes in folk medicine.

Heliopsis longipes (Figure 2C), named chilcuague, chilcuán, pelitre, raíz de oro, and pyrethrum; it is endemic to the Sierra Gorda and Sierra de Álvarez in the limits of the states of Guanajuato, San Luis Potosí, and Querétaro (Cilia-López et al. 2008). This species is employed to calm toothaches, muscle aches, arthritis, rheumatism, as anti-inflammatory, in the treatment of oral herpes, oral infections, deworming, diarrhea, and muscle soreness (Cilia-López et al. 2008). It has antibacterial activity against Escherichia coli, as well as antifungal and anti-aflatoxigenic activity (Molina-Torres et al. 1999, Buitimea-Cantúa et al. 2020). The anti-inflammatory, antinociceptive, and anti-arthritic activities of H. longipes have been demonstrated in animal models (Acosta-Madrid et al. 2009, Hernández et al. 2009, Cariño-Cortés et al. 2010, Cilia-López et al. 2010, Arriaga-Alba et al. 2013, Escobedo-Martínez et al. 2017, de la Rosa-Lugo et al. 2017). It has been demonstrated that its anti-inflammatory and anti-arthritic activities are higher than the reference drug phenylbutazone. Moreover, its extracts prevent the occurrence of secondary lesions, this makes it a better alternative for this type of chronic condition (Escobedo-Martínez et al. 2017). These biological activities are attributed to affinin, the main bioactive compound present in the roots of H. longipes (Molina-Torres et al. 1999). Ríos et al. (2007) established that the GABAergic system is involved in the analgesic response of affinin in H. longipes and de la Rosa-Lugo et al. (2017) indicate that it can be used for the treatment of orofacial pain. Affinin also induces the vasodilation showing its therapeutic potential in the treatment of cardiovascular diseases (Castro-Ruiz et al. 2017). In addition, the antimutagenic activity of affinin has been demonstrated (Cariño-Cortés et al. 2010, Arriaga-Alba et al. 2013).

Heterotheca inuloides (Figure 2D) is one of the most used plants in Mexican traditional medicine with a high market demand. It is commonly named Mexican arnica, acahual, cuauteteco, and xochihuepal (Rodríguez-Chávez et al. 2017). This species is widely used for the treatment of inflammatory conditions, skin wounds, fever, contusions, bruises, biliary disorders, cough, respiratory problems, gastritis, hemorrhoids, rheumatism, toothache, and urinary tract inflammation (Gené et al. 1998, Delgado et al. 2001, Rodríguez-Chávez et al. 2017, Egas et al. 2018). It has antibacterial activity against Helicobacter pylori and Streptococcus mutans and its flowers are effective against Giardia intestinalis trophozoites (Rosas-Piñón et al. 2012, Rodríguez-Chávez et al. 2015c, Egas et al. 2018). Several studies have assessed the anti-inflammatory and antinociceptive activities of H. inuloides in different pharmacological models (Gené et al. 1998, Delgado et al. 2001, Maldonado-López et al. 2008, Egas et al. 2015, Rodríguez-Chávez et al. 2015a). The anti-inflammatory activity of H. inuloides has been associated to the presence of quercetin and sesquiterpenes (Delgado et al. 2001, Maldonado-López et al. 2008). The hepatoprotective and chemopreventive activities of H. inuloides are associated with the antioxidant activity of quercetin, one of the main compounds of this plant (Coballase-Urrutia et al. 2011, Ruiz-Pérez et al. 2014). The cytotoxic properties, chelating, and tyrosinase inhibitory activity of H. inuloides have been described (Rodríguez-Chávez et al. 2017). Infusions of this plant showed antioxidant activity in vitro (Coballase-Urrutia et al. 2010, Rodríguez-Chávez et al. 2015a, Rodríguez-Chávez et al. 2015c).

Traditional medicinal uses and the pharmacological activities of compounds. Many studies on Asteraceae around the world focused on chemical analysis, have nearly isolated 7,000 different compounds (Panda & Luyten 2018). Ethnopharmacological studies have been useful in the identification of phytochemical compounds since they involve the characterization and isolation of compounds with pharmacological activity. The Asteraceae family in Mexican traditional medicine is mainly used in the treatment of gastrointestinal and respiratory diseases due to its antimicrobial activity (Murillo-Álvarez et al. 2001, Canales et al. 2005, Calzada et al. 2009, Salazar-Aranda et al. 2011, Rosas-Piñón et al. 2012, Robles-Zepeda et al. 2013). The use of this family in Mexico for the treatment of diseases related to the digestive system is similar to other countries as Nepal, New Zealand, and South Africa, where several of its species are used to treat infectious diseases (Saslis-Lagoudakis et al. 2011). The frequent use of Asteraceae as antimicrobial resources in different cultures highlights the importance of the family in the entire world and reveal cultural and chemical patterns where common traditional uses are similar in plant groups to treat related conditions or diseases.

The presence of secondary metabolites in Asteraceae as polyacetylenes and flavonoids with antibacterial and bacteriostatic activities, confirm the traditional medicine use of the family in the treatment of infectious diseases (Heinrich et al. 1998, Calabria et al. 2009). In the reviewed studies, some compounds with antimicrobial activities have been identified, especially those against bacteria causing infectious diseases, such as diarrhea, pneumonia, and tuberculosis. Research related to new natural antibiotics has a crucial worldwide interest, due to bacterial resistance. Microorganisms responsible for worrying and often fatal infections such as Candida albicans, Escherichia coli, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumonia, and Trypanosoma spp. are a worldwide concern, highlighting the importance of antibiotics research to treat these diseases (OMS 2016). Natural products have been a source of bactericides in traditional medicine, and they have been served as potential therapeutics against pathogenic bacteria since the golden age of antibiotics in the mid-20th century (Rossiter et al. 2017). However, the exploration of natural products as a source for new antibiotics has been greatly reduced over the past 20 years (Silver 2015).

The main pharmacological activity in the reviewed studies is antimicrobial. The ent-trachyloban-19-oic acid, isolated from the roots of Iostephane heterophylla (Figure 3C), is a potent antibacterial agent in the treatment of oral pathogens as Streptococcus mutans (Hernández et al. 2012). Two SQLs identified in Ambrosia confertiflora, santamarine and reynosin have bactericidal activity against Mycobacterium tuberculosis (Coronado-Aceves et al. 2016). Thymol esters of different short-chain fatty acids are the active principles for antimicrobial activity of Hofmeisteria schaffneri (Figure 3B) against Bacillus subtilis, Candida albicans, and Staphylococcus aureus, three of the main microorganisms responsible for several infections (Pérez-Vásquez et al. 2011). Essential oil and 5-(3-buten-1-ynyl)-2, 2'-bithieny of Chrysactinia mexicana (Figure 3A) have antibacterial activity against Streptococcus pneumoniae, one of the major agents of infectious diseases of the respiratory tract and resistant to penicillin (Guevara Campos et al. 2011). The encecalin and demethylencecalin isolated from Helianthella quinquenervis exhibited antifungal activity against Trichophyton mentagrophytes responsible for various skin infections (Castañeda et al. 1996). Ambrosin and incomptine B, two SQLs, isolated from Parthenium hysterophorus (Figure 3D) and Decachaeta incompta possess high trypanocidal activity. Both compounds are more effective than the current trypanocidal drugs used clinically (Sepúlveda-Robles et al. 2019).

Figure 3 Some important Asteraceae to the ethnopharmacology in Mexico. A) Chrysactinia mexicana (Tageteae), B) Hofmeisteria schaffneri (Eupatorieae), C) Iosthephane heterophylla (Heliantheae), D) Parthenium hysterophorus (Heliantheae). Images from Enciclovida. Credits: A) Arturo Cruz, B) Ignacio Vargas, C) Guillermo Ibarra, D) Aaron Balam. 

Other pharmacological activities evaluated in the reviewed studies were cytotoxicity, anti-inflammatory, analgesic, antioxidant, and spasmolytic (Table 1). The hofmeisterin III and other thymyl derivatives are the main antinociceptive agents from Hofmeisteria schaffneri (Figure 3B) (Angeles-López et al. 2010). In Calea ternifolia used in the treatment of diabetes, the chromenes 1 and 2, caleins A, and C compounds were identified. These compounds reduced the postprandial hyperglycemia, one of the most common abnormalities in the early phase of type 2 diabetes (Escandón-Rivera et al. 2017). Vernonia liatroides endemic to Mexico and used in menstrual disorders and dysentery, have been identified the sesquiterpenes α-methylene γ-lacton, which has muscle relaxant activity in animal models (Campos et al. 2003). Two species have been tested against cancer cell lines, Gonzalezia decurrens, which has displayed cytotoxic activity against colon cancer in vitro (Marquina et al. 2001), and Smallanthus maculatus, from which ursolic acid was isolated and showed cytotoxic activity against cancer cell lines (Jacobo-Herrera et al. 2016).

Limitations of the reviewed studies. In the current review, 43 % of the studies report pharmacological activities but the responsible compounds have not been identified, and some species were studied only once. For example, Artemisia ludoviciana is one of the most studied species and its potent antimicrobial activity has been assessed, but the responsible compounds have not been identified. In the other hand, 8 % of the studies are phytochemical characterizations where the pharmacological activity of the compounds was not assessed.

The WHO (2018) recommends that ethnopharmacological studies of medicinal plants should be supported by information of herbarium specimen, used part of the plant, traditional preparation, among others. However, in our review, 47 studies do not include information on herbarium specimens and/or traditional uses, so the identification of the studied species cannot be corroborated. Providing this information is crucial, especially since the ultimate goal of ethnopharmacological studies is to ensure the safe and correct use of herbal remedies (Davidson et al. 2013, Helmstädter & Staiger 2014, Helmstädter 2017).

There are other impediments to using ethnopharmacology in the drug discovery process that limit the growth of herbal medicine as an industry to perform bioprospecting, as the generational loss of traditional medicine knowledge, loss of biodiversity, over-exploitation, and a historic lack of a legal framework on the use of medicinal plants (Buenz et al. 2018, Mata et al. 2019). In addition, studies on medicinal plants should involve a sustainable approach based on traditional knowledge, regulation, and quality control as essential points the development of a rational use of traditional medicine and herbal remedies (Buenz et al. 2018, Mata et al. 2019).

Acknowledgments

We want to thank the anonymous reviewers and section editor who their comments helped us to improve the structure of this review.

Literature cited

Acosta-Madrid II, Castañeda-Hernández G, Cilia-López VG, Cariño-Cortés R, Pérez-Hernández N, Fernández-Martínez E, Ortiz MI. 2009. Interaction between Heliopsis longipes extract and diclofenac on the thermal hyperalgesia test. Phytomedicine 16: 336-341. DOI: https://doi.org/10.1016/j.phymed.2008.12.014 [ Links ]

Aguilar MI, Delgado G, Hernández ML Villarreal ML. 2001. Bioactive compounds from Iostephane heterophylla (Asteraceae). Natural Product Letters 15: 93-101. DOI: https://doi.org/10.1080/10575630108041265 [ Links ]

Aguilar MI, Osorio N, Bernal I, Navarrete A, Bye R. 2007. Development and validation of a liquid chromatography method for quantification of xanthorrhizol in roots of Iostephane heterophylla (Cav.) Benth ex Hemsl. Journal of AOAC International 90: 892-896. https://doi.org/10.1093/jaoac/90.4.892 [ Links ]

Aguilar-Guadarrama B, Navarro V, León-Rivera I, Ríos MY. 2009. Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bustamenta. Natural Products Research 23: 1559-1565. DOI: https://doi.org/10.1080/14786410902843301 [ Links ]

Aguirre-Crespo F, Castillo-España P, Villalobos-Molina R, López-Guerrero JJ, Estrada-Soto S. 2005. Vasorelaxant effect of Mexican medicinal plants on isolated rat aorta. Pharmaceutical Biology. 43: 540-546. DOI: https://doi.org/10.1080/13880200500220839 [ Links ]

Alarcón-Aguilar FJ, Fortis-Barrera A, Angeles-Mejía S, Banderas-Dorantes TR, Jasso-Villagómez EI, Almanza-Pérez JC, Blancas-Flores G, Zamilpa A, Díaz-Flores M, Román-Ramos R. 2010. Anti-inflammatory and antioxidant effects of a hypoglycemic fructan fraction from Psacalium peltatum (H.B.K.) Cass. in streptozotocin-induced diabetes mice. Journal of Ethnopharmacology 132: 400-407. DOI: https://doi.org/10.1016/j.jep.2010.08.003 [ Links ]

Alonso-Castro A, Villarreal ML, Salazar-Olivo LA, Gómez-Sánchez M, Domínguez F, García-Carranca A. 2011. Mexican medicinal plants used for cancer treatment: Pharmacological phytochemical and ethnobotanical studies. Journal of Ethnopharmacology 133: 945-972. DOI: https://doi.org/10.1016/j.jep.2010.11.055 [ Links ]

Alonso-Castro AJ, González-Chávez MM, Zapata-Morales JR, Verdinez-Portales AK, Sánchez-Recillas A, Ortiz-Andrade R, Isiordia-Espinoza M, Martínez-Gutiérrez F, Ramírez-Morales MA, Domínguez F, Juache-Flores ME, Martínez R. 2017. Antinociceptive activity of ent-dihydrotucumanoic acid isolated from Gymnosperma glutinosum Spreng Less. Drug Development Research 78: 340-348. DOI: https://doi.org/10.1002/ddr.21397 [ Links ]

Anaya-Eugenio GD, Rivero-Cruz I, Rivera-Chávez J, Mata R. 2014. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. Journal of Ethnopharmacology 155: 416-425. DOI: https://doi.org/10.1016/j.jep.2014.05.051 [ Links ]

Anaya-Eugenio GD, Rivero-Cruz I, Bye R, Linares E, Mata R. 2016. Antinociceptive activity of the essential oil from Artemisia ludoviciana. Journal of Ethnopharmacology 179: 403-411. DOI: https://doi.org/10.1016/j.jep.2016.01.008 [ Links ]

Angeles-López G, Pérez-Vásquez A, Hernández-Luis F, Déciga-Campos M, Bye R, Linares E, Mata R. 2010. Antinociceptive effect of extracts and compounds from Hofmeisteria schaffneri. Journal of Ethnopharmacology 131: 425-432. DOI: https://doi.org/10.1016/j.jep.2010.07.009 [ Links ]

Arciniegas A, Pérez-Castorena AL, Reyes S, Contreras JL, Romo de Vivar A. 2003. New oplopane and eremophilane derivatives from Robinsonecio gerberifolius. Journal of Natural Products 66: 225-229. DOI: https://doi.org/10.1021/np0203739 [ Links ]

Arciniegas A, Pérez-Castorena AL, Villaseñor JL, Romo de Vivar A. 2006a. Cacalol derivatives from Roldana angulifolia. Journal of Natural Products 69: 1826-1829. DOI: https://doi.org/10.1021/np0604073 [ Links ]

Arciniegas A, Pérez-Castorena AL, Cuevas G, del Río-Portilla F, Romo de Vivar A. 2006b. Eremophilane esters of Robinsonecio gerberifolius and their rearranged products. Study of the coupling constants2JH, H,3JH, H and 4JH, H. Magnetic Resonance in Chemistry. 44: 30-34. DOI: https://doi.org/10.1002/mrc.1719 [ Links ]

Arciniegas A, Polindara LA, Pérez-Castorena AL, García AM, Ávila G, Villaseñor JL, Romo de Vivar A. 2011. Chemical composition and biological activity of Laennecia schiedeana. Zeitschrift fuer Naturforschung C 66: 115-122. DOI: https://doi.org/10.1515/znc-2011-3-404 [ Links ]

Arriaga-Alba A, Rios MY, Déciga-Campos M. 2013. Antimutagenic properties of affinin isolated from Heliopsis longipes extract. Pharmaceutical Biology 51: 1035-1039. DOI: https://doi.org/10.3109/13880209.2013.775161 [ Links ]

Arroyo AR, Chacon B, Maki KA. 2004. Screening and selection of plants by positive pharmacologic effect on jejunum muscular contractility. Pharmaceutical Biology 42: 24-29. DOI: https://doi.org/10.1080/13880200490505357 [ Links ]

Astudillo-Vázquez A, Dávalos-Valle H, De Jesús L, Herrera G, Navarrete A. 2008. Investigation of Alternanthera repens and Bidens odorata on gastrointestinal disease. Fitoterapia 79: 577-580. DOI: https://doi.org/10.1016/j.fitote.2008.07.001 [ Links ]

Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. 2000. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochemical Pharmacology 59: 1387-94. DOI: https://doi.org/10.1016/S0006-2952(00)00264-1 [ Links ]

Avelino-Flores MCG, Bibbins-Martínez MD, Vallejo-Ruiz V, Reyes-Leyva J. 2019. Evaluación in vitro de la actividad citotóxica y antitumoral de plantas medicinales recomendadas en Cuetzalan del Progreso, Puebla, México. Polibotánica 47: 113-135. DOI: https://doi.org/10.18387/polibotanica.47.9 [ Links ]

Ávila-Uribe MM, García-Zárate SN, Sepúlveda-Barrera AS, Godínez-Rodríguez MA. 2016. Plantas medicinales en dos poblados del municipio de San Martín de las Pirámides, Estado de México. Polibotánica 42: 215-245. DOI: https://doi.org/10.18387/polibotanica.42.11 [ Links ]

Ávila-Villarreal G, González-Trujano ME, Carballo-Villalobos AI, Aguilar-Guadarrama B, García-Jiménez S, Giles-Rivas DE, Castillo-España P, Villalobos-Molina R, Estrada-Soto S. 2016. Anxiolytic-like effects and toxicological studies of Brickellia cavanillesii (Cass.) A. Gray in experimental mice models. Journal of Ethnopharmacology 192: 90-98. DOI: https://doi.org/10.1016/j.jep.2016.07.006 [ Links ]

Barrera-Figueroa BE, Loeza-Lara PD, Hernández-García A, López-Meza JE, Molina-Torres J, del Río-Torres REN, Martínez-Pacheco MM, López-Gómez R, Salgado-Garciglia R. 2011. Antibacterial activity of flower extracts from Helenium mexicanum H.B.K. Emirates Journal of Food & Agriculture 23: 258-264. [ Links ]

Bautista E, Calzada F, Yepez-Mulia L, Chavez-Soto M, Ortega A. 2012. Incomptines C and D, two heliangolides from Decachaeta incompta and their antiprotozoal activity. Planta Medica 78: 1698-1701. DOI: https://doi.org/10.1055/s-0032-1315255 [ Links ]

Bonilla-Jaime H, Guadarrama-Cruz G, Alarcon-Aguilar FJ, Limón-Morales O, Vázquez-Palacios G. 2015. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors. Journal of Natural Medicines 69: 463-470. DOI: https://doi.org/10.1007/s11418-015-0909-5 [ Links ]

Bork PM, Schmitz ML, Weimann C, Kist M, Heinrich M. 1996. Nahua Indian medicinal plants (Mexico): Inhibitory activity on NF-κB as an anti-inflammatory model and antibacterial effects. Phytomedicine 3: 263-269. DOI: https://doi.org/10.1016/S0944-7113(96)80064-X [ Links ]

Buenz EJ, Verpoorte R, Bauer BA. 2018. The ethnopharmacologic contribution to bioprospecting natural products. Annual Review of Pharmacology and Toxicology 58: 509-530. DOI: https://doi.org/10.1146/annurev-pharmtox-010617-052703 [ Links ]

Buitimea-Cantúa GV, Buitimea-Cantúa NE, Rocha-Pizaña MR, Rosas-Burgos EC, Hernández-Morales A, Molina-Torres J. 2020. Antifungal and anti-aflatoxigenic activity of Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus by down regulating the expression of alfD and aflR genes of the aflatoxins biosynthetic pathway. Journal of Environmental Science and Health, Part B 55: 210-219. DOI: https://doi.org/10.1080/03601234.2019.1681818 [ Links ]

Cabrera RL. 2001. Six new species of Acourtia (Asteraceae) and a historical account of Acourtia mexicana. Brittonia 53: 416-429. DOI: https://doi.org/10.1007/BF02809796 [ Links ]

Calabria LM, Emerenciano VP, Scotti MT, Mabry TJ. 2009. Secondary chemistry of Compositae. In: Funk VA, Sussana A, Stuessy TF, Bayer RJ, eds. Systematics, Evolution and Biogeography of the Compositae. Vienna, Austra: International Association for Plant Taxonomy (IAPT). pp. 73-88. ISBN 978-3-9501754-3-1 [ Links ]

Calzada F, Meckes M, Cedillo-Rivera R, Tapia-Contreras A, Mata R. 1998. Screening of Mexican medicinal plants for antiprotozoal activity. Pharmaceutical Biology 36: 305-309. DOI: https://doi.org/10.1076/phbi.36.5.305.4653 [ Links ]

Calzada F, Cedillo-Rivera R, Mata R. 2001. Antiprotozoal activity of the constituents of Conyza filaginoides. Journal of Natural Products 64: 671-673. DOI: https://doi.org/10.1021/np000442o [ Links ]

Calzada F, Yépez-Mulia L, Tapia-Contreras A. 2007. Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalis trophozoites. Journal of Ethnopharmacology 113: 248-251. DOI: https://doi.org/10.1016/j.jep.2007.06.001 [ Links ]

Calzada F, Yepez-Mulia L, Tapia-Contreras A, Ortega A. 2009. Antiprotozoal and antibacterial properties of Decachaeta incompta. Revista Latinoamericana de Química 37: 97-103. [ Links ]

Calzada F, Arista R, Pérez H. 2010. Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal-gum acacia-induced hyperperistalsis in rats. Journal of Ethnopharmacology 128: 49-51. DOI: https://doi.org/10.1016/j.jep.2009.12.022 [ Links ]

Campos M, Oropeza M, Ponce H, Fernández J, Jiménez-Estrada M, Torres H, Reyes-Chilpa R. 2003. Relaxation of uterine and aortic smooth muscle by glaucolides D and E from Vernonia liatroides. Biological and Pharmaceutical Bulletin 26: 112-115. DOI: https://doi.org/10.1248/bpb.26.112 [ Links ]

Campos-Bedolla P, Montaño LM, Flores-Soto E, Aguilar A, Puebla AM, Lozoya X, Vargas MH. 2005. Effect of Gnaphalium conoideum HBK on guinea pig airway smooth muscle: role of L-type Ca2+ channels. Journal of Ethnopharmacology 97: 267-272. DOI: https://doi.org/10.1016/j.jep.2004.11.005 [ Links ]

Canales M, Hernández T, Caballero J, Romo de Vivar A, Ávila G, Duran A, Lira R. 2005. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. Journal of Ethnopharmacology 97: 429-439. DOI: https://doi.org/10.1016/j.jep.2004.11.013 [ Links ]

Canales M, Hernández T, Serrano R, Hernández LB, Duran A, Ríos V, Sigrist S, Hernández HL, García AM, Angeles-López O, Fernández-Araiza MA, Ávila G. 2007. Antimicrobial and general toxicity activities of Gymnosperma glutinosum: A comparative study. Journal of Ethnopharmacology 110: 343-347. DOI: https://doi.org/10.1016/j.jep.2006.10.002 [ Links ]

Canales M, Hernández T, Rodríguez-Monroy MA, Jiménez-Estrada M, Flores CM, Hernández LB, Gijón IC, Quiroz S, García AM, Ávila G. 2008. Antimicrobial activity of the extracts and essential oil of Viguiera dentata. Pharmaceutical Biology 46: 719-723. DOI: https://doi.org/10.1080/13880200802215727 [ Links ]

Cárdenas J, Reyes-Pérez V, Hernández-Navarro MD, Dorantes-Barrón AM, Almazán S, Estrada-Reyes R. 2017. Anxiolytic and antidepressant-like effects of an aqueous extract of Tanacetum parthenium L. Schultz-Bip (Asteraceae) in mice. Journal of Ethnopharmacology 200: 22-30. DOI: https://doi.org/10.1016/j.jep.2017.02.023 [ Links ]

Cariño-Cortés R, Gayosso-De-Lucio JA, Ortiz MI, Sánchez-Gutiérrez M, García-Reyna PB, Cilia-López VG, Pérez-Hernández N, Moreno E, Ponce-Monter H. 2010. Antinociceptive, genotoxic and histopathological study of Heliopsis longipes S.F. Blake in mice. Journal of Ethnopharmacology 130: 216-221. DOI: https://doi.org/10.1016/j.jep.2010.04.037 [ Links ]

Carro-Juárez M, Cervantes E, Cervantes-Méndez M, Rodríguez-Manzo G. 2004. Aphrodisiac properties of Montanoa tomentosa aqueous crude extract in male rats. Pharmacology, Biochemistry and Behavior 78: 129-134. DOI: https://doi.org/10.1016/j.pbb.2004.03.001 [ Links ]

Carro-Juárez M, Alcázar C, Ballesteros-Polvo E, Villalobos-Peñalosa P. 2009. Increase of ejaculatory capacity by systemic administration of the oquichpatli (Senecio cardiophyllus) aqueous crude extract in male rats. Journal of Ethnopharmacology 126: 506-511. DOI: https://doi.org/10.1016/j.jep.2009.09.006 [ Links ]

Carro-Juárez M, Rodríguez-Landa JF, Rodríguez-Peña ML, Rovirosa-Hernández MJ, García-Orduña F. 2012. The aqueous crude extract of Montanoa frutescens produces anxiolytic-like effects similarly to diazepam in Wistar rats: Involvement of GABAA receptor. Journal of Ethnopharmacology 143: 592-598. DOI: https://doi.org/10.1016/j.jep.2012.07.022 [ Links ]

Carro-Juárez M, Franco MA, Rodríguez-Peña ML. 2014. Increase of the ejaculatory potency by the systemic administration of aqueous crude extracts of cihuapatli (Montanoa Genus) plants in spinal male rats. Journal of Evidence-Based Complementary & Alternative Medicine 19: 43-50. DOI: https://doi.org/10.1177/2156587213510006 [ Links ]

Carvalho Jr AR, Diniz RM, Suarez MAM, Figueiredo CSSS, Zagmignan A, Grisotto MAG, Fernandes ES, da Silva LCN. 2018. Use of some Asteraceae plants for the treatment of wounds: from ethnopharmacological studies to scientific evidences. Frontiers in Pharmacology 9: 784. DOI: https://doi.org/10.3389/fphar.2018.00784 [ Links ]

Casas A, Lira R, Torres I, Delgado A, Moreno-Calles AI, Rangel-Landa S, Blancas J, Larios C, Solís L, Pérez-Negrón E, Vallejo M, Parra F, Farfán-Heredia B, Arellanes Y, Campos N. 2016. Ethnobotany for sustainable ecosystem management: a regional perspective in the Tehuacán Valley. In: Lira R, Casas C, Blancas J eds. Ethnobotany of Mexico Interactions of People and Plants in Mesoamerica. New York, Springer Netherlands, pp. 179-206. DOI: https://doi.org/10.1007/978-1-4614-6669-7; ISBN: 978-1-4939-7935-6 [ Links ]

Cassani J, Ferreyra-Cruz OA, Dorantes-Barrón AM, Vigueras-Villaseñor RM, Arrieta-Baez D, Estrada-Reyes R. 2015. Antidepressant-like and toxicological effects of a standardized aqueous extract of Chrysactinia mexicana A. Gray (Asteraceae) in mice. Journal of Ethnopharmacology 171: 295-306. DOI: https://doi.org/10.1016/j.jep.2015.05.055 [ Links ]

Castañeda P, Gómez L, Mata R, Lotina-Hennsen B, Anaya AL, Bye R. 1996. Phytogrowth-inhibitory and antifungal constituents of Helianthella quinquenervis. Journal of Natural Products 59: 323-326. DOI: https://doi.org/10.1021/np960199m [ Links ]

Castillo-Juárez I, González V, Jaime-Aguilar H, Martínez G, Linares E, Bye R, Romero I. 2009. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Journal of Ethnopharmacology 122: 402-405. DOI: https://doi.org/10.1016/j.jep.2008.12.021 [ Links ]

Castro-Ruiz JE, Rojas-Molina A, Luna-Vázquez FJ, Rivero-Cruz F, García-Gasca T, Ibarra-Alvarado C. 2017. Affinin (Spilanthol) isolated from Heliopsis longipes, induces vasodilation via activation of gasotransmitters and prostacyclin signaling pathways. International Journal of Molecular Sciences 18: 218. DOI: https://doi.org/10.3390/ijms18010218 [ Links ]

Céspedes CL, Avila J, Martinez A, Serrato B, Calderon-Mugica JC, Salgado-Garciglia R. 2006. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agriculture and Food Chemistry 54: 3521-3527. DOI: https://doi.org/10.1021/jf053071w [ Links ]

Cilia-López VG, Aguirre-Rivera JR, Reyes-Agüero JA, Juárez-Flores BI. 2008. Etnobotánica de Heliopsis longipes (Asteraceae: Heliantheae). Boletin de la Sociedad Botánica de México 83: 81-87. DOI: https://doi.org/10.17129/botsci.1790 [ Links ]

Cilia-López VG, Juárez-Flores BI, Aguirre-Rivera JR, Reyes-Agüero JA. 2010. Analgesic activity of Heliopsis longipes and its effect on the nervous system. Pharmaceutical Biology 48: 195-200. DOI: https://doi.org/10.3109/13880200903078495 [ Links ]

Coballase-Urrutia E, Pedraza-Chaverri J, Camacho-Carranza R, Cárdenas-Rodríguez N, Huerta-Gertrudis B, Medina-Campos ON, Mendoza-Cruz M, Delgado-Lamas G, Espinosa-Aguirre JJ. 2010. Antioxidant activity of Heterotheca inuloides extracts and of some of its metabolites. Journal of Ethnopharmacology 276: 41-48. DOI: https://doi.org/10.1016/j.tox.2010.06.013 [ Links ]

Coballase-Urrutia E, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Huerta-Gertrudis B, García-Cruz ME, Ramírez-Morales A, Sánchez-González DJ, Martínez-Martínez CM, Camacho-Carranza R, Espinosa-Aguirre JJ. 2011. Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl(4)-induced toxicity in rats. Experimental and Toxicolic Pathology 63: 363-70. DOI: https://doi.org/10.1016/j.etp.2010.02.012 [ Links ]

Coronado-Aceves EW, Velázquez C, Robles-Zepeda RE, Jiménez-Estrada M, Hernández-Martínez J, Gálvez-Ruiz JC, Garibay-Escobar A. 2016. Reynosin and santamarine: two sesquiterpene lactones from Ambrosia confertiflora with bactericidal activity against clinical strains of Mycobacterium tuberculosis. Pharmaceutical Biology 54: 2623-2628 DOI: https://doi.org/10.3109/13880209.2016.1173067 [ Links ]

Cortes-Morales JA, Olmedo-Juárez A, Trejo-Tapia G, González-Cortazar M, Domínguez-Mendoza BE, Mendoza-de Gives P, Zamilpa A. 2019. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Experimental Parasitology 197: 20-28. DOI: https://doi.org/10.1016/j.exppara.2019.01.003 [ Links ]

Cruz-Reyes A, Chavarin C, Campos-Arias MP, Taboada J, Jimenez M. 1989. Molluscacide activity of piquerol isolated from Piqueria trinervia (Compositae) on 8 species of pulmonate snails. Memórias do Instituto Oswaldo Cruz 84: 35-40. DOI: https://doi.org/10.1590/S0074-02761989000100007 [ Links ]

Damián-Badillo LM, Salgado-Garciglia R, Martinez-Muñoz RE, Martínes-Pacheco MM. 2008. Antifungal properties of some Mexican medicinal plants. The Open Natural Products Journal 1: 27-33. DOI: https://doi.org/10.2174/1874848100801010027 [ Links ]

Davidson E, Vlachojannis J, Cameron M, Chrubasik S. 2013. Best available evidence in Cochrane reviews on herbal medicine?. Evidence-Based Complementary and Alternative Medicine 2013: 163412. DOI: https://doi.org/10.1155/2013/163412 [ Links ]

de la Rosa-Lugo V, Acevedo-Quiroz M, Déciga-Campos M, Rios MY. 2017. Antinociceptive effect of natural and synthetic alkamides involves TRPV1 receptors. Journal of Pharmacy and Pharmacology 69: 884-895. DOI: https://doi.org/10.1111/jphp.12721 [ Links ]

de la Torre Rodríguez YC, Martínez Estrada FR, Flores Suarez AE, Waksman-de Torres TN, Salazar-Aranda R. 2013. Larvicidal and cytotoxic activities of extracts from 11 native plants from Northeastern Mexico. Journal of Medical Entomology 50: 310-313. DOI: https://doi.org/10.1603/ME12056 [ Links ]

Déciga-Campos M, Ríos MY, Aguilar-Guadarrama AB. 2010. Antinociceptive effect of Heliopsis longipes extract and affinin in mice. Planta Medica 76: 665-670. DOI: https://doi.org/10.1055/s-0029-1240658 [ Links ]

Delgado G, Olivares MS, Chávez MI, Ramírez-Apan T, Linares E, Bye R, Espinosa-García FJ. 2001. Antiinflammatory constituents from Heterotheca inuloides. Journal of Natural Products 64: 861-864. DOI: https://doi.org/10.1021/np0005107 [ Links ]

Delgado-Altamirano R, Monzote L, Piñón-Tápanes A, Vibrans H, Rivero-Cruz JF, Ibarra-Alvarado C, Rojas-Molina A. 2017. In vitro antileishmanial activity of Mexican medicinal plants. Heliyon 3: e00394. DOI: https://doi.org/10.1016/j.heliyon.2017.e00394 [ Links ]

Domínguez M, Nieto A, Marin JC, Keck AS, Jeffery E, Céspedes CL. 2005. Antioxidant Activities of extracts from Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae). Journal of Agricultural and Food Chemistry. 53: 5889-5895. DOI: https://doi.org/10.1021/jf0504972 [ Links ]

Egamberdieva D, Teixeira da Silva JA. 2015. Medicinal plants and PGPR: A new frontier for phytochemicals. In: Egamberdieva D, Shrivastava S, Varma A, eds. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Switzerland: Springer International Publishing, pp. 287-303 DOI: https://doi.org/10.1007/978-3-319-13401-7_14 [ Links ]

Egas V, Toscano RA, Linares E, Bye R, Espinosa-García FJ, Delgado G. 2015. Cadinane-type sesquiterpenoids from Heterotheca inuloides: absolute configuration and anti-inflammatory activity. Journal of Natural Products. 78: 2634-2641. DOI: https://doi.org/10.1021/acs.jnatprod.5b00571 [ Links ]

Egas V, Salazar-Cervantes G, Romero I, Méndez-Cuesta C, Rodríguez-Chávez JL, Delgado G. 2018. Anti-Helicobacter pylori metabolites from Heterotheca inuloides (Mexican arnica). Fitoterapia 127: 314-321. DOI: https://doi.org/10.1016/j.fitote.2018.03.001 [ Links ]

Enciso-Díaz OJ, Méndez-Gutiérrez A, Hernández JL, Sharma A, Villarreal ML, Cardoso-Taketa A. 2012. Antibacterial activity of Bougainvillea glabra, Eucalyptus globulus, Gnaphalium attenuatum, and Propolis collected in Mexico. Pharmacology & Pharmacy 3: 433-438. DOI: https://doi.org/10.4236/pp.2012.34058 [ Links ]

Escandón-Rivera S, González-Andrade M, Bye R, Linares E, Navarrete A, Mata R. 2012. α-glucosidase inhibitors from Brickellia cavanillesii. Journal of Natural Products 75: 968-974. DOI: https://doi.org/10.1021/np300204p [ Links ]

Escandón-Rivera S, Pérez-Vásquez A, Navarrete A, Hernández M, Linares E, Bye R, Mata R. 2017. Anti-hyperglycemic activity of major compounds from Calea ternifolia. Molecules 22: 2017. DOI: https://doi.org/10.3390/molecules22020289 [ Links ]

Escobedo-Martínez C, Guzmán-Gutiérrez SL, Hernández-Méndez MM, Cassani J, Trujillo-Valdivia A, Orozco-Castellanos LM, Enríquez RG. 2017. Heliopsis longipes: anti-arthritic activity evaluated in a Freund’s adjuvant-induced model in rodents. Revista Brasileira de Farmacognosia 27: 214-219. DOI: https://doi.org/10.1016/j.bjp.2016.09.003 [ Links ]

Espejo-Serna A, López-Ferrari AR, Salgado-Ugarte I. 2004. A current estimate of angiosperm diversity in Mexico. Biodiversity and Conservations 53: 127-130. DOI: https://doi.org/10.2307/4135497 [ Links ]

Estrada-Camarena E, Sollozo-Dupont I, Islas-Preciado D, González-Trujano ME, Carro-Juárez M, López-Rubalcava C. 2019. Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): dependence on the endocrine condition. Journal of Ethnopharmacology 241: 112006. DOI: https://doi.org/10.1016/j.jep.2019.112006 [ Links ]

Estrada-Castillón E, Villarreal-Quintanilla JA. 2010. Flora del centro del estado de Chihuahua, México. Acta Botanica Mexicana 92: 51-118. DOI: https://doi.org/10.21829/abm92.2010.283 [ Links ]

Estrada-Castillón E, Garza-López M, Villarreal-Quintanilla JA, Salinas-Rodríguez MM, Soto-Mata BE, González-Rodríguez H, González-Uribe DU, Cantú-Silva I, Carrillo-Parra A, Cantú-Ayala C. 2012. Ethnobotany in Rayones, Nuevo León, México. Journal of Ethnobiology and Ethnomedicine. 10: 62. DOI: https://doi.org/10.1186/1746-4269-10-62 [ Links ]

Estrada-Soto S, Sánchez-Recillas A, Navarrete-Vázquez G, Castillo-España P, Villalobos-Molina R, Ibarra-Barajas M. 2012. Relaxant effects of Artemisia ludoviciana on isolated rat smooth muscle tissues. Journal of Ethnopharmacology 139: 513-518. DOI: https://doi.org/10.1016/j.jep.2011.11.041 [ Links ]

Firenzuoli F, Gori L. 2007. Herbal medicine today: Clinical and research issues. Frontiers in Pharmacology 4: 37-40. DOI: https://doi.org/10.1093/ecam/nem096 [ Links ]

Fischer HN, Lee IY, Fronczek FR, Chiari G, Urbatsch LE. 1984. Three new furanone-type heliangolides from Calea ternlfolla and the molecular structure of 8β-angeloyloxy-9α-hydroxycalyculatolide. Journal of Natural Products 47: 419-425. DOI: https://doi.org/10.1021/np50033a004 [ Links ]

Flores-San Martin D, Perea-Flores MJ, Morales-López J, Centeno-Alvarez MM, Pérez-Ishiwara G, Pérez-Hernández N, Pérez-Hernández E. 2013. Effect of Heterotheca inuloides essential oil on rat cytoskeleton articular chondrocytes. Natural Products Research 27: 2347-2350. DOI: https://doi.org/10.1080/14786419.2013.828289 [ Links ]

Frei B, Heinrich M, Bork PM, Herrmann D, Jaki B, Kato T, Kuhnt M, Schmitt J, Schühly W, Volken C, Sticher O. 1998. Multiple screening of medicinal plants from Oaxaca, Mexico: ethnobotany and bioassays as a basis for phytochemical investigation. Phytomedicine 5: 177-186. DOI: https://doi.org/10.1016/S0944-7113(98)80025-1 [ Links ]

Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK. 2005. Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter 55: 343-374. [ Links ]

Funk VA, Sussana A, Stuessy TF, Bayer RJ. 2009. Systematics, Evolution and Biogeography of the Compositae. Viena, Austria: International Association for Plant Taxonomy (IAPT). ISBN: 978-3-9501754-3-1 [ Links ]

Gallegos AJ. 1983. The zoapatle I - a traditional remedy from Mexico emerges to modern times. Contraception 27: 211-225. DOI: https://doi.org/10.1016/0010-7824(83)90001-X [ Links ]

Gao F, Miski M, Gage DA, Norris JA, Mabry TJ. 1985a. Terpenoid constituents of Viguiera dentata. Journal of Natural Products 48: 316-318. DOI: https://doi.org/10.1021/np50038a021 [ Links ]

Gao F, Miski M, Gage DA, Mabry TJ. 1985b. Terpenoids from Viguiera potosina. Journal of Natural Products 48: 489-490. DOI: https://doi.org/10.1021/np50039a026 [ Links ]

García-Sánchez CA, Sánchez-González A, Villaseñor JL. 2014. La familia Asteraceae en el Parque Nacional Los Mármoles, Hidalgo, México. Acta Botanica Mexicana 106: 97-116. DOI: https://doi.org/10.21829/abm106.2014.219 [ Links ]

Garduño-Ramírez ML, Trejo A, Navarro V, Bye R, Linares E, Delgado G. 2001. New modified eremophilanes from the roots of Psacalium radulifolium. Journal of Natural Products 64: 432-435. DOI: https://doi.org/10.1021/np000385z [ Links ]

Gené RM, Segura L, Adzet T, Marín E, Iglesias J. 1998. Heterotheca inuloides: Anti-inflammatory and analgesic effect. Journal of Ethnopharmacology 60: 157-162. DOI: https://doi.org/10.1016/S0378-8741(97)00155-4 [ Links ]

Gómez AR. 2012. Plantas medicinales en una aldea del estado de Tabasco, México. Revista de Fitotecnia Mexicana 35: 43-49. [ Links ]

Gómez-Flores R, Verástegui-Rodríguez L, Quintanilla-Licea R, Tamez-Guerra P, Monreal-Cuevas E, Tamez-Guerra R, Rodríguez-Padilla C. 2009. Antitumor properties of Gymnosperma glutinosum leaf extracts. Cancer Investigation 27: 149-155. DOI: https://doi.org/10.1080/07357900802192190 [ Links ]

Gómez‐Flores R, Quintanilla‐Licea R, Verde‐Star MJ, Morado‐Castillo R, Vázquez‐Díaz D, Tamez‐Guerra R, Tamez‐Guerra P, Rodríguez‐Padilla C. 2012. Long‐chain alkanes and ent‐labdane‐type diterpenes from Gymnosperma glutinosum with cytotoxic activity against the murine lymphoma L5178Y‐R. Phytotherphy Research 26: 1632-1636. DOI: https://doi.org/10.1002/ptr.4625 [ Links ]

Gómez-Flores R, Espinosa-Ramos D, Quintanilla-Licea R, Barrón-Gonzalez MP, Tamez-Guerra P, Tamez-Guerra R, Rodriguez-Padilla C. 2016. Antimicrobial activity of Gymnosperma glutinosum (Spreng.) Less. (Asteraceae) methanol extracts against Helicobacter pylori. African Journal of Traditional, Complementary and Alternative Medicines 13: 55-59. DOI: https://doi.org/10.21010/ajtcam.v13i4.9 [ Links ]

González-Trujano ME, Gutiérrez-Valentino C, Hernández-Arámburo MY, Díaz-Reval MI, Pellicer F. 2019. Identification of some bioactive metabolites and inhibitory receptors in the antinociceptive activity of Tagetes lucida Cav. Life Sciences 231: 116523. DOI: https://doi.org/10.1016/j.lfs.2019.05.079 [ Links ]

Guadarrama-Cruz G, Alarcón-Aguilar FJ, Lezama-Velasco R, Vázquez-Palacios G, Bonilla-Jaime H. 2008. Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test. Journal of Ethnopharmacology 120: 277-281. DOI: https://doi.org/10.1016/j.jep.2008.08.013 [ Links ]

Guadarrama-Cruz G, Alarcón-Aguilar FJ, Vega-Ávila E, Vázquez-Palacios G, Bonilla-Jaime H. 2012. Antidepressant-like effect of Tagetes lucida Cav. extract in rats: involvement of the serotonergic system. The American Journal of Chinese Medicine 40: 753-768. DOI: https://doi.org/10.1142/S0192415X12500565 [ Links ]

Guevara Campos BMM, Torres Cirio A, Rivas Galindo VM, Salazar Aranda R, Waksman de Torre N, Pérez-López LA. 2011. Activity against Streptococcus pneumoniae of the essential oil and 5-(3-buten-1-ynyl)-2, 2'-bithienyl isolated from Chrysactinia mexicana roots. Natural Products Communications 6: 1035-1038. DOI: https://doi.org/10.1177/1934578X1100600728 [ Links ]

Gutiérrez-Lugo MT, Barrientos-Benítez T, Luna B, Ramírez-Gama RM, Bye R, Linares E, Mata R. 1996. Antimicrobial and cytotoxic activities of some crude drug extracts from Mexican medicinal plants. Phytomedicine 2: 341-347 DOI: https://doi.org/10.1016/S0944-7113(96)80079-1 [ Links ]

Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. 1998. Ethnopharmacology of Mexican Asteraceae (Compositae). Annuals Review of Pharmacology and Toxicology 38: 539-565. DOI: https://doi.org/10.1146/annurev.pharmtox.38.1.539 [ Links ]

Helmstädter A. 2017. The botanical explorer’s legacy: a promising bioprospecting tool. Drug Discovery Today 22: 757-760. DOI: https://doi.org/10.1016/j.drudis.2016.11.011 [ Links ]

Helmstädter A, Staiger C. 2014. Traditional use of medicinal agents: a valid source of evidence. Drug Discovery Today 19: 4-7. DOI: https://doi.org/10.1016/j.drudis.2013.07.016 [ Links ]

Hernández T, Canales M, Ávila JG, Duran A, Caballero J, Romo de Vivar A, Lira R. 2003. Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). Journal of Ethnopharmacology 88: 181-188. DOI: https://doi.org/10.1016/S0378-8741(03)00213-7 [ Links ]

Hernández I, Márquez L, Martinez I, Dieguez R, Delporte C, Prieto S, Molina-Torres J, Garrido G. 2009. Anti-inflammatory effects of ethanolic extract and alkamides-derived from Heliopsis longipes roots. Journal of Ethnopharmacology 124: 649-652. DOI: https://doi.org/10.1016/j.jep.2009.04.060 [ Links ]

Hernández DM, Díaz-Ruiz G, Rivero-Cruz BE, Bye RA, Aguilar MI, J. Rivero-Cruz JF. 2012. Ent-trachyloban-19-oic acid isolated from Iostephane heterophylla as a promising antibacterial agent against Streptococcus mutans biofilms. Fitoterapia 83: 527-531. DOI: https://doi.org/10.1016/j.fitote.2011.12.022 [ Links ]

Hernández T, García-Bores AM, Serrano R, Ávila G, Dávila P, Cervantes H, Peñalosa I, Flores-Ortiz CM, Lira R. 2015. Fitoquímica y actividades biológicas de plantas de importancia en la medicina tradicional del Valle de Tehuacán-Cuicatlán. TIP Revista Especializada en Ciencias Químico-Biológicas 18: 116-121. DOI: https://doi.org/10.1016/j.recqb.2015.09.003 [ Links ]

Hernández-Cruz J, Luna-Cruz A, Loera-Alvarado E, Villanueva-Sánchez E, Landero-Valenzuela N, Zárate-Nicolás BH, Diego-Nava F, Granados-Echegoyen CA. 2019. Efficiency of the essential oil of Porophyllum linaria (Asteraceae) a Mexican endemic plant against Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Insect Science 19: 1-9 DOI: https://doi.org/10.1093/jisesa/iez079 [ Links ]

Hernández-Sánchez KM, Garduño-Siciliano L, Luna-Herrera J, Zepeda-Vallejo LG, Lagunas-Rivera S, García-Gutiérrez GE, Vargas-Díaz ME. 2018. Antimycobacterial and hypolipemiant activities of Bidens odorata (Cavanilles). Journal of Ethnopharmacology 222: 159-164. DOI: https://doi.org/10.1016/j.jep.2018.04.028 [ Links ]

Heywood VH, Harbome JB, Turner BL. 1977a. The Biology and Chemistry of the Compositae . Vol I. University of Texas. Texas, USA: Academic Press. 619 p. ISBN 0123468027, 9780123468024 [ Links ]

Heywood VH, Harbome JB, Turner BL. 1977b. The Biology and Chemistry of the Compositae. Vol II. University of Texas. Texas, Texas, USA: Academic Press. 1189 p. ISBN 0123468027, 9780123468024 [ Links ]

Jacobo-Herrera NJ, Jacobo-Herrera FE, Zentella-Dehesa A, Andrade-Cetto A, Heinrich M, Pérez-Plasencia C. 2016. Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. Journal of Ethnopharmacology 179: 391-402. DOI: https://doi.org/10.1016/j.jep.2015.12.042 [ Links ]

Jiménez-Arellanes A, Meckes M, Ramírez R, Torres J, Luna-Herrera J. 2003. Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases. Phytotherapy Research 17: 903-908. DOI: https://doi.org/10.1002/ptr.1377 [ Links ]

Juárez-Vázquez MC, Alonso-Castro AJ, Rojano-Vilchis N, Jiménez-Estrada M, García-Carrancá A. 2013 Maturin acetate from Psacalium peltatum (Kunth) Cass. (Asteraceae) induces immunostimulatory effects in vitro and in vivo. Toxicology in Vitro 27: 1001-1006. DOI: https://doi.org/10.1016/j.tiv.2013.01.021 [ Links ]

Kato T, Frei B, Heinrich M, Sticher O. 1996. Sesquiterpenes with antibacterial activity from Epaltes mexicana. Planta Medica 62: 66-67. DOI: https://doi.org/10.1055/s-2006-957803 [ Links ]

Knauth P, Acevedo-Hernández GJ, Cano ME, Gutiérrez-Lomelí M, López Z. 2018. In vitro bioactivity of methanolic extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. used in traditional medicine in Mexico. Evidence-Based Complementary and Alternative Medicine 2018: Article ID 3610364. DOI: http://doi.org/10.1155/2018/3610364 [ Links ]

Kostić AZ, Janaćković P, Kolašinac SM, Dajić-Stevanović ZP. 2020. Balkans’ Asteraceae species as a source of biologically active compounds for pharmaceutical and food industry. Chemistry & Biodiversity 17: e2000097. DOI: https://doi.org/10.1002/cbdv.202000097 [ Links ]

Lara Reimers EA, Fernández CE, Lara Reimers DJ, Chaloupkova P, Zepeda del Valle JM, Milella L, Russo D. 2019. An ethnobotanical survey of medicinal plants used in Papantla, Veracruz, Mexico. Plants 8: 246. DOI: https://doi.org/10.3390/plants8080246 [ Links ]

Leonti M, Ramírez RF, Sticher O, Heinrich M. 2003. Medicinal flora of the Popoluca, Mexico: a botanical systematical perspective. Economic Botany 57: 218-230. DOI: https://doi.org/10.1663/0013-0001(2003)057[0218:MFOTPM]2.0.CO;2 [ Links ]

Malagón F, Vázquez J, Delgado G, Ruiz A. 1997. Antimalaric effect of an alcoholic extract of Artemisia ludoviciana mexicana in a rodent malaria model. Parassitologia 39: 3-7. [ Links ]

Maldonado-López Y, Linares-Mazari E, Bye R, Delgado G, Espinosa-Garcia FJ. 2008. Mexican arnica anti-inflammatory action: plant age is correlated with the concentration of anti-inflammatory sesquiterpenes in the medicinal plant Heterotheca inuloides Cass. (Asteraceae). Economic Botany 62: 161-170. DOI: https://doi.org/10.1007/s12231-008-9015-x [ Links ]

Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA. 2019. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences 116: 14083-14088. DOI: https://doi.org/10.1073/pnas.1903871116 [ Links ]

Marín-Loaiza JC, Ávila JG, Canales M, Hernández T, Céspedes CL. 2008. Antifungal and antibacterial activities of endemic Pittocaulon spp. from Mexico. Pharmaceutical Biology 46: 66-71. DOI: https://doi.org/10.1080/13880200701734505 [ Links ]

Marín-Loaiza JC, Nieto-Camacho A, Céspedes CL. 2013. Antioxidant and anti-inflammatory activities of Pittocaulon species from México. Pharmaceutical Biology 51: 260-266. DOI: https://doi.org/10.3109/13880209.2012.718352 [ Links ]

Marquina S, Maldonado N, Garduño-Ramírez MA, Aranda E, Villarreal ML, Navarro V, Bye R, Delgado G, Alvarez L. 2001. Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens. Phytochemistry 56: 93-97. DOI: https://doi.org/10.1016/S0031-9422(00)00283-1 [ Links ]

Martínez AL, Madariaga-Mazón A, Rivero-Cruz I, Bye R, Mata R. 2017. Antidiabetic and antihyperalgesic effects of a decoction and compounds from Acourtia thurberi. Planta Medica 83: 534-544. DOI: https://doi.org/10.1055/s-0042-119652 [ Links ]

Martínez-Loredo E, Izquierdo-Vega JA, Cariño-Cortes R, Cilia-López VG, Madrigal-Santillán EO, Zuñiga-Pérez C, Valadez-Vega C, Moreno E, Sánchez-Gutiérrez M1. 2016. Effects of Heliopsis longipes ethanolic extract on mouse spermatozoa in vitro. Pharmaceutical Biology 54: 266-271. DOI: https://doi.org/10.3109/13880209.2015.1033560 [ Links ]

Mata R, Rodríguez V, Pereda-Miranda O, Kaneda N, Kinghorn D. 1992. Stevisalioside a, a novel bitter-tasting ent-atisene glycoside from the roots of Stevia salicifolia. Journal of Natural Products 55: 660-666. DOI: https://doi.org/10.1021/np50083a017 [ Links ]

Mata R, Martinez E, Bye R, Morales G, Singh MP, Janso JE, Maiese WM, Timmermann B. 2001. Biological and Mechanistic Activities of xanthorrizol and 4-(1’,5’-Dimethylhex-4’-enyl)-2-methylphenol Isolated from Iostephane heterophylla. Journal of Natural Products 64: 911-914. DOI: https://doi.org/10.1021/np010076o [ Links ]

Mata R, Rivero-Cruz I, Rivero-Cruz B, Bye R, Timmermann BN. 2002. Sesquiterpene lactones and phenylpropanoids from Cosmos pringlei. Journal of Natural Products 65: 1030-1032. DOI: https://doi.org/10.1021/np010615p [ Links ]

Mata R, Figueroa M, Navarrete A, Rivero-Cruz I. 2019. Chemistry and biology of selected Mexican medicinal plants. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi J, Asakawa Y, Liu JK eds. Progress in the Chemistry of Organic Natural Products 108: pp. 1-142 DOI: https://doi.org/10.1007/978-3-030-01099-7_1 [ Links ]

Meckes M, Calzada F, Paz D, Rodríguez J, Ponce-Monter H. 2002. Inhibitory effect of xanthomicrol and 3 alpha-angeloyloxy-2 alpha-hydroxy-13,14Z-dehydrocativic acid from Brickellia paniculata on the contractility of guinea-pig ileum. Planta Medica 68: 467-469. DOI: https://doi.org/10.1055/s-2002-32092 [ Links ]

Meckes M, David-Rivera AD, Nava-Aguilar V, Jiménez A. 2004. Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema. Phytomedicine 11: 446-451. DOI: https://doi.org/10.1016/j.phymed.2003.06.002 [ Links ]

Medina-López CF, Plascencia-Jatomea M, Cinco-Moroyoqui FJ, Yépiz-Gómez MS, Cortez-Rocha MO, Rosas-Burgos EC. 2016. Potentiation of antifungal effect of a mixture of two antifungal fractions obtained from Baccharis glutinosa and Jacquinia macrocarpa plants. Journal of Environmental Science and Health, Part B 51: 760-768. DOI: https://doi.org/10.1080/03601234.2016.1198641 [ Links ]

Meléndez Camargo ME, Berdeja B, Miranda G. 2004. Diuretic effect of the aqueous extract of Bidens odorata in the rat. Journal of Ethnopharmacology 95: 363-366. DOI: https://doi.org/10.1016/j.jep.2004.08.005 [ Links ]

Meléndez-Rodríguez M, Cerda-García-Rojas CM, Joseph-Nathan P. 2002. Quirogane, prenopsane, and patzcuarane skeletons obtained by photochemically induced molecular rearrangements of longipinene derivatives. Journal of Natural Products 65: 1398-1411. DOI: https://doi.org/10.1021/np020158s [ Links ]

Molina-Salinas GM, Ramos-Guerra MC, Vargas-Villarreal J, Mata-Cárdenas BD, Becerril-Montes P, Said-Fernández S. 2006. Bactericidal activity of organic extracts from Flourensia cernua DC against strains of Mycobacterium tuberculosis. Archives of Medical Research 37: 45-49. DOI: https://doi.org/10.1016/j.arcmed.2005.04.010 [ Links ]

Molina-Salinas GM, Pérez-López A, Becerril-Montes P, Salazar-Aranda R, Said-Fernández S, Waksman de Torres N. 2007. Evaluation of the flora of Northern Mexico for in vitro antimicrobial and antituberculosis activity. Journal of Ethnopharmacology 109: 435-441. DOI: https://doi.org/10.1016/j.jep.2006.08.014 [ Links ]

Molina-Salinas GM, Peña-Rodríguez LM, Mata-Cárdenas BD, Escalante-Erosa F, González-Hernández S, Torres de la Cruz VM, Martínez-Rodríguez HG, Said-Fernández S. 2011. Flourensia cernua: hexane extracts a very active mycobactericidal fraction from an inactive leaf decoction against pansensitive and panresistant Mycobacterium tuberculosis. Evidence-Based Complementary and Alternative Medicine 2011: 782503. https://doi.org/10.1155/2011/782503 [ Links ]

Molina-Torres J, García-Chávez A, Ramírez-Chávez E. 1999. Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin. Journal of Ethnopharmacology 64: 241-248. DOI: https://doi.org/10.1016/S0378-8741(98)00134-2 [ Links ]

Molina-Torres J, Salazar-Cabrera CJ, Armenta-Salinas C, Ramírez-Chávez E. 2004. Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced amides. Journal of Agricultural and Food Chemistry 52: 4700-4704. DOI: https://doi.org/10.1021/jf034374y [ Links ]

Monterrosas-Brisson N, Herrera-Ruiz M, Jiménez-Ferrer E, Bahena-Pérez R, Avilés-Flores M, Fuentes-Mata M, Martínez-Duncker I, González-Cortazar M. 2019. Anti-inflammatory activity of coumarins isolated from Tagetes lucida Cav. Natural Product Research 34: 3244-3248. DOI: https://doi.org/10.1080/14786419.2018.1553172 [ Links ]

Moreno-Peña DP, Cordero-Pérez P, Leos-Rivas C, Bucio L, Viveros-Valdez JE, Munoz-Espinosa LE, Galindo-Rodríguez SA, Rivas-Morales C. 2017. Evaluation of hypocholesterolemic activity of extracts of Bidens odorata and Brickellia eupatorioides. Pakistan Journal of Pharmaceutical Sciences 30: 613-617. [ Links ]

Murillo JI, Encarnación-Dimayuga R, Malmstrøm J, Christophersen C, Franzblau SG. 2003. Antimycobacterial flavones from Haplopappus sonorensis. Fitoterapia 74: 226-230. DOI: https://doi.org/10.1016/S0367-326X(03)00033-9 [ Links ]

Murillo-Álvarez JI, Encarnación DR, Franzblau SG. 2001. Antimicrobial and cytotoxic activity of some medicinal plants from Baja California Sur (Mexico). Pharmaceutical Biology 39: 445-449. DOI: https://doi.org/10.1076/phbi.39.6.445.5877 [ Links ]

Navarro V, Villarreal ML, Rojas G, Lozoya X. 1996. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. Journal of Ethnopharmacology 53: 143-147. DOI: https://doi.org/10.1016/0378-8741(96)01429-8 [ Links ]

Navarro García VM, González A, Fuentes M, Avilés M, Ríos MY, Zepeda G, Rojas MG. 2003. Antifungal activities of nine traditional Mexican medicinal plants. Journal of Ethnopharmacology 87: 85-88. DOI: https://doi.org/10.1016/S0378-8741(03)00114-4 [ Links ]

OMS [Organización Mundial de la Salud]. 2016. Plan de acción mundial sobre la resistencia a los antimicrobianos. https://www.who.int/antimicrobial-resistance/global-action-plan/es/ (accessed July 26, 2020). [ Links ]

Ortiz MI, Cariño-Cortés R, Pérez-Hernández N, Ponce-Monter H, Fernández-Martínez E, Castañeda-Hernández G, Acosta-Madrid II, Cilia-López VG. 2009. Antihyperalgesia induced by Heliopsis longipes extract. Proceedings of the Western Pharmacology Society 52: 75-77. [ Links ]

Ortiz-Bermúdez E, Villaseñor J, Téllez O. 1998. La familia Asteraceae en el estado de Nayarit (México). Acta Botanica Mexicana 44: 25-57. DOI: https://doi.org/10.21829/abm44.1998.805 [ Links ]

Osuna L, Tapia-Pérez ME, Jiménez-Ferrer JE, Carrillo-Quiroz BA, Silva-Sánchez J. 2005. Screening of Alternanthera repens, Boerhavia coccinea, Flaveria trinervia, Tournefortia densiflora, and Vitex mollis extracts to evaluate their antibacterial activity and effect on smooth muscle. I. Pharmaceutical Biology 43: 749-753. DOI: https://doi.org/10.1080/13880200500406412 [ Links ]

Palacios-Espinosa F, Déciga-Campos M, Mata R. 2008. Antinociceptive, hypoglycemic and spasmolytic effects of Brickellia veronicifolia. Journal of Ethnopharmacology 118: 448-454. DOI: https://doi.org/10.1016/j.jep.2008.05.012 [ Links ]

Panda SK, Luyten W. 2018. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite 25: 10 DOI: https://doi.org/10.1051/parasite/2018008 [ Links ]

Panda SK, da Silva LCN, Sahal D, Leonti M. 2019. Editorial: ethnopharmacological studies for the development of drugs with special reference to Asteraceae. Frontiers in Pharmacology 10: 955 DOI: https://doi.org/10.3389/fphar.2019.00955 [ Links ]

Paredes-Flores M, Lira Saade R, Dávila Aranda PD. 2007. Estudio etnobotánico de Zapotitlán Salinas, Puebla. Acta Botanica Mexicana 79: 13-61. DOI: https://doi.org/10.21829/abm79.2007.1037 [ Links ]

Passreiter CM, Sandoval-Ramirez J, Wright CW. 1999. Sesquiterpene lactones from Neurolaena oaxacana. Journal of Natural Products 62: 1093-1095. DOI: https://doi.org/10.1021/np990038t [ Links ]

Peraza-Sánchez SR, Chan-Che EO, Ruiz-Sánchez E. 2005. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a new pimarene from Acacia pennatula. Journal of Agricultural and Food Chemistry 53: 2429-2432. DOI: https://doi.org/10.1021/jf040422i [ Links ]

Perez RM, Cervantes H, Zavala MA, Sanchez J, Perez S, Perez C. 2000. Isolation and hypoglycemic activity of 5, 7,3'-trihydroxy-3,6,4'-trimethoxyflavone from Brickellia veronicaefolia. Phytomedicine 7: 25-29. DOI: https://doi.org/10.1016/S0944-7113(00)80018-5 [ Links ]

Pérez GRM, Vargas SR, Martinez MFJ, Cordova RI. 2004. Antioxidant and free radical scavenging activities of 5,7,3'-trihydroxy-3,6,4'-trimethoxyflavone from Brickellia veronicaefolia. Phytotherphy Research 18: 428-430. DOI: https://doi.org/10.1002/ptr.1445 [ Links ]

Pérez-Castorena AL, Arciniegas A, Castro A, Villaseñor JL, Toscano RA, Romo de Vivar A. 1997. Pyrrolizidine alkaloids from Senecio roseus and Senecio helodes. Journal of Natural Products 60: 1322-1325. DOI: https://doi.org/10.1021/np9702289 [ Links ]

Pérez-Castorena AL, Arciniegas A, Pérez R, Gutiérrez H, Toscano RA, Villaseñor JL, Romo de Vivar A. 1999. Iodanthine, a pyrrolizidine alkaloid from Senecio iodanthus and Senecio bracteatus. Journal of Natural Products 62: 1039-1043. DOI: https://doi.org/10.1021/np980562k [ Links ]

Pérez-Castorena AL, Arciniegas A, Guzmán SL, Villaseñor JL, Romo de Vivar A. 2006. Eremophilanes from Senecio mairetianus and some reaction products. Journal of Natural Products 69: 1471-1475. DOI: https://doi.org/10.1021/np060307x [ Links ]

Pérez-González C, Vega RS, González-Chávez M, Sánchez MA, Gutiérrez SP. 2013. Anti-inflammatory activity and composition of Senecio salignus Kunth. BioMed Research International 2013: 814693. DOI: https://doi.org/10.1155/2013/814693 [ Links ]

Pérez-Gutiérrez RM, Pérez-González C, Zavala-Sánchez MA, Pérez-Gutiérrez S. 1998. Actividad hipoglucemiante de Bouvardia terniflora, Brickellia veronicaefolia y Parmentiera edulis. Salud Pública de México 40: 354-358. [ Links ]

Pérez-Ortega G, González-Trujano ME, Ángeles-López GE, Brindis F, Vibrans H, Reyes-Chilpa R. 2016. Tagetes lucida Cav.: Ethnobotany, phytochemistry and pharmacology of its tranquilizing properties. Journal of Ethnopharmacology 181: 221-228. DOI: https://doi.org/10.1016/j.jep.2016.01.040 [ Links ]

Pérez-Ortega G, Angeles-López G, Argueta-Villamar A, González-Trujano ME. 2017. Preclinical evidence of the anxiolytic and sedative-like activities of Tagetes erecta L. reinforces its ethnobotanical approach. Biomedicine & Pharmacotherapy 93: 383-390. DOI: https://doi.org/10.1016/j.biopha.2017.06.064 [ Links ]

Pérez-Vásquez A, Reyes A, Linares E, Bye R, Mata R. 2005. Phytotoxins from Hofmeisteria schaffneri: Isolation and synthesis of 2’-(2”-Hydroxy-4”-methylphenyl)-2’-oxoethyl Acetate. Journal of Natural Products 68: 959-962. DOI: https://doi.org/10.1021/np0501278 [ Links ]

Pérez-Vásquez A, Linares E, Bye R, Cerda-García-Rojas CM, Mata R. 2008. Phytotoxic activity and conformational analysis of thymol analogs from Hofmeisteria schaffneri. Phytochemistry 69: 1339-1347. DOI: https://doi.org/10.1016/j.phytochem.2008.01.011 [ Links ]

Pérez-Vásquez A, Capella S, Linares E, Bye R, Angeles-López G, Mata R. 2011. Antimicrobial activity and chemical composition of the essential oil of Hofmeisteria schaffneri. Journal of Pharmacy and Pharmacology 63: 579-586. DOI: https://doi.org/10.1111/j.2042-7158.2010.01243.x [ Links ]

Pérez-Vásquez A, Ángeles-López G, Rivero-Cruz I, Flores-Bocanegra L, Linares E, Bye R, Mata R. 2017. Spasmolytic action of preparations and compounds from Hofmeisteria schaffneri. Natural Products Communications 12: 475-476. DOI: https://doi.org/10.1177/1934578X1701200401 [ Links ]

Piña-Vázquez DM, Mayoral-Peña Z, Gómez-Sánchez M, Salazar-Olivo LA, Arellano-Carbajal F. 2017. Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and Levamisole-resistant Caenorhabditis elegans strains. Journal of Ethnopharmacology 202: 92-96. DOI: https://doi.org/10.1016/j.jep.2017.03.004 [ Links ]

Proksch P, Proksch, M, Towers GHN, Rodriguez E. 1983. Phototoxic and insecticidal activities of chromenes and benzofurans from Encelia. Journal of Natural Products 46: 331-334. DOI: https://doi.org/10.1021/np50027a006 [ Links ]

Quintanilla-Licea R, Morado-Castillo R, Gomez-Flores R, Laatsch H, Verde-Star MJ, Hernández-Martínez H, Tamez-Guerra P, Tamez-Guerra R, Rodríguez-Padilla C. 2012. Bioassay-guided isolation and identification of cytotoxic compounds from Gymnosperma glutinosum leaves. Molecules 17: 11229-1124. DOI: https://doi.org/10.3390/molecules170911229 [ Links ]

Ramírez G, Zavala M, Pérez J, Zamilpa A. 2012. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evidence-Based Complementary and Alternative Medicine 2012: 701261. DOI: https://doi.org/10.1155/2012/701261 [ Links ]

Redonda-Martínez R. 2017. Diversidad y distribución de la tribu Vernonieae (Asteraceae) en México. Acta Botanica Méxicana. 119: 115-138. DOI: http://dx.doi.org/10.21829/abm119.2017.1235 [ Links ]

Redonda-Martínez R. 2020. La subtribu Plucheinae (Inuleae, Asteraceae) en México: taxonomía, diversidad y distribución. Acta Botanica Méxicana. 127: e1718. DOI: https://doi.org/10.21829/abm127.2020.1718 [ Links ]

Reyes-Pérez V, Pérez-Vásquez A, Déciga-Campos M, Bye R, Linares E, Mata R. 2019. Antinociceptive potential of Zinnia grandiflora. Journal of Natural Products 82: 456-461. DOI: https://doi.org/10.1021/acs.jnatprod.8b00758 [ Links ]

Ríos MY, Aguilar-Guadarrama AB, Navarro V. 2003. Two new benzofuranes from Eupatorium aschenbornianum and their antimicrobial activity. Planta Medica 69: 967-970. DOI: https://doi.org/10.1055/s-2003-45113 [ Links ]

Ríos MY, León I. 2006. Chemical constituents and cytotoxic activity of Smallanthus maculatus (Cav.) H Rob. (Asteraceae). Chemistry of Natural Compounds 42: 497-498. https://doi.org/10.1007/s10600-006-0193-4 [ Links ]

Ríos MY, Aguilar-Guadarrama AB, Gutiérrez MC. 2007. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). Journal of Ethnopharmacology 110: 364-367. DOI: https://doi.org/10.1016/j.jep.2006.09.041 [ Links ]

Rivero-Cruz B, Rivero-Cruz I, Rodríguez JM, Cerda-García-Rojas CM, Mata R. 2006. Qualitative and quantitative analysis of the active components of the essential oil from Brickellia veronicaefolia by nuclear magnetic resonance spectroscopy. Journal of Natural Products 69: 1172-1176. DOI: https://doi.org/10.1021/np060180b [ Links ]

Robles-Zepeda RE, Coronado-Aceves EW, Velázquez-Contreras CA, Ruiz-Bustos E, Navarro-Navarro M, Garibay-Escobar A. 2013. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico. BMC Complementary and Alternative Medicine 13: 329. DOI: https://doi.org/10.1186/1472-6882-13-329 [ Links ]

Rocha-Gracia RC, Hernández AMM, Lozano ZP, Hernández CB, Santiago RH, Cedillo PE, Zayas PMT, López-Olguín JF. 2011. Antibacterial activity of crude extracts from Mexican plants against methicillin-resistant Staphylococcus. African Journal of Biotechnology 10: 13202-13218 [ Links ]

Rodeiro I, Donato MT, Jiménez N, Garrido G, Molina-Torres J, Menéndez R, Castell JV, Gómez-Lechón MJ. 2009. Inhibition of human P450 enzymes by natural extracts used in traditional medicine. Phytotherapy Research 23: 279-282. DOI: https://doi.org/10.1002/ptr.2613 [ Links ]

Rodríguez-Chávez JL, Coballase-Urrutia E, Nieto-Camacho A, Delgado-Lamas G. 2015a. Antioxidant capacity of ‘‘Mexican arnica’’ Heterotheca inuloides Cass natural products and some derivatives: their anti-inflammatory evaluation and effect on C. elegans life span. Oxidative Medicine and Cellular Longevity 2015: Article ID 843237. DOI: https://doi.org/10.1155/2015/843237 [ Links ]

Rodríguez-Chávez JL, Coballase-Urrutia E, Sicilia-Argumedo G, Ramírez-Apan T, Delgado G. 2015b. Toxicological evaluation of the natural products and some semisynthetic derivatives of Heterotheca inuloides Cass (Asteraceae). Journal of Ethnopharmacology 175: 256-265. DOI: https://doi.org/10.1016/j.jep.2015.08.055 [ Links ]

Rodríguez-Chávez JL, Rufino-González Y, Ponce-Macotela M, Delgado G. 2015c. In vitro activity of ‘Mexican arnica’ Heterotheca inuloides Cass natural products and some derivatives against Giardia intestinalis. Parasitology 142: 576-584. DOI: https://doi.org/10.1017/S0031182014001619 [ Links ]

Rodríguez-Chávez JL, Egas V, Linares E, Bye R, Hernández T, Espinosa-García FJ, Delgado G. 2017. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. Journal of Ethnopharmacology 195: 39-63 DOI: https://doi.org/10.1016/j.jep.2016.11.021 [ Links ]

Rodríguez-Chávez JL, Franco-Navarro F, Delgado G. 2018. In vitro nematicidal activity of natural and semisynthetic cadinenes from Heterotheca inuloides against the plant-parasitic nematode Nacobbus aberrans (Tylenchida: Pratylenchidae). Pest Management Science 75: 1734-1742. DOI: https://doi.org/10.1002/ps.5294 [ Links ]

Rodriguez-Garcia A, Galan-Wong LJ, Arevalo-Niño K. 2010. Development and in vitro evaluation of biopolymers as a delivery system against periodontopathogen microorganisms. Acta Odontológica Latinoamericana 23: 158-163. [ Links ]

Rodríguez-Landa JF, Vicente-Serna J, Rodríguez-Blanco LA, Rovirosa-Hernández MJ, García-Orduña F, Carro-Juárez M. 2014. Montanoa frutescens and Montanoa grandiflora extracts reduce anxiety-like behavior during the metestrus-diestrus phase of the ovarian cycle in Wistar rats. BioMed Research International 2014: 938060. DOI: https://doi.org/10.1155/2014/938060 [ Links ]

Rodríguez-Landa JF, Cueto-Escobedo J, Flores-Aguilar LA, Rosas-Sánchez GU, Rovirosa-Hernández MJ, García-Orduña F, Carro-Juárez M. 2018. The aqueous crude extracts of Montanoa frutescens and Montanoa grandiflora reduce immobility faster than fluoxetine through GABAA receptors in rats forced to swim. Journal of Evidence-Based Integrative Medicine 23: 1-12. DOI: https://doi.org/10.1177/2515690X18762953 [ Links ]

Rodríguez-Ramos F, Navarrete A. 2009. Solving the confusion of gnaphaliin structure: gnaphaliin A and gnaphaliin B identified as active principles of Gnaphalium liebmannii with tracheal smooth muscle relaxant properties. Journal of Natural Products 72: 1061-1064. DOI: https://doi.org/10.1021/np800746j [ Links ]

Rojas A, Villena R, Jiménez A, Mata R. 1991. Chemical studies on Mexican plants used in traditional medicine, XXI. Ratibinolide 11, a new sesquiterpene lactone from Ratlblda latipalearis. Journal of Natural Products 54: 1279-1282. DOI: https://doi.org/10.1021/np50077a006 [ Links ]

Rojas A, Hernandez L, Pereda-Miranda R, Mata R. 1992. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. Journal of Ethnopharmacology 35: 275-283. DOI: https://doi.org/10.1016/0378-8741(92)90025-M [ Links ]

Rojas A, Cruz S, Rauch V, Bye R, Linares E, Mata R. 1995. Spasmolytic potential of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Phytomedicine 2: 51-55. DOI: https://doi.org/10.1016/S0944-7113(11)80049-8 [ Links ]

Rojas A, Bah M, Rojas JI, Serrano V, Pacheco S. 1999. Spasmolytic activity of some plants used by the Otomi Indians of Queretaro (Mexico) for the treatment of gastrointestinal disorders. Phytomedicine 6: 367-371. DOI: https://doi.org/10.1016/S0944-7113(99)80061-0 [ Links ]

Rojas G, Lévaro J, Tortoriello J, Navarro V. 2001. Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory diseases. Journal of Ethnopharmacology 74: 97-101. DOI: https://doi.org/10.1016/S0378-8741(00)00349-4 [ Links ]

Rojas A, Mendoza S, Moreno J, Arellano RO. 2003. Extracts from plants used in Mexican traditional medicine activate Ca2+-dependent chloride channels in Xenopus laevis oocytes. Phytomedicine 10: 416-421. DOI: https://doi.org/10.1078/0944-7113-00199 [ Links ]

Romero-Cerecero O, Rojas G, Navarro V, Herrera-Arellano A, Zamilpa-Alvarez A, Tortoriello J. 2006. Effectiveness and tolerability of a standardized extract from Ageratina pichinchensis on patients with tinea pedis: an explorative pilot study controlled with ketoconazole. Planta Medica 72: 1257-1261. DOI: https://doi.org/10.1055/s-2006-951694 [ Links ]

Romero-Cerecero O, Zamilpa A, Jiménez-Ferrer JE, Rojas-Bribiesca G, Román-Ramos R, Tortoriello J. 2008. Double-blind clinical trial for evaluating the effectiveness and tolerability of Ageratina pichinchensis extract on patients with mild to moderate onychomycosis. A comparative study with ciclopirox. Planta Medica 74: 1430-1435. DOI: https://doi.org/10.1055/s-2008-1081338 [ Links ]

Romero-Cerecero O, Román-Ramos R, Zamilpa A, Jiménez-Ferrer JE, Rojas-Bribiesca G, Tortoriello J. 2009. Clinical trial to compare the effectiveness of two concentrations of the Ageratina pichinchensis extract in the topical treatment of onychomycosis. Journal of Ethnopharmacology 126: 74-78. DOI: https://doi.org/10.1016/j.jep.2009.08.007 [ Links ]

Romero-Cerecero O, Zamilpa-Álvarez A, Jiménez-Ferrer E, Tortoriello J. 2012a. Exploratory study on the effectiveness of a standardized extract from of Ageratina pichinchensis in patients with chronic venous leg ulcers. Planta Medica 78: 304-310. DOI: https://doi.org/10.1055/s-0031-1280448 [ Links ]

Romero-Cerecero O, Zamilpa A, Jiménez-Ferrer E, Tortoriello J. 2012b. Therapeutic effectiveness of Ageratina pichinchensis on the treatment of chronic interdigital tinea pedis: a randomized, double-blind clinical trial. The Journal of Alternative and Complementary Medicine 18: 607-611. DOI: https://doi.org/10.1089/acm.2011.0319 [ Links ]

Romero-Cerecero O, Zamilpa A, González-Cortazar M, Alonso-Cortés D, Jiménez-Ferrer E, Nicasio-Torres P, Aguilar-Santamaría L, Tortoriello J. 2013. Pharmacological and chemical study to identify wound-healing active compounds in Ageratina pichinchensis. Planta Medica 79: 622-627. DOI: https://doi.org/10.1055/s-0032-1328462 [ Links ]

Romero-Cerecero O, Zamilpa A, Díaz-García ER, Tortoriello J. 2014. Pharmacological effect of Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation Journal of Ethnopharmacology 156: 222-227. DOI: https://doi.org/10.1016/j.jep.2014.09.002 [ Links ]

Romero-Cerecero O, Zamilpa A, Tortoriello J. 2015a. Pilot study that evaluated the clinical effectiveness and safety of a phytopharmaceutical elaborated with an extract of Ageratina pichinchensis in patients with minor recurrent aphthous stomatitis. Journal of Ethnopharmacology 173: 225-230. DOI: https://doi.org/10.1016/j.jep.2015.06.021 [ Links ]

Romero-Cerecero O, Zamilpa A, Tortoriello J. 2015b. Effectiveness and tolerability of a standardized extract from Ageratina pichinchensis in patients with diabetic foot ulcer: a randomized, controlled pilot study. Planta Medica 81: 272-278. DOI: https://doi.org/10.1055/s-0034-1396315 [ Links ]

Romero-Cerecero O, Islas-Garduño AL, Zamilpa A, Tortoriello J. 2017. Effectiveness of Ageratina pichinchensis extract in patients with vulvovaginal candidiasis. A randomized, double-blind, and controlled pilot study. Phytotherapy Research 31: 885-890. DOI: https://doi.org/10.1002/ptr.5802 [ Links ]

Rosas-Piñón Y, Mejía A, Díaz-Ruiz G, Aguilar MI, Sánchez-Nieto S, Rivero-Cruz JF. 2012 Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. Journal of Ethnopharmacology 141: 860-865. DOI: https://doi.org/10.1016/j.jep.2012.03.020 [ Links ]

Rossiter SE, Fletcher MH, Wuest WM. 2017. Natural products as platforms to overcome antibiotic resistance. Chemical Reviews 117: 12415-12474. DOI: https://doi.org/10.1021/acs.chemrev.7b00283 [ Links ]

Rufino-González Y, Ponce-Macotela M, Jiménez-Estrada M, Jiménez-Fragoso CN, Palencia G, Sansón-Romero G, Anzo-Osorio A, Martínez-Gordillo MN. 2017. Piqueria trinervia as a source of metabolites against Giardia intestinalis. Pharmaceutical Biology 55: 1787-1791. DOI: https://doi.org/10.1080/13880209.2017.1325912 [ Links ]

Ruiz de Esparza R, Bye R, Meckes M, Torres López J, Jiménez-Estrada M. 2007. Antibacterial activity of Piqueria trinervia, a Mexican medicinal plant used to treat diarrea. Pharmaceutical Biology 45: 446-452. DOI: https://doi.org/10.1080/13880200701389011 [ Links ]

Ruiz-Cancino A, Cano AE, Delgado G. 1993. Sesquiterpene lactones and flavonoids from Artemisia ludoviciana ssp. mexicana. Phytochemistry 33: 1113-l115 DOI. https://doi.org/10.1016/0031-9422(93)85032-M [ Links ]

Ruiz-Pérez NJ, Arriaga-Alba M, Sánchez-Navarrete J, Camacho-Carranza R, Hernández-Ojeda S, Espinosa-Aguirre JJ. 2014. Mutagenic and antimutagenic effects of Heterotheca inuloides. Scientific Reports 4: 6743. DOI: https://doi.org/10.1038/srep06743 [ Links ]

Saad I, Díaz E, Chávez I, Reyes-Chilpa R, Rubluo A, Jiménez-Estrada M. 2000. Antifungal monoterpene production in elicited cell suspension cultures of Piqueria trinervia. Phytochemistry 55: 51-57. DOI: https://doi.org/10.1016/S0031-9422(00)00211-9 [ Links ]

Said Férnandez S, Ramos Guerra MC, Mata Cárdenas BD, Vargas Villarreal J, Villarreal Treviño TL. 2005. In vitro antiprotozoal activity of the leaves of Artemisia ludoviciana. Fitoterapia 76: 466-468. DOI: https://doi.org/10.1016/j.fitote.2005.04.009 [ Links ]

Salazar-Aranda R, Pérez-López LA, López-Arroyo J, Alanís-Garza BA, Waksman TN. 2011. Antimicrobial and antioxidant activities of plants from Northeast of Mexico. Evidence-Based Complementary and Alternative Medicine 2011: 536139. DOI: https://doi.org/10.1093/ecam/nep127 [ Links ]

Salazar-Aranda R, Pérez-López LA, Rivas-Galindo V, de Torres NW. 2013. Antimicrobial activity of plants used in México for gastrointestinal and respiratory disorders. In: Shahid M, Malik A, ASahai S. eds. Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. New York London: Dordrecht Springer. pp. 131-188. DOI: https://doi.org/10.1007/978-94-007-6603-7_7; ISBN: 978-94-007-6602-0 [ Links ]

Sánchez-Medina A, García-Sosa K, May-Pat F, Peña-Rodríguez LM. 2001. Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine part I. Antioxidant, antimicrobial and β-glucosidase inhibition activities. Phytomedicine 8: 144-151. DOI: https://doi.org/10.1078/0944-7113-00020 [ Links ]

Sánchez-Mendoza ME, Torres G, Arrieta J, Aguilar A, Castillo-Henkel C, Navarrete A. 2007. Mechanisms of relaxant action of a crude hexane extract of Gnaphalium liebmannii in guinea pig tracheal smooth muscle. Journal of Ethnopharmacology 111: 142-147 DOI: https://doi.org/10.1016/j.jep.2006.11.001 [ Links ]

Sánchez-Mendoza ME, Reyes-Trejo B, Sánchez-Gómez P, Rodríguez-Silverio J, Castillo-Henkel C, Cervantes-Cuevas H, Arrieta J. 2010. Bioassay-guided isolation of an anti-ulcer chromene from Eupatorium aschenbornianum: Role of nitric oxide, prostaglandins and sulfydryls. Fitoterapia 81: 66-71. DOI: https://doi.org/10.1016/j.fitote.2009.07.009 [ Links ]

Sánchez-Mendoza ME, Rodríguez-Silverio J, Rivero-Cruz JF, Rocha-González HI, Pineda-Farías JB, Arrieta J. 2013. Antinociceptive effect and gastroprotective mechanisms of 3,5-diprenyl-4-hydroxyacetophenone from Ageratina pichinchensis. Fitoterapia 87: 11-19. DOI: https://doi.org/10.1016/j.fitote.2013.03.015 [ Links ]

Sánchez-Ramos M, Marquina-Bahena S, Romero-Estrada A, Bernabé-Antonio A, Cruz-Sosa F, González-Christen J, Acevedo-Fernández JJ, Perea-Arango I, Alvarez L. 2018. Establishment and phytochemical analysis of a callus culture from Ageratina pichinchensis (Asteraceae) and its anti-inflammatory activity. Molecules 23: 1258. DOI: https://doi.org/10.3390/molecules23061258 [ Links ]

Saslis-Lagoudakis CH, Williamson EM, Savolainen V, Hawkins JA. 2011. Cross-cultural comparison of three medicinal floras and implications for bioprospecting strategies. Journal of Ethnopharmacology 135: 476-487 DOI: https://doi.org/10.1016/j.jep.2011.03.044 [ Links ]

Sepúlveda-Robles O, Espinoza-Gutiérrez B, Gomez-Verjan JC, Guzmán-Gutiérrez SL, De Ita M, Silva-Miranda M, Espitia-Pinzón CI, Fernández-Ramírez F, Herrera-Salazar A, Mata-Rocha M, Ortega-Hernández A, Reyes-Chilpa R. 2019. Trypanocidal and toxicological assessment in vitro and in silico of three sesquiterpene lactones from Asteraceae plant species. Food and Chemical Toxicology 125: 55-61. DOI: https://doi.org/10.1016/j.fct.2018.12.023 [ Links ]

Sharma A, Flores-Vallejo RC, Cardoso-Taketa A, Villarreal ML. 2017. Antibacterial activities of medicinal plants used in Mexican traditional medicine. Journal of Ethnopharmacology 208: 264-329. DOI: https://doi.org/10.1016/j.jep.2016.04.045 [ Links ]

Schilling EE, Panero JL. 2011. A revised classification of subtribe Helianthinae (Asteraceae: Heliantheae) II. Derived lineages. Botanical Journal of the Linnean Society 167: 311-331. DOI: https://doi.org/10.1111/j.1095-8339.2011.01172.x [ Links ]

Silver LL. 2015. Natural products as a source of drug leads to overcome drug resistance. Future Microbiololgy 10: 1711-1718. DOI: https://doi.org/10.2217/fmb.15.67 [ Links ]

Sollozo-Dupont I, Estrada-Camarena E, Carro-Juárez M, López-Rubalcava C. 2015. GABAA/benzodiazepine receptor complex mediates the anxiolytic-like effect of Montanoa tomentosa. Journal of Ethnopharmacology 162: 278-286. DOI: https://doi.org/10.1016/j.jep.2014.12.070 [ Links ]

Sosa V, De-Nova JA. 2012. Endemic angiosperm lineages in México: Hotspots for conservation. Acta Botanica Mexicana 100: 293-315. https://doi.org/10.21829/abm100.2012.38 [ Links ]

Southam L, Pedrón N, Ponce-Monter H, Girón H, Estrada A, Lozoya X, Enríquez GR, Bejar E, Gallegos AJ. 1983. The Zoapatle IV - toxicological and clinical studies. Contraception 27: 255-265. DOI: https://doi.org/10.1016/0010-7824(83)90004-5 [ Links ]

Tapia-Pérez ME, Tapia-Contreras A, Cedillo-Rivera R, Osuna L, Meckes M. 2003. Screening of Mexican medicinal plants for antiprotozoal activity Part II. Pharmaceutical Biology 41: 180-183. DOI: https://doi.org/10.1076/phbi.41.3.180.15100 [ Links ]

Tequida-Meneses M, Cortez-Rocha M, Rosas-Burgos EC, López-Sandoval S, Corrales-Maldonado C. 2002. Efecto de extractos alcohólicos de plantas silvestres sobre la inhibición de crecimiento de Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme y Fusarium poae. Revista Iberoamericana de Micología 19: 84-88. [ Links ]

Torres-González L, Muñoz-Espinosa LE, Rivas-Estilla AM, Trujillo-Murillo K, Salazar-Aranda R, Waksman de Torres N, Cordero-Pérez P. 2011. Protective effect of four Mexican plants against CCl-induced damage on the Huh7 human hepatoma cell line. Annals of Hepatology 10: 73-79. DOI: https://doi.org/10.1016/S1665-2681(19)31590-X [ Links ]

Vásquez Rivera SE, Escobar-Saucedo MA, Morales D, Aguilar CN, Rodríguez-Herrera R. 2014. Synergistic effects of ethanolic plant extract mixtures against food-borne pathogen bacteria. African Journal of Biotechnology 13: 699-704. DOI: https://doi.org/10.5897/AJB2013.12273 [ Links ]

Velázquez-Domínguez J, Marchat LA, López-Camarillo C, Mendoza-Hernández G, Sánchez-Espíndola E, Calzada F, Ortega-Hernández A, Sánchez-Monroy V, Ramírez-Moreno E. 2013. Effect of the sesquiterpene lactone incomptine a in the energy metabolism of Entamoeba histolytica. Experimental Parasitology 135: 503-510. DOI: https://doi.org/10.1016/j.exppara.2013.08.015 [ Links ]

Ventura-Martínez R, Ángeles-López GE, Rodríguez R, González-Trujano ME, Déciga-Campos M. 2018. Spasmolytic effect of aqueous extract of Tagetes erecta L. flowers is mediated through calcium channel blockade on the guinea-pig ileum. Biomedicine & Pharmacotherapy 103: 1552-1556. DOI: https://doi.org/10.1016/j.biopha.2018.04.166 [ Links ]

Vibrans H. 2016. Ethnobotany of Mexican weeds. In: Lira R, Casas C, Blancas J, eds. Ethnobotany of Mexico interactions of people and plants in Mesoamerica. New York: Springer Sciences. pp. 179-206. DOI: https://doi.org/10.1007/978-1-4614-6669-7; ISBN: 978-1-4939-7935-6 [ Links ]

Villagómez-Ibarra JR, Sánchez M, Espejo O, Zúñiga-Estrada A, Torres-Valencia JM, Joseph-Nathanc P. 2001. Antimicrobial activity of three Mexican Gnaphalium species. Fitoterapia 72: 692-694. DOI: https://doi.org/10.1016/S0367-326X(01)00303-3 [ Links ]

Villarreal ML, Álvarez L, Alonso D, Navarro V, García P, Delgado G. 1994. Cytotoxic and antimicrobial screening of selected terpenoids from Asteraceae species. Journal of Ethnopharmacology 42: 25-29. DOI: https://doi.org/10.1016/0378-8741(94)90019-1 [ Links ]

Villarreal-Ibarra EC, Lagunes-Espinoza LC, López PA, García-López E, Palma-López DJ, Ortiz-García CF, Oranday-Cárdenas MA. 2015. Evaluación etnofarmacológica de plantas con propiedades hipoglucémicas usadas en la medicina tradicional del sureste de México. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 14: 99-112. [ Links ]

Villarreal-Quintanilla JA, Estrada-Castillón AE, Encina-Domínguez JA. 2020. Dos cambios de rango taxonómico en Pseudognaphalium (Gnaphalieae, Asteraceae) de México. Acta Botanica Mexicana 127: e1582 DOI: https://doi.org/10.21829/abm127.2020.1582 [ Links ]

Villaseñor JL. 1993. La familia Asteraceae en México. Revista de la Sociedad Mexicana de Historia Natural XLIV: 117-124. [ Links ]

Villaseñor JL. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI: https://doi.org/10.1016/j.rmb.2016.06.017 [ Links ]

Villaseñor JL. 2018. Diversidad y distribución de la familia Asteraceae en México. Botanical Sciences 96: 332-358. DOI: https://doi.org/10.17129/botsci.1872 [ Links ]

Villaseñor JL, Ortiz E. 2012. La familia Asteraceae en la Flora del Bajío y de regiones adyacentes. Acta Botanica Mexicana 100: 259-291. https://doi.org/10.21829/abm100.2012.37 [ Links ]

WHO [World Health Organization]. 2018. Annex 1. WHO guidelines on good herbal processing practices for herbal medicines. Technical Report Series. No. 1010. 72 p. https://www.who.int/traditional-complementary-integrative-medicine/publications/trs1010_annex1.pdf?ua=1 (accessed January 25, 2021). [ Links ]

Zamilpa A, Tortoriello J, Navarro V, Delgado G, Álvarez L. 2002. Antispasmodic and antimicrobial diterpenic acids from Viguiera hypargyrea roots. Planta Medica 68: 281-283. DOI: https://doi.org/10.1055/s-2002-23146 [ Links ]

Zavala-Mendoza D, Alarcon-Aguilar FJ, Pérez-Gutierrez S, Escobar-Villanueva MC, Zavala-Sánchez MA. 2013. Composition and antidiarrheal activity of Bidens odorata Cav. Evidence-Based Complementary and Alternative Medicine 2013: 170290. DOI: https://doi.org/10.1155/2013/170290 [ Links ]

Zavala-Mendoza D, Grasa L, Zavala-Sánchez MÁ, Pérez-Gutiérrez S, Murillo MD. 2016. Antispasmodic effects and action mechanism of essential oil of Chrysactinia mexicana A. Gray on rabbit ileum. Molecules 21: E783. DOI: https://doi.org/10.3390/molecules21060783 [ Links ]

Appendix 1

Table A1 Ethnopharmacological studies for the Asteraceae family in Mexico from 1983 to 2020 

Tribu Species Ethnomedicinal use Tested activity/study Studies
ANTHEMIDEAE Artemisia absinthium L. (INT) Stomach-ache, labor, colic, bile, diarrhea Antibacterial, antiprotozoal Hernández et al. (2003), Canales et al. (2005), Calzada et al. (2007)
Artemisia ludoviciana Nutt. (NAT) Gastrointestinal disorders, parasitic diseases, upset stomach, diarrhea, dysentery, antispasmodic, malfunction of the gall bladder, pain, diabetes, colds, bronchitis, throat, head sores Phytochemical characterization, antiprotozoal, antimalarial, antifungal, analgesic, antibacterial, muscle relaxant Ruiz-Cancino et al. (1993), Navarro et al. (1996), Malagón et al. (1997), Hernández et al. (2003), Jiménez-Arellanes et al. (2003), Said Fernández et al. (2005), Calzada et al. (2007), Damián-Badillo et al. (2008), Castillo-Juárez et al. (2009), Calzada et al. (2010), Estrada-Soto et al. (2012), Anaya-Eugenio et al. (2014), Anaya-Eugenio et al. (2016)
Matricaria recutita L. (INT) Sedative, spasmolytic, anti-inflammatory stomachaches, menstrual colic, eyewash, anxiety Antibacterial, antiprotozoal, anxiolytic, phytochemical characterization Avallone et al. (2000), Hernández et al. (2003), Calzada et al. (2007), Calzada et al. (2010)
Tanacetum parthenium (L.) Sch. Bip. (INT) Convulsions, susto (fear), migraine, epilepsy, sedative, migraine, headache, rheumatoid arthritis, stomachache, toothache, analgesic, anti-inflammatory, antispasmodic Antibacterial, anxiolytic, antidepressant Hernández et al. (2003), Cárdenas et al. (2017)
ASTEREAE Baccharis conferta Kunth (NAT) Cold, vomit, sickness Antibacterial, anti-helmintic Rocha-Gracia et al. (2011), Cortes-Morales et al. (2019)
Baccharis heterophylla Kunth (NAT) Fever, wound healing Muscle relaxant, spasmolytic Rojas et al. (1999), Rojas et al. (2003)
Baccharis glutinosa Pers. (NAT) (Baccharis salicina Torr. & A.Gray) Antibacterial, cytotoxicity, antifungal. Murillo-Álvarez et al. (2001), Tequida-Meneses et al. (2002), Medina-López et al. (2016)
Gymnosperma glutinosum (Spreng.) Less. (NAT) Diarrhea, anti-inflammatory, renal diseases, pain, fever, cancer Spasmolytic, phytochemical characterization, antibacterial, antifungal, toxicity, antitumoral, cytotoxicity, analgesic, anti-inflammatory, Rojas et al. (1995), Hernández et al. (2003), Canales et al. (2007), Gómez-Flores et al. (2009), Gómez-Flores et al. (2012), Quintanilla-Licea et al. (2012), Hernández et al. (2015), Gómez-Flores et al. (2016), Alonso-Castro et al. (2017)
Heterotheca inuloides Cass. (END) Bruises, pain, anti-inflammatory, wounds, bruises, rheumatisms, colic and other painful conditions Antioxidant, anti-inflammatory, analgesic, antibacterial, toxicity, antiprotozoal, phytochemical characterization, nematicide, cytotoxicity, anti-mutagenic, osteoarthritis model, hepatoprotective Gené et al. (1998), Delgado et al. (2001), Maldonado-López et al. (2008), Coballase-Urrutia et al. (2010, 2011), Rosas-Piñón et al. (2012), Flores-San Martin et al. (2013), Ruiz-Pérez et al. (2014), Rodríguez-Chávez et al. (2015a), Rodríguez-Chávez et al. (2015b), Rodríguez-Chávez et al. (2015c), Egas et al. (2015), Egas et al. (2018), Rodríguez-Chávez et al. (2018)
Laennecia filaginoides DC (NAT) (Conyza filaginoides Hieron) Gastrointestinal diseases, hepatic cramps, bile Spasmolytic, antimicrobial, antiprotozoal, antieishmaniana Rojas et al. (1995), Gutiérrez-Lugo et al. (1996), Calzada et al. (1998), Calzada et al. (2001), Delgado-Altamirano et al. (2017)
Laennecia schiedeana (Less.) G.L. Nesom (NAT) Gastrointestinal diseases, bronchitis, gut, rheumatism, fever, sedative, anti-inflammatory Phytochemical characterization Arciniegas et al. (2011)
Xanthisma spinulosum (Pursh) D.R. Morgan & R.L. Hartm. (END) (Haplopappus spinulosus (Pursh) DC. subsp. scrabellus (Greene) Hall ) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Xylothamia diffusa (Benth.) G.L.Nesom (NAT) (Haplopappus sonoriensis (Gray) Blake) Bodily shaking, fever, cold Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001), Murillo et al. (2003)
CALENDULEAE Calendula oficinalis L. (INT) Analgesic, antiseptic, wound healing Antibacterial Rodriguez-Garcia et al. (2010), Rosas-Piñón et al. (2012)
CARDUEAE Centaurea melitensis L. (INT) (Centaurea americana Nutt.) Liver damage Antitumoral Torres-González et al. (2011)
Cirsium mexicanum DC (NAT) Cancer, diabetes Antimicrobial Rosas-Piñón et al. (2012), Knauth et al. (2018)
COREOPSIDEAE Bidens odorata Cav. (NAT) Gastrointestinal diseases, kidney pain, anti-inflammatory, antipyretic, hypoglycemic, pulmonary, cough Diuretic, lipid-lowering, phytochemical characterization, hypocholesterolemic, antibacterial, antidiarrheal Meléndez-Camargo et al. (2004), Astudillo-Vázquez et al. (2008), Zavala-Mendoza et al. (2013), Moreno-Peña et al. (2017), Hernández-Sánchez et al. (2018)
Bidens pilosa L. (NAT) Anti-inflammatory, diabetes, astringent, emmenagogue Antibacterial, cytotoxicity, spasmolytic, Murillo-Álvarez et al. (2001), Arroyo et al. (2004)
Cosmos pringlei B.L. Rob. & Fernald (END) Stomachaches, toothaches, headaches, dysentery, improving circulation Phytochemical characterization Mata et al. (2002)
EUPATORIEAE Ageratina pichinchensis (Kunth) R.M. King & H. Rob (NAT) (Eupatorium aschenbornianum S.Schauer) Dermatophytosis, skin infections, wounds, tumors, cancer sores, skin injuries, treat pain, gastric ulcers, skin wounds Antimicrobial, antifungal, healing, genotoxicity phytochemical characterization, anti-inflammatory, anti-sores, antiulcer analgesic, gastroprotective Navarro García et al. (2003), Ríos et al. (2003), Romero-Cerecero et al. (2006), Romero-Cerecero et al. (2008), Aguilar-Guadarrama et al. (2009), Romero-Cerecero et al. (2009), Sánchez-Mendoza et al. (2010), Romero-Cerecero et al. (2012a), Romero-Cerecero (2012b), Romero-Cerecero et al. (2013), Sánchez-Mendoza et al. (2013), Romero-Cerecero et al. (2014), Romero-Cerecero et al. (2015a,b), Romero-Cerecero et al. (2017), Sánchez-Ramos et al. (2018)
Brickellia cavanillesii (Cass.) A. Gray (END) Diabetes, stomachache, liver diseases, diarrhea, cardiovascular diseases, treatment of ulcers, dyspepsia, analgesic, tapeworm, indigestion, colic, hypertension, anxiety Vasorelaxing, anxiolytic, hypoglycemic Aguirre-Crespo et al. (2005), Escandón-Rivera et al. (2012), Ávila-Villarreal et al. (2016)
Brickellia paniculata (Mill.) B.L. Rob. (NAT) Colic, abdominal pain, watery diarrhea Anti-inflammatory, spasmolytic Meckes et al. (2002), Meckes et al. (2004)
Brickellia veronicifolia (Kunth) A. Gray (NAT) Diabetes, gastroenteritis, diarrhea, pain, stomachache, biliary colic, dyspepsia, arthritis, topic inflammations, infectious diseases, gastritis Hypoglycemic, antibacterial, analgesic, phytochemical characterization, anti-mutagenic, toxicity, spasmolytic, antioxidant Pérez-Gutiérrez et al. (1998), Perez et al. (2000), Hernández et al. (2003), Pérez et al. (2004), Rivero-Cruz et al. (2006), Calzada et al. (2007), Palacios-Espinosa et al. (2008)
Decachaeta incompta DC (NAT) Diarrhea, dysentery Antibacterial, antiprotozoal, trypanocidal Calzada et al. (2009), Bautista et al. (2012), Velázquez-Domínguez et al. (2013), Sepúlveda-Robles et al. (2019)
Hofmeisteria schaffneri (A. Gray) R.M. King & H. Rob (END) Skin wounds, fevers, gastrointestinal ailments, stomach aches, dyspepsia, bleeding diarrhea, topic antiseptic agent Toxicity, analgesic, antifungal, antimicrobial, phytochemical characterization, spasmolytic Pérez-Vásquez et al. (2005), Pérez-Vásquez et al. (2008), Ángeles-López et al. (2010), Pérez-Vásquez et al. (2011), Pérez-Vásquez et al. (2017)
Piqueria trinervia Cav. (NAT) Typhus, fever, malaria, tetanus, diarrhea, antipyretic, abdominal pain Antifungal, antibacterial, antiprotozoal, molluscicidal Cruz-Reyes et al. (1989), Saad et al. (2000), Ruiz de Esparza et al. (2007), Rufino-González et al. (2017)
Stevia salicifolia Cav. (NAT) Gastrointestinal disorders Phytochemical characterization Mata et al. (1992), Meléndez-Rodríguez et al. (2002)
GNAPHALIEAE Anaphalis margaritacea (L.) Benth. & Hook f. (NAT) Cough, respiratory problems, colds, rheumatism. Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Gamochaeta americana (Mill.) (NAT) (Gnaphallium americanum) Cough, cold, bronchitis, angina ache Antibacterial Rojas et al. (2001)
Gnaphalium purpureum L. (NAT) (Gamochaeta purpurea (L.) Cabrera) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Gnaphalium attenuatum (NAT) (Pseudognaphalium attenuatum (DC.) Anderb.) Respiratory illnesses Antibacterial Enciso-Díaz et al. (2012)
Pseudognaphalium conoideum (Kunth) Anderb.(END) (Gnaphalium conoideum) Stomach diseases, swellings, wounds, prostatism, lumbago, neuritis, angina ache, blood pressure, diuretic, antipyretic, malarial Spasmolytic Campos-Bedolla et al. (2005)
Pseudognaphalium monticola (McVaugh) Villarreal, A.E. Estrada & Encina, stat. nov. (NAT) (Gnaphallium liebmannii var. montícola) Respiratory diseases such as flu, fever, asthma, cough, cold, bronchitis, expectorating, and bronchial affections Antibacterial, phytochemical characterization, muscle relaxant Villagómez-Ibarra et al. (2001), Sánchez-Mendoza et al. (2007), Rodríguez-Ramos & Navarrete. (2009)
Pseudognaphalium nataliae (F.J. Espinosa) Villarreal, A.E. Estrada & Encina, stat. nov. (NAT) (Gnaphallium oxyphillum) Cough, bronchial affections, expectorating Antibacterial Rojas et al. (2001), Villagómez-Ibarra et al. (2001)
Pseudognaphalium viscosum (Kunth) Anderb. (NAT) (Gnaphalium viscosum) Flu, fever, asthma, bronchitis, cough Antibacterial Villagómez-Ibarra et al. (2001)
HELENIEAE Helenium mexicanum Kunth (NAT) Antiseptic, acaricide, sternutative Antibacterial Barrera-Figueroa et al. (2011)
HELIANTHEAE Aldama latibracteata (Hemsl.) E.E. Schill. & Panero (END) (Viguiera latibracteata (Hemsl.) Blake) Cytotoxicity, antimicrobial, phytochemical characterization Villarreal et al. (1994)
Ambrosia ambrosioides (Cav.) W.W. Payne (NAT) Wounds, sores, placental expulsion, menstrual symptoms, hair diseases Antibacterial Robles-Zepeda et al. (2013)
Ambrosia confertiflora DC. (NAT) Intestinal parasites, stomachache, fever, lack of appetite, menstrual symptoms Antibacterial, larvicidal, cytotoxic de la Torre Rodríguez et al. (2013), Robles-Zepeda et al. (2013), Coronado-Aceves et al. (2016)
Ambrosia monogyra (Torr. & A.Gray) Strother & B.G.Baldwin (NAT) (Hymenoclea monogyra Torr. & Gray) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Ambrosia psilostachya DC. (NAT) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Dendroviguiera quinqueradiata (Cav.) E.E. Schill. & Panero (END) (Viguiera quinqueradiata (Cav.) A. Gray) Cytotoxicity, antibacterial, phytochemical characterization Villarreal et al. (1994)
Encelia laciniata Vasey & Rose (END) Antibacterial, insecticide Proksch et al. (1983)
Encelia palmeri Vasey & Rose (END) Antibacterial, insecticide Proksch et al. (1983)
Encelia ventorum Brandegee (END) Antibacterial, insecticide Proksch et al. (1983)
Flaveria trinervia (Spreng.) C. Mohr (NAT) Diarrhea, dysentery Antiprotozoal, antibacterial Tapia-Pérez et al. (2003), Osuna et al. (2005)
Flourensia cernua DC. (NAT) Indigestion, expectorant, respiratory infections, tuberculosis Antibacterial Molina-Salinas et al. (2006), Molina-Salinas et al. (2011), Vásquez Rivera et al. (2014)
Gonzalezia decurrens (A. Gray) E.E. Schill. & Panero (END) (Viguiera decurrens A. Gray) Infections, wounds, boils, and to alleviate gastric ulcers Phytochemical characterization, cytotoxicity, insecticide Marquina et al. (2001)
Gonzalezia hypargyrea (Greenm.) E.E. Schill. & Panero (END) (Viguiera hypargyrea Greenm.) Gastrointestinal disorders Cytotoxicity, anti-spasmodic, antibacterial, phytochemical characterization Villarreal et al. (1994), Zamilpa et al. (2002)
Helianthella quinquenervis (Hook.) A. Gray (NAT) Deworming, gastrointestinal ailments, ulcers Antibacterial, cytotoxicity, antifungal, antiprotozoal Castañeda et al. (1996), Gutiérrez-Lugo et al. (1996), Calzada et al. (1998)
Heliopsis longipes (A. Gray) S.F. Blake (END) Muscle and toothaches, deworming, insecticide Antibacterial, cytotoxicity, analgesic, antifungal, anti-inflammatory, genotoxic, spermicide, vasodilator, anti-arthritic, anti-mutagenic, herbal remedy/drug interaction Gutiérrez-Lugo et al. (1996), Molina-Torres et al. (1999), Molina-Torres et al. (2004), Ríos et al. (2007), Damián-Badillo et al. (2008), Acosta-Madrid et al. (2009), Hernández et al. (2009), Ortiz et al. (2009), Rodeiro et al. (2009), Cariño-Cortés et al. (2010), Cilia-López et al. (2010), Déciga-Campos et al. (2010), Arriaga-Alba et al. (2013), Martínez-Loredo et al. (2016), Castro-Ruiz et al. (2017), Escobedo-Martínez et al. (2017), de la Rosa-Lugo et al. (2017), Buitimea-Cantúa et al. (2020)
Iostephane heterophylla (Cav.) Hemsl. (END) Arthritis, rheumatism, pain, diabetes, gastrointestinal ailments, dysentery, skin problems Phytochemical characterization, antibacterial Aguilar et al. (2001), Mata et al. (2001), Aguilar et al. (2007), Hernández et al. (2012), Ramírez et al. (2012), Rosas-Piñón et al. (2012)
Montanoa frutescens (Mairet ex DC.) Hemsl. (END) Aphrodisiac, anxiolytic, labor Anxiolytic, ejaculatory, Carro-Juárez et al. (2012), Carro-Juárez et al. (2014), Rodríguez-Landa et al. (2014), Rodríguez-Landa et al. (2018)
Montanoa grandiflora Alamán ex DC. (END) Aphrodisiac, anxiolytic, labor Anxiolytic, ejaculatory Carro-Juárez et al. (2014), Rodríguez-Landa et al. (2014), Rodríguez-Landa et al. (2018)
Montanoa tomentosa Cerv. (NAT) Aphrodisiac, anxiolytic, labor Toxicity, aphrodisiac, anxiolytic, phytochemical characterization, ejaculatory, Gallegos et al. (1983), Southam et al (1983), Carro-Juárez et al. (2004), Sollozo-Dupont (2015), Carro-Juárez et al. (2014), Estrada-Camarena et al. (2019)
12Neurolaena oaxacana B.L. Turner (END) Phytochemical characterization Passreiter et al. (1999)
Parthenium hysterophorus L. (NAT) Anti-inflammatory, insecticide, stomachache, fever, scabies, welts herpes Antibacterial, trypanocidal activity Sánchez-Medina et al. (2001), Sepúlveda-Robles et al. (2019)
Parthenium tomentosum DC. (END) Gastrointestinal disorders Spasmolitic Rojas et al. (1995)
Perityle batopilensis A.M. Powell (END) Antibacterial, cytotoxicity Gutiérrez-Lugo et al. (1996)
Ratibida latipalearis E.L. Richards (END) Skin wounds, anti-inflammatory, headaches Phytochemical characterization, bactericidal Rojas et al. (1991), Rojas et al. (1992)
Tithonia diversifolia (Hemsl.) A. Gray (NAT) Diabetes, skin infections Anti-inflammatory, antibacterial, phytochemical characterization, hypoglycemic Bork et al. (1996), Villarreal-Ibarra et al. (2015)
Verbesina abscondita Klatt (END) Respiratory illness Antibacterial, Rocha-Gracia et al. (2011)
Viguiera dentata (Cav.) Spreng. (NAT) Labor, baby rash, ant sting Phytochemical characterization, antifungal, antimicrobial Gao et al. (1985a), Peraza-Sánchez et al. (2005), Canales et al. (2008)
Viguiera potosina S.F. Blake (END) Phytochemical characterization Gao et al. (1985b)
Xanthium strumarium L. (NAT) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Zinnia grandiflora Nutt. (NAT) Anti-inflammatory Phytochemical characterization, analgesic Reyes-Pérez et al. (2019)
INULEAE Epaltes mexicana Less. (NAT) Antibacterial Phytochemical characterization, antibacterial Kato et al (1996)
MILLERIEAE Smallanthus maculatus (Cav.) H Rob. (NAT) Gastrointestinal diseases Phytochemical characterization, cytotoxicity Ríos & León (2006), Jacobo-Herrera et al. 2016
NASSAUVIEAE Acourtia cordata (Cerv.) B. L. Turner (END) (Perezia hebeclada (DC.) A. Gray) Purge Antibacterial Rocha-Gracia et al. (2011)
Acourtia humboldtii (Less.) B.L. Turner (END) (Acourtia thurberi (A. Gray) Reveal & R.M.King) Pain, rheumatism, renal, hepatic, gastrointestinal ailments, diabetes Hypoglycemic Martínez et al. (2017)
Trixis silvatica B.L. Rob. & Greenm. (END) Cathartic, muscle pain, stomach illness Antibacterial Rocha-Gracia et al. (2011)
NEUROLAENEAE Calea ternifolia Kunth (NAT) Treating colic, fever, cough, diabetes Phytochemical characterization, hypoglycemic Fischer et al. (1984), Escandón-Rivera et al. (2017)
SENECIONEAE Barkleyanthus salicifolius (Kunth) H. Rob. & Brettell (NAT) Anti-inflammatory, migraine, liver and kidney disease Antioxidant Domínguez et al. (2005)
Pittocaulon bombycophole (Bullock) H. Rob. & Brettell (END) Anti-inflammatory, wound healing Antioxidant, anti-inflammatory, antifungal, antibacterial Marín-Loaiza et al. (2008), Marín-Loaiza (2013)
Pittocaulon filare (McVaugh) H. Rob. & Brettell (END) Anti-inflammatory Antioxidant, anti-inflammatory, antifungal, antibacterial Marín-Loaiza et al. (2008), Marín-Loaiza (2013)
Pittocaulon hintonii H. Rob. & Brttell (END) Anti-inflammatory Antioxidant, anti-inflammatory, antifungal, antibacterial Marín-Loaiza et al. (2008), Marín-Loaiza (2013)
Pittocaulon praecox (Cav.) H. Rob. & Brettell (END) Anti-inflammatory Antioxidant, anti-inflammatory, antifungal, antibacterial Marín-Loaiza et al. (2008), Marín-Loaiza (2013)
Pittocaulon velatum (Greenm.) H. Rob. & Brettell (NAT) Anti-inflammatory Antioxidant, anti-inflammatory, antifungal, antibacterial Marín-Loaiza et al. (2008), Marín-Loaiza (2013)
Psacaliopsis purpusii (Greenm.) H. Rob. & Brettell (END) Antibacterial Rocha-Gracia et al. (2011)
Psacalium peltatum (Kunth) Cass. (END) (Psacalium palladium (H.B.K.) Cass.) Immunomodulatory agent, cancer Anti-inflammatory, antioxidant, hypoglycemic, immunostimulant, cytotoxicity, Alarcón-Aguilar et al. (2010), Juárez-Vázquez et al. (2013)
Psacalium radulifolium (Kunth) H. Rob. & Brettell (END) Phytochemical characterization Garduño-Ramírez et al. (2001)
Robinsonecio gerberifolius (Sch. Bip.) T.M. Barkley & J.P. Janovec (NAT) Phytochemical characterization Arciniegas et al. (2003), Arciniegas et al. (2006b)
Roldana angulifolia (DC.) H. Rob. & Brettell (NAT) (Senecio angulifolius DC., Senecio salignus DC.) Dysentery, fever, rheumatism Antibacterial, antifungal, anti-inflammatory phytochemical characterization Hernández et al. (2003), Navarro García et al. (2003), Arciniegas et al. (2006a), Arciniegas et al. (2006b), Pérez-González et al. (2013)
Roldana sessilifolia (Hook. & Am.) H. Rob. & Brettel (END) (Senecio cardiophyllus Hemsl, Senecio sessilifolius (H. et A.) Hemsley) Fever, vaginal infections Cytotoxicity, antibacterial, ejaculatory Villarreal et al. (1994), Carro-Juárez et al. (2009), Rosas-Piñón et al. (2012)
Senecio bracteatus Klatt (END) Phytochemical characterization Pérez-Castorena et al. (1999)
Senecio helodes Benth. (END) Phytochemical characterization Pérez-Castorena et al.(1997)
Senecio iodanthus Greenm. (END) Phytochemical characterization Pérez-Castorena et al. (1999)
Senecio mairetianus DC. (NAT) Phytochemical characterization Perez-Castorena et al. (2006)
Senecio roseus Sch. Bip. (END) Phytochemical characterization Pérez-Castorena et al. (1997)
TAGETEAE Adenophyllum appendiculatum (Lag.) Strother (NAT) (Dyssodia appendiculata Lag.) Antibacterial Frei et al. (1998)
Chrysactinia mexicana A. Gray (NAT) Antiprotozoal, antibacterial, phytochemical characterization, anti-spasmodic, antidepressant, toxicity Calzada et al. (2007), Molina-Salinas et al. (2007), Guevara Campos et al. (2011), Salazar-Aranda et al. (2011), Cassani et al. (2015), Zavala-Mendoza et al. (2016)
Dyssodia papposa (Vent.) Hitchc (NAT) Antimicrobial, cytotoxicity Gutiérrez-Lugo et al. (1996)
Gymnolaena oaxacana (Greenm.) Rydb (END) Diarrhea Antibacterial Hernández et al. (2003)
Pectis hankeana (DC.) Sch. Bip. (END) Antibacterial, cytotoxicity Murillo-Álvarez et al. (2001)
Porophyllum linaria (Cav.) DC (END) Anti-inflammatory. Insecticidal, phytochemical characterization Hernández-Cruz et al. (2019)
Tagetes erecta L. (NAT) Antibacterial, spasmolytic, sedative Hernández et al. (2003), Pérez-Ortega et al. (2017), Piña-Vázquez et al. (2017), Ventura-Martínez (2018)
Tagetes lucida Cav. (NAT) Antimicrobial, antifungal, antidepressant, sedative, anxiolytic, analgesic, anti-inflammatory Céspedes et al. (2006), Damián et al. (2008), Guadarrama Cruz et al. (2008), Guadarrama-Cruz et al. (2012), Rosas-Piñón et al. (2012), Bonilla-Jaime et al. (2015), Pérez-Ortega et al. (2016), González-Trujano et al. (2019), Monterrosas-Brisson et al. (2019)
Tagetes micrantha Cav. (NAT) Spasmolytic Arroyo et al. (2004)
VERNONIEAE Vernonia liatroides DC., Prodr. (END) Phytochemical characterization, muscle relaxant Campos et al. (2003)
Vernonia oaxacana Sch. Bip. ex Klatt (NAT) Antibacterial Rocha-Gracia et al. (2011)
Vernonanthura patens (Kunth) H. Rob. (NAT) Vernonia patens Kunth) Cytotoxicity, antitumoral Avelino-Flores et al. (2019)

Received: August 10, 2020; Accepted: December 23, 2020; Published: April 15, 2021

*Author for correspondence: gabriela.cilia@uaslp.mx

Associate editor: Arturo de Nova Vásquez

Author contributions: VGCL designed the research, performed the database compilation, collected the data, and conducted analyses. RCC designed the research, performed the database compilation, and conducted analyses. LRZS performed the database compilation, collected the data, and conducted analyses. All authors have made substantial intellectual contributions during the data collection, and analyses. All authors have approved the final version to be published.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License