SciELO - Scientific Electronic Library Online

 
vol.95 número2Producción de biomasa foliar y hojarasca de cinco especies leñosas en plantaciones forestales de la zona semi-árida del noreste de MéxicoGerminación de semillas de Ormosia macrocalyx, un árbol forestal amenazado índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.95 no.2 México abr./jun. 2017

https://doi.org/10.17129/botsci.859 

Taxonomy and Floristics

Richness and distribution of herbaceous angiosperms along gradients of elevation and forest disturbance in central Veracruz, Mexico

Riqueza y distribución de angiospermas herbáceas a lo largo de gradientes de elevación y perturbación del bosque en el centro de Veracruz, México

Jorge A. Gómez-Díaz1  * 

Thorsten Krömer2 

César I. Carvajal-Hernández3 

Gerhard Gerold1 

Felix Heitkamp1 

1 Physical Geography, Georg-August-Universität Göttingen, Göttingen, Germany

2 Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Veracruz, Mexico

3 Herbario CIB, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico


Abstract:

Background:

Terrestrial herbs are a significant floristic element of tropical forests; however, there is a lack of research focused on this plant group.

Question:

Which are the patterns of species distribution of herbaceous angiosperms along gradients of elevation and forest disturbance at Cofre de Perote, central Veracruz, Mexico?

Studied species:

Terrestrial herbaceous angiosperms.

Study site and years of study:

Eastern slopes of Cofre de Perote, central Veracruz, Mexico; from 2012 until 2014.

Methods:

We established an elevational transect (40 to 3,520 m), where floristic sampling in eight study sites within elevational belts of about 500 m each were realized. We recorded the occurrence of terrestrial angiosperm herbs within 135 20 × 20 m plots, distributed in old-growth, degraded forest, secondary vegetation, as well as azonal vegetation. Species richness and floristic composition was compared between the different elevational belts and forest disturbance.

Results:

We recorded a total of 264 herb species, 31 endemic to Mexico and three classified as threatened. This number of species represents 5.7 % of Veracruz’s herbaceous angiosperm flora. The highest species richness was recorded at 2,500 m (76) and 1,500 m (52). In most of the cases, secondary forests showed the highest species richness independently of the elevational gradient, whereas old-growth forests had fewer species.

Conclusions:

The observed species richness, including endemic elements, highlights the importance for plant conservation of the area which is threatened by land use changes. Additionally, we suggest that vegetation variations formed by mature, disturbed and secondary forests is acceptable (and unavoidable) and can even increase species richness.

Keywords: conservation; disturbance gradient; floristic inventory; forest fragmentation; terrestrial herbs

Resumen:

Antecedentes:

Las hierbas terrestres son un elemento florístico importante de los bosques tropicales; sin embargo, aún es escasa la investigación centrada en este grupo de plantas.

Pregunta:

¿Cuáles son los patrones de distribución de especies de angiospermas herbáceas a lo largo de gradientes de altitud y de perturbación en el Cofre de Perote, centro de Veracruz, México?

Especies de estudio:

Angiospermas herbáceas terrestres.

Sitio de estudio y años de estudio:

Vertiente este del Cofre de Perote, centro de Veracruz, México; desde 2012 hasta 2014.

Métodos:

Establecimos un gradiente altitudinal (40 a 3,520 m), donde realizamos un muestreo florístico en ocho sitios de estudio dentro de pisos altitudinales de aproximadamente 500 m cada uno. Registramos la presencia de angiospermas herbáceas terrestres dentro de 135 parcelas de 20 × 20 m, distribuidas en bosques maduros, degradados, secundarios, así como vegetación azonal. Se analizó la riqueza de especies, la composición florística y luego comparamos los datos resultantes entre los diferentes pisos altitudinales y los grados de perturbación del bosque.

Resultados:

Se registraron 264 especies de plantas, 31 endémicas de México y tres amenazadas. Esta riqueza representa 5.7 % de la flora de herbáceas angiospermas en Veracruz. Los pisos altitudinales con mayor riqueza de especies fueron 2,500 m (76) y 1,500 m (52). En la mayoría de los casos, los bosques secundarios tuvieron la mayor riqueza de especies en el gradiente altitudinal, mientras que los bosques maduros tuvieron menos especies.

Conclusiones:

La riqueza de especies observada, incluyendo elementos endémicos, resalta la importancia de esta zona para la conservación de plantas, que se encuentra amenazada por el cambio de uso del suelo. Además, sugerimos que la variación de la vegetación formada por bosques maduros, perturbados y secundarios es aceptable (e inevitable) y puede incluso incrementar la riqueza de especies.

Palabras clave: conservación; gradiente de perturbación; inventario florístico; fragmentación del bosque; hierbas terrestres

Growing human pressure on terrestrial ecosystems represents one of the most important threats to biodiversity, especially in the tropics (Godfray et al. 2010, Melo et al. 2013, FAO 2014). Therefore, the planet is suffering rapid and dramatic changes across the majority of biomes (Foley et al. 2005). Considering the current high rates of deforestation in most of the tropical countries (Lindenmayer et al. 2006), it is projected that areas with old-growth forests will become increasingly scarce and fragmented (Köster et al. 2009, FAO 2014). Human population growth and the intensification of agricultural practice are the major factors that threaten old-growth forests and their associated biodiversity in the tropics (Wright 2005), due to their conversion into cropland, grassland for cattle and human settlements (Foley et al. 2005). Consequently, complete floristic inventories documenting which species are affected by human interference are urgently needed (DeClerck et al. 2010).

The Mesoamerican region including Mexico is considered as a hotspot of plant diversity, meaning that it is very rich in endemic species, but also highly threatened (Myers et al. 2000). The main reason is the loss of primary vegetation due to high deforestation and urbanization rates (Wright & Muller-Landau 2006). Within Mexico, the state of Veracruz is considered a priority site for national and global conservation of biodiversity due to its outstanding geographical characteristics, such as the complex topography and the transition between tropical and temperate zones (Olguín 2011). Veracruz covers an area of 72,420 km2 of which less than 20 % consists of natural vegetation, with a high degree of habitat fragmentation (Gómez-Pompa et al. 2010, CONABIO 2011). Nevertheless, Veracruz hosts a large number of angiosperms (6,876 species) that represents about 31 % of the flora of Mexico (Villaseñor & Ortíz 2012), and thus it is considered as the country´s third richest state in angiosperms after Oaxaca and Chiapas (Rzedowski 1993, Villaseñor & Ortíz 2014). The state is also known for having all vegetation types registered in Mexico (Gómez-Pompa & Castillo-Campos 2010), according to the classification of Rzedowski (2006). Despite being a region with high species richness, there are still many parts of the state which lack a reliable floristic inventory (Gómez-Pompa et al. 2010), especially in remote montane areas, such as our study area. Until now, no floristic research along this elevational gradient has been conducted, taking into account terrestrial herbaceous angiosperms, human land use intensity and geoecological conditions.

In the last two decades studies about diversity patterns of tropical vegetation along elevational gradients have received substantial consideration (Vázquez & Givnish 1998, Colwell et al. 2008, Willinghöfer et al. 2012), but the focus considering different taxonomical plant groups is unevenly distributed because most of the research is concentrated in the most species-rich herbaceous family (e.g., Poaceae, Asteraceae, Araceae) of every study area (Willinghöfer et al. 2012). However, many other herbaceous angiosperm families, such as Orchidaceae, Zingiberaceae and Begoniaceae, are significant elements in the composition of tropical vegetation (Willinghöfer et al. 2012, Cicuzza et al. 2013).

Nevertheless, terrestrial forest herbs have been little studied from a floristic and biogeographic point of view. As a result, there is little knowledge about how herbaceous angiosperm associations change along elevational gradients, and if they exhibit similar patterns like other plant groups (Willinghöfer et al. 2012). Only a few relevant studies have been realized in pastures (Lira-Noriega et al. 2007) and coffee plantations (Ramos et al. 1983) or focusing on single families, such as Poaceae (Hernández et al. 1990, Mejía-Saulés et al. 2002), Orchidaceae (Sosa & Platas 1998, Salazar 1999) and Asteraceae (Villaseñor et al. 2006).

Further studies on the geographical distribution of the floristic elements of central Veracruz are necessary in order to better understand its complex mix of plant species (Villaseñor 2010). Inventories of specific groups of plants or particular geographic areas contribute to the completion of the national flora of Mexico and form the basis for the appropriate management of the natural resources (Martinez-Camilo et al. 2012). This kind of data can also provide information about the degree of endemism and endangered species in specific areas, which allows evaluating protected areas about the richness and uniqueness of their flora (Rzedowski 2006).

The objective of this study was to record the flora of herbaceous angiosperms in central Veracruz, Mexico, along gradients of elevation and human forest use intensity along the Cofre de Perote mountain. The study was conducted to gather information about the floristic composition, elevational ranges and geographical distribution of the species, as well as to compare species richness and similarity between elevational belts and forest types. In this way, we provide more detailed information about patterns of species richness and distribution, which presents another step towards defining priority areas for conservation of this complex vegetation mosaic.

Materials and methods

Study area. The study was conducted at eight study sites along an elevational gradient of ca. 82 km between 40 and 3,520 m a.s.l. on the eastern slopes of the Cofre de Perote, an extinct volcano of 4,282 m elevation in the central part of the state of Veracruz, Mexico (Figure 1). This region is located at the junction of the Trans-Mexican volcanic belt and the Sierra Madre Oriental, a mountainous area between 19° 25’ 5.7’’ and 19° 36’ 54’’ N, and 96° 22’ 36’’ and 97° 09’ 36.9’’ W. According to Lauer (1972), five climate zones can be found in the study area in combination with six forest types as classified by Miranda & Hernández-Xolocotzi (1963) (Table 1).

Figure 1 Location of the eight study sites along gradients of elevation and forest disturbance in central Veracruz, Mexico. Study sites: 1. La Mancha (50 m); 2. Palmarejo (650 m); 3. Chavarrillo (1,000 m); 4. Los Capulines (1,600 m); 5. El Zapotal (2,100 m); 6. El Encinal (2,500 m); 7. Los Pescados (3,100 m); 8. El Conejo (3,500 m). The limits of the Neotropics according to Löwenberg-Neto (2014) are shown in light green. 

Table 1 Overview of the study sites along gradients of elevation and forest disturbance in central Veracruz, Mexico. Forest type: TSDF = tropical semi-humid deciduous forest, TOF = tropical oak forest, HMF= humid montane forest, POF = pine-oak forest, PF = pine forest, and FF = fir forest. Mean annual temperature and mean annual precipitation and number of recorded species within the four habitats with different forest use intensities (OG = old-growth, DE = degraded, SE = secondary, AZ = azonal). 

Study site Elevational
range (m)
Forest
type
Number
of plots
Temp.
(°C)
Prec.
(mm)
OG DE SE AZ
La Mancha 30-50 TSDF 15 26 1,221 4 6 8 -
Palmarejo 610-670 TSDF 20 23 938 12 35 11 20
Chavarrillo 900-1,010 TOF 15 21 1,552 11 13 19 -
Los Capulines 1,470-1,650 HMF 20 18 1,598 24 21 20 31
El Zapotal 2,020-2,230 HMF 15 14 3,004 16 18 20 -
El Encinal 2,470-2,600 POF 20 12 1,142 47 41 38 35
Los Pescados 3,070-3,160 PF 15 10 821 22 26 37 -
El Conejo 3,480-3,540 FF 15 8 829 9 13 10 -

Tierra caliente (0-1,250 m).- In this climate zone, we selected three study sites located in two forest types (Figure 1, Table 1): the tropical semi-humid deciduous forest (TSDF) is found in the localities of La Mancha at 50 m and Palmarejo at 650 m (Castillo-Campos & Travieso-Bello 2006) and characterized by the trees Brosimum alicastrum Sw., Cedrela odorata L., Bursera simaruba (L.) Sarg. and Ficus obtusifolia Kunth. Canopy trees lose leaves mostly during the prolonged period of drought (October to May). The tropical oak forest (TOF) in the locality of Chavarrillo at 1,000 m is typically dominated by one to three oak species (Quercus oleoides Schltdl. & Cham., Q. laurina Bonpl. and/or Q. peduncularis Née), whereas other tree species are scarce. The period of leaf fall lasts about four months and it is related with the dry season (February to May).

Tierra templada (1,250-2,200 m).- In this climate zone, two study sites within one forest type were chosen (Figure 1, Table 1): the humid montane forest (HMF), which is found in the localities of Los Capulines at 1,500 m and El Zapotal at 2,100 m. One of the most important ecological factors that characterizes this kind of forest is the frequent occurrence of fog (bosque de niebla or cloud forests; Zamora-Crescencio & Castillo-Campos 1997). In general, this community includes a mix of lower montane forest genera (e.g., Quercus L. and Liquidambar L.) with tropical lowland forest families (Acanthaceae, Rubiaceae and Myrsinaceae). The period of leaf fall lasts about four months and is related to the dry season (February to May).

Tierra fría I (2,200-2,700 m).- In this climate zone, one study site within one forest type was chosen (Figure 1, Table 1): the pine-oak forest (POF), which is found in the locality of El Encinal at 2,500 m. This forest type comprises a community whose dominant trees belong to the genera Quercus and Pinus L. Typically, in the afternoons fog occurs (Narave-Flores 1985, Castillo-Campos 2011), which makes that the temperature and humidity stay constant.

Tierra fría II (2,700-3,200 m).- In this climate zone, one study site within one forest type was chosen (Figure 1, Table 1): the pine forest (PF), which is found in the locality of Los Pescados at 3,100 m. This forest type is dominated by several species of the genus Pinus L. (P. montezumae D. Don in Lamb., P. patula Schltdl. & Cham., P. pseudostrobus Lindl., P. teocote Schltdl. & Cham.) causing a high canopy openness.

Tierra helada (3,200-4,282 m).- In this climate zone, one study site within one forest type was chosen (Figure 1, Table 1): the fir forest (FF), which is found in the locality of El Conejo at 3,500 m. This forest type is a mono-specific Abies religiosa (Kunth) Schltdl. & Cham. community with sparse canopy openness.

Along the complete elevational gradient, mean annual precipitation (MAP) ranges from 813 to 3,004 mm, being highest in humid montane forest at 2,100 m and lowest in coniferous forests above 3,000 m, whereas mean average temperature (MAT) ranges from 9 to 26 °C (SMN 2016) (Table 1). The elevational vertical temperature gradient follows a negative linear pattern with MAT decreasing by 0.55 °C every 100 m (r2 = 0.96, p < 0.001).

Sampling and botanical records. Field sampling was conducted between February 2012 and January 2014 at eight sites within elevational belts of about 500 m each (Figure 1, Table 1). In order to simplify hereafter we will refer to every site as categorical unit (50, 650, 1,000, 1,500, 2,100, 2,500, 3,100, 3,500 m).

We studied terrestrial herbaceous angiosperms (excluding epiphytes), whose life form was defined as plants that have no persistent woody stem above ground or plants that are only slightly woody, rooted on the forest floor and have short height (Moreno 1984, Poulsen 1996). Ferns were not included in this study because their diversity patterns were already described in the work of Carvajal-Hernández & Krömer (2015). Presence-absence was recorded for all species in each elevational belt within 15 to 20 plots of 20 × 20 m. The plot size of 400 m2 was selected in order to have a representative study area of the forest fragments, which is small enough to keep abiotic factors and ecological physiognomy uniform within the plot (Kessler & Bach 1999). The total number of plots for the entire study was 135, resulting in a total study area of 54,000 m2. For our study, we defined four types of habitat with different forest use intensities following Newbold et al. (2015): old-growth, degraded, secondary and azonal forest (Table 2).

Table 2 Classification of habitats with different forest use intensities according to the main physiognomic characteristic, the gap fraction in the canopy, dominance of canopy trees, percentage of shrubs and the presence of lianas (sensu Newbold et al. 2015). 

Habitat Characteristic Gaps (%) Forest use
intensity
Canopy
trees
Shrub
(%)
Lianas
Old-growth No obvious forest use,
dominance of mature trees
< 10 Low High < 30 No
Degraded Selective logging, grazing
and understory removal
11-25 Medium Low 30-50 Low
Secondary Re-growth after clear-cut > 25 High Very low > 50 High
Azonal Grows in riparian forest and
humid ravines
< 10 Low High < 30 No

To avoid edge effects, our plots were established at least 50 m away from the nearest forest edge. An equal number of plots was studied for every forest type, i.e. five were established in each of the following habitats with different use intensities: i) old-growth, ii) degraded and iii) secondary forest. Only in the sites of 650, 1,500 and 2,500 m we were able to add five plots in vi) existing azonal vegetation, causing the uneven numbers of plots per elevational belt (Table 1).

Taxonomic determination. In each study site (but not in every plot), all terrestrial herbaceous angiosperms species were collected mostly in triplicate and deposited at the following herbaria: Herbario Nacional de México, Instituto de Biología, UNAM, (MEXU, including all unicates), Instituto de Ecología, A.C., (XAL), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN (CIIDIR) and/or at the local herbarium of the Facultad de Biología, Universidad Veracruzana (XALU). Collection and processing of botanical specimens were made according to the proposal of Lot & Chiang-Cabrera (1986). Botanical determinations were realized by use of the relevant taxonomic literature (Flora de Veracruz and Flora fanerogámica del Valle de México), by comparison with specimens deposited at MEXU and XAL, and consultation of experts in different plant families (see Acknowledgements). Also, morpho-species which are clearly different were incorporated in the floristic list (Krömer et al. 2013). It was not possible to identify all specimens to species or genus level for two main reasons: i) most of the studied plant groups are not well known and their identification is difficult due to a lack of relevant literature, ii) some individuals were found sterile. Taxa were classified according to the classification of the Angiosperm Phylogeny Group (APG; Bremer et al. 2009).

Data analyses. We used the package “vegan v2.3-4” (Oksanen et al. 2016) in R statistical language v3.2.3 (R Core Team 2014) to calculate the number of unobserved species with the Bootstrap function, which is based on presence-absence data and takes into account rare, unique and duplicated species. This species richness estimator is reliable because it has a sensibility to species aggregation in the initial stage of the sampling when the species distribution is random.

Based on their geographical distribution area, each species was placed in one of the following categories (sensu Rzedowski 1991): i) endemic to Mexico, ii) endemic to the southern United States and Mexico (Megamexico 1), iii) endemic to Mexico and Central America (Megamexico 2), iv) endemic to the southern United States and Central America (Megamexico 3), and v) introduced species (Gómez-Pompa et al. 2010, Espejo-Serna 2012).

Finally, to compare our results with other studies, we calculated the taxonomic diversity index (TDI; Magurran 2004) for the total number of species and for the three most important families: Asteraceae, Poaceae and Orchidaceae, with the following equation:

TDI=log-Slog-A

where S is the total species number and A is the entire studied area in m2.

Results

In 135 plots along the elevational transect, we recorded 264 (morpho-)species of terrestrial herbaceous angiosperms from 152 genera and 54 families (Appendix). Of all recorded species, 201 (76 %) were identified to species level, 42 (16 %) to genus level and 21 (8 %) to family level. Monocots contributed 45 % of the species and 28 % of the families, and dicots 55 % of the species and 72 % of the families. Table 3 summarizes the most species-rich taxa at family and genus level. The observed species richness varied between 79 and 90 % of the predicted values by the estimator Bootstrap at every elevational belt (Figure 2).

Table 3 Most representative families and genera of herbaceous angiosperms along gradients of elevation and forest disturbance in central Veracruz, Mexico. 

Family Species
number
Percentage
(%)
Genera Species
number
Percentage (%)
Poaceae 36 14 Peperomia 10 4
Asteraceae 31 12 Salvia 8 3
Orchidaceae 27 10 Begonia 6 2
Cyperaceae 17 6 Senecio 6 2
Lamiaceae 13 5 Cyperus 5 2
Araceae 12 4 Anthurium 5 2
Piperaceae 10 4 Carex 5 2
Commelinaceae 9 3 Ageratina 4 2
Rubiaceae 8 3 Arenaria 4 2
Other families 101 38 Other genera 211 80
Total 264 100 Total 264 100

Figure 2 Observed and estimated (Bootstrap species richness estimator) species richness of all species together per elevational belt. We present the number of exclusive species at each study site, the number of species shared with other sites, and the species that are exclusive for azonal habitats. 

In order to compare overall species richness between the eight study sites, we used the values excluding and including species of azonal vegetation. In the first case, the highest number of species was found in the site of 2,500 (71), followed by 3,100 m (48) and 650 m (43); in the second case, the site with the highest number of species was 2,500 m (76), followed by 1,600 m (52) and 3,100 m (48) (Figure 2). All habitats of the 2,500 m site taken separately had the highest species richness of the elevational gradient (Table 1), whereas all habitats of 50 m had the lowest richness. The secondary forest in most of the sites had the highest number of species, whereas old-growth forests had the lowest number of species in most of the sites. In the sites with azonal vegetation, this habitat had more species than old-growth forests, and except for 2,500 m, even more than secondary forests (Table 1). TDI was 0.51 for all species and between 0.31 and 0.033 for the three most important families (Table 4).

Table 4 Comparative species richness of herbaceous angiosperms along elevational gradients reported in some studies from México, Brazil and Ecuador. TDI = taxonomic diversity index (calculated for the total species number and for the most important families Ast= Asteraceae, Poa = Poaceae and Orc = Orchidaceae). 

Region, Country Elevation (m) Latitude Species number Area (ha) TDI Ast TDI Poa TDI Orc TDI Authors
Manaus, Brazil 70-150 2° 37’ S 24 0.09 0.47 0 - 2 0.10 0 - Costa (2004)
Cuyabeno, Ecuador 250-300 0° 00’ S 70 1.00 0.46 0 - 8 0.23 0 - Poulsen et al. (2006)
Los Tuxtlas, Veracruz, Mexico 140-1,670 18° 43’ N 50 2.96 0.38 0 - 0 - 17 0.28 Krömer et al. (2013)
Jalcomulco, Veracruz, Mexico 350-900 19° 21’ N 60 0.67 0.46 2 0.08 4 0.16 2 0.08 Palacios-Wassenaar et al. (2014)
Central Veracruz, Mexico 1,800-2,000 19° 29’ N 139 0.02 0.92 2 0.13 4 0.26 2 0.13 García-Franco et al. (2008)
Sierra de Manantlán, Jalisco, Mexico 1,500-2,500 19° 30’ N 181 4.30 0.49 ND ND ND ND ND ND Vázquez & Givnish (1998)
Central Veracruz, Mexico 50-3,500 19° 31’ N 264 4.80 0.52 31 0.32 36 0.33 27 0.31 This study
Central Veracruz, Mexico 400-900 19° 37’ N 300 1.20 0.61 42 0.40 53 0.42 2 0.07 Castillo-Campos (2007)
Pacific coast of Mexico 400-2,860 19° 45’ 1,793 140,000 0.36 333 0.28 221 0.26 181 0.25 Vázquez et al. (1995)
Sierra de Zapalinamé, Coahuila, Mexico 1,590-3,140 25° 25’ N 171 3.30 0.49 61 0.40 27 0.32 0 - Encina-Dominguez et al. (2007)

Geographical distribution. Most of the study sites shared only low numbers of species (Figure 2). The highest number of exclusive species was found at 2,500 m, followed by 650 m and 3,100 m. Concerning biogeography, 70 % of the taxa showed a Neotropical affinity and we recorded 31 species endemic to Mexico, including two species (Begonia multistaminea Burt-Utley and Sedum obcordatum R.T.Clausen) endemic to Veracruz (see Appendix). Furthermore, 20 species were endemic to Mexico and Central America and two to the South of United States of America and Mexico. Three species are listed in Official Mexican Law (SEMARNAT 2010), two of these are threatened and endemic to Mexico (Anthurium podophyllum (Schltdl. & Cham.) Kunth and Peperomia subblanda C. DC.), and another was under special protection (Monotropa hypopitys L.). Additionally, we found 14 introduced species to Mexico that were mostly recorded in secondary and degraded forests (Table 5 and Appendix).

Table 5 Number of species under geographic distribution and life strategy recorded along gradients of elevation and forest disturbance in central Veracruz, Mexico. OG = old-growth forest, DE = degraded forest, SE = secondary forest, AZ = azonal forest. Total numbers of species in each category are also shown. 

Distributional/life strategy category OG DE SE AZ Total
Under special protection 1 2 2 - 3
Endemic to Veracruz 1 - - - 1
Endemic to Mexico 11 15 20 9 31
South of United States of America and Mexico 1 2 1 - 2
Mexico and Central America 9 12 11 9 20
Introduced 5 6 9 2 14
Ruderal 13 19 27 11 41
Generalist 65 92 73 56 152

Discussion

General taxa richness. A comparison with previous studies on terrestrial angiosperms and other plant groups in state of Veracruz shows that we recorded a high number of species in our study. Although our sampling area was limited (5.4 ha), the total number of species recorded was higher than those reported by Cházaro-Basáñez (1992) who focused on a floristic description of the different forest types within the upper part of the same elevational gradient. Cházaro-Basáñez reported only 12 herbs in the humid montane forest, 17 in the pine-oak forest, two in the pine forest and 14 in the fir forest. Carvajal-Hernández & Krömer (2015) found 155 species of ferns and lycophytes in the same plots of our elevational gradient of which 82 were terrestrial species. Several studies from central Veracruz reported a lower number of terrestrial herbs, e.g., Palacios-Wasenaar et al. (2014) recorded 230 species of vascular plants of which 60 (26 %) were herbs (Table 5). García-Franco et al. (2008) found 258 vascular plant species in similar forests, of which 139 (54 %) were herbs. Novelo-Retana (1978) recorded 238 species of vascular plants of which 67 (28 %) were herbs. Zamora & Castillo-Campos (1997) recorded 390 species of vascular plants of which 225 (58 %) were herbs.

In contrast, a higher number of herbaceous species has been reported in some studies from central Veracruz. The relatively high number of herb species might be explained by the large environmental gradient covered in our study and will be discussed in the next paragraphs. For example, Castillo-Campos et al. (2007) recorded 580 species of vascular plants of which 369 (64 %) were herbs, and Narave-Flores (1985) recorded 853 species of vascular plants of which 557 (65 %) were herbs. For Southern Veracruz, Ibarra-Manríquez & Sinaca-Colin (1987) recorded 991 species of vascular plants of which 536 (54 %) were herbs. However, all these studies were realized in much bigger sampling areas than the present study.

Due to the limited number of similar transect studies in the study area we were only able to compare our results with the following studies realized in Southern Veracruz by Krömer et al. (2013), which however included mainly terrestrial ferns and only a few orchids and bromeliads, Western Mexico (Jalisco) by Vázquez & Givnish (1998) and Vázquez et al. (1995), and Northern Mexico (Coahuila) by Encina-Domínguez et al. (2007). Furthermore, we compared our results with the species numbers of terrestrial angiosperms found along two elevational gradients of Brazil and Ecuador (Table 4).

In most of the cases, our study site shows a higher number of species than the other locations. The TDI also shows that excluding the works from central Veracruz, our study has a higher species per area value than the other studies (Table 4). These differences among the geographical areas can be explained by environmental factors, such as latitudinal influence, precipitation, temperature, elevation and soil nutrients (Vázquez & Givnish 1998, Cicuzza et al. 2013). The TDI indicates different patterns for the three most important families, e.g., there is an increase of the values of Asteraceae with elevation (Table 4), which is different from the family pattern shown in Mexico (Villaseñor et al. 2005). In the case of the Poaceae, the index shows that at lower latitudes this family is an important component of the flora, whereas in central Veracruz the family has similar values than the Asteraceae, and at the highest latitude there was a decrease in the value. In the case of the Orchidaceae, our study shows the highest value compared to the other locations, which demonstrates that the forest fragments in central Veracruz harbor a high number of orchids (Castañeda-Zárate et al. 2012).

On the other hand, species richness in our study was much lower compared to the numbers presented by Castillo-Campos et al. (2007), which is due to the fact that their work was realized in tropical deciduous forest which is recognized as vegetation type with high diversity of herbaceous angiosperms, as well as a more concentrated and exhaustive sampling effort in only one vegetation type. In general, the tropical deciduous forests occur in environments with highlight incidence during the dry season (Chiarucci 1994). Besides, the limitations imposed by the bedrock, such as lack of organic matter in the soil, restrict the establishment of other plant groups (e.g., trees). Therefore, the herbaceous layer is facilitated by excluding competitors due to the physiological and functional traits that are characteristic for this plant group (Castillo-Campos et al. 2007).

Patterns of richness along the elevational gradient. We found a not very pronounced hump-shaped pattern in the overall species distribution along the elevational gradient (Figure 2), which is a pattern found in different groups of vascular plants along tropical elevational gradients, such as ferns (Salazar et al. 2015), terrestrial herbs (Willinghöfer et al. 2012) and shrubs (Chawla et al. 2008). Rahbek (1995) suggested that the distribution of plants in tropical areas is affected by the high variation of environmental factors that can change substantially in small regions, and this causes differences in the form of distributional patterns. We found that the sea level site was less species-rich compared with the other sites. The following sites (from 650 until 2,100 m) have an intermediate species richness (Figure 2). This is probably due to heterogeneity in their landscape in comparison to other areas of the state, such as the coastal plain, caused by the heterogeneous structure of the physiographic discontinuity generated by the union of two regions: Coastal plain of the Gulf of Mexico and Trans-Mexican Volcanic Belt (Narave-Flores 1985, Torres-Cantú 2013).

The highest species richness was found at 2,500 m, which has been also reported from Ecuador for all endemic vascular plant species, endemic species of Acanthaceae, Asteraceae, Lamiaceae, Piperaceae and Scrophulariaceae (Kessler 2002), and for liverworts in the Northern Andes (Wolf 1993). This pattern is based on a contact of different species assemblages within the transition between two climate zones (Lauer 1972, Wolf 1993) and a high level of humidity due to cloud condensation (Rahbek 1995, Hemp 2006). The richness tends to decrease at higher elevations because productivity and temperature decrease with elevation (Currie et al. 2004, Hawkins et al. 2007); both factors affect the competition and growth of plants (Vázquez & Givnish 1998). Furthermore, the kind of dominant tree species (Pinus spp. and Abies religiosa) at the highest sites (3,000 and 3,500 m) has an influence on the herbaceous community because the coniferous litter changes the soil properties (Whittaker 1975, van Wesenbeeck et al. 2003).

Forest use intensity effect. The degraded and secondary forests of the 50, 650, 2,100, 3,100 and 3,500 m sites had higher species richness, compared to the old-growth forests. Furthermore, we found introduced and generalist species most frequently in secondary and degraded forest due to the changes in abiotic factors, such as a drier microclimate, change in soil nutrients and higher light incidence (Köster et al. 2009) that allow them to outcompete native species due to specific arrangements of traits (Schultz & Dibble 2012) (Table 1, Appendix). Similarly, Firn et al. (2011) reported that some herbaceous angiosperms are related to human forest use intensity, which allows the establishment of ruderal species. These species increase the richness in anthropogenically influenced habitats, although native biodiversity is affected negatively by introduced plant species. This indicates that modifications in the structure of the old-growth forest affect the species composition of herbaceous angiosperms because changes in abiotic factors due to forest use intensity may increase the richness, especially of Poaceae and Orchidaceae in degraded habitats, whereas Asteraceae increase in secondary habitats. This is due to the ability of ruderal species to survive or even being favored in drier microclimates (Givnish 1995, Pons & Poorter 2014) with more light in the understory due to the more open canopy of degraded forests (Grime 1977, Lavorel et al. 2011). Consequently, in North American forests, a higher richness of terrestrial herbs was found in the degraded forest with open canopy gaps compared to mature forests with closed canopies (Meekins & McCarthy 2001).

However, the richness of species decreases in the degraded and secondary forests of the 1,600 and 2,500 m sites compared to the old-growth humid montane forest. This similar pattern was found for ferns (Carvajal-Hernández et al. 2014, Carvajal-Hernández & Krömer 2015) and in general for vascular epiphytes (Krömer & Gradstein 2003, Köster et al. 2009). This loss of species is due to the adaptation of many native species to temperate climate with high humidity (Parry et al. 2007). Furthermore, the changes in the structure of soil due to the forest use intensity leads to a loss of microbial organisms that favor the establishment of some species (Camenzind et al. 2014). On the other hand, it is widely documented that fragmentation has a negative effect on species richness in lowland forest, especially on understory plants (Magrach et al. 2014). For example, in the south of Veracruz, Zambrano et al. (2014) found that seeds of understory plants could be affected by altered microclimatic conditions in the fragmented landscape. These species seem to be adapted to moderate conditions of humidity and temperature which, respectively, decrease and increase with forest use intensity (Dale et al. 2001). Peperomia magnoliifolia (Jacq.) A. Dietr. serves as an example in the 650 m site, Begonia multistaminea and P. cobana C. DC. in the 1,600 m site, where these are commonly found in habitats of high humidity and shadow (old-growth forest), but probably cannot tolerate high levels of radiation and low humidity and thus are rare in degraded and secondary forests (Ali 2013, Mathieu et al. 2015).

It was hypothesized that intermediate forest use intensity leads to higher species richness (Connell 1978, Warren et al. 2007) and plantcommunity endemism (Kessler 2001). The mosaic vegetation pattern in our study area is an important shelter for the endemic flora of the region. Since the level of forest use intensity was similar in all sites, the different effects can only be attributed to feedbacks between the specific plant community and the changes in environmental factors, such as microclimate or soil nutrients.

In azonal vegetation (riparian forests), except for the 2,500 m site, the richness was higher than in old-growth forests, which might be due to stable moist environmental conditions and higher soil moisture. In the case of the 650 m site, the species richness recorded in azonal vegetation was almost twice of that observed in the old-growth tropical semi-deciduous forest. This interpretation is consistent with results found by Poulsen & Balslev (1991) in the Amazonian rain forest, who recorded the highest richness of herbs along rivers, which was explained by a mix of species from the border zone to the moist zone next to their study plot and the edaphic and topographic heterogeneity. In the case of terrestrial ferns, Carvajal-Hernández & Krömer (2015) found the same pattern suggesting that fern richness is favored in areas with the influence of water and high humidity. These results confirm the value of the azonal vegetation as reservoirs of biodiversity.

Introduced species. Within the set of introduced species, there is a subgroup known as invasive alien or invasive species, which includes those that survive, are established and reproduce uncontrollably outside their natural environment, causing serious damage to biodiversity, economy, agriculture and public health (CONABIO 2016). We found several introduced species recognized as invasive, e.g. Commelina diffusa Burm. f. is a species that can withstand flooding and infests cultivated lands, roadsides, pastures and wastelands, which is problematic primarily in young crops, but can also cause a problem in mature crops in Mexico due to its sprawling behavior (Boyette et al. 2015). Oeceoclades maculata (Lindl.) Lindl. is competing for the same microhabitat and may displace other native terrestrial orchids (Moreno-Molina & Beutelspacher 2014). Hedychium coronarium J. Koenig has a negative influence on the recruitment of plants from the plant community, with consequences for the biodiversity of invaded areas (de Castro et al. 2016). Foeniculum vulgare Mill. is particularly aggressive in abandoned agricultural fields and grazed areas (Power et al. 2014). Rumex acetosella L. might interfere with secondary succession processes and gap colonization dynamics of native species, and it has the ability to competitively exclude native tussock grasses (Franzese & Ghermandi 2014).

Geographical distribution. In general, the inventoried species show a phytogeographical affinity with southern latitudes, which can be seen by the high number of taxa also occurring in Central and South America. Nevertheless, many endemic taxa of central Mexico have also been encountered. In this context, Rzedowski (2006) suggests that for the flora of Tierra caliente (from sea level until ca. 1,400 m) the southern Neotropical affinity dominates over the boreal affinity. In addition, in Tierra templada, the most important elements have a southern origin with less boreal elements. In the cooler zones (Tierra fría and Tierra helada), the most important floristic elements are equally of southern and boreal affinity with some being endemic species from North America, such as Ageratina pazcuarensis (Kunth) R.M. King & H. and Festuca rosei Piper, whereas others, such as Carex melanosperma Liebm., Corallorhiza maculata (Raf.) Raf. and Muhlenbergia macroura (Kunth) Hitchc. are species endemic to Central America.

Our results show that species richness patterns of herbaceous angiosperms of forest vegetation in central Veracruz are determined by the large environmental gradient of the region. Moreover, degraded and secondary forests exhibit high species richness depending on the elevational belt, which is probably due to the ability of species in several families that compete better under high light conditions. The high richness and turnover of species, including many endemic elements, highlights the importance of this region for plant conservation; however, this area is also highly threatened by land use changes and shows very high deforestation rates (Ellis & Martínez 2010).

Castillo-Campos et al. (2008) proposed to create a system of many protected reserves distributed throughout the state in order to protect this kind of landscape and its flora under the plan of “archipelago reserves” described by Halffter (2005), where all landscape units are connected by small protected areas. In addition, we suggest that an environmental heterogeneity formed by mature, disturbed and secondary forests is acceptable (and unavoidable) and can even increase species richness. This is an opportunity to develop a sustainable management concept to protect and promote species richness and to take into account the need of the local population for forest ecosystem services, such as timber, water, landslide protection, recreation and tourism. This could be an alternative to the current concept of a protected area, such as a national park, that is only focused on protecting alpha diversity without consideration of species turnover rates (Castillo-Campos et al. 2008). Thus, it is necessary to create a conservation and management plan for the study area, which requires taking into account more taxonomic groups, the existing proportions of different habitat types, as well as studies on the socio-economic conditions across the elevational gradient.

Acknowledgements

We thank M. Ruiz-Gómez, F. Calixto-Benites, C. Alavez-Tadeo and V. Guzmán-Jacob for their help during fieldwork, A. Acebey (Araceae), J. Villaseñor-Rios (Asteraceae), G. Salazar-Chávez (Orchidaceae), D. Vergara-Rodriguez (Peperomia), J. Sánchez-Ken and M. Mejía-Saulés (Poaceae), M. Gonzalez-Elizondo (Cyperaceae) and M. Cházaro-Basáñez (other groups) for species identifications, and H. Kreft for helpful comments on this manuscript. We appreciate the working facilities provided at the Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana, Xalapa. The first author acknowledges support from the Consejo Nacional de Ciencia y Tecnología (CONACyT 311672) and the Deutscher Akademischer Austauschdienst (DAAD 91549681) for this research, which is part of his Ph.D. thesis. FH acknowledges a grant from the Deutsche Forschungsgemeinschaft (DFG; HE 6726/4-1). The research of TK was supported by CONACyT. The mobility of researchers was supported by the DAAD with resources of the Bundesministerium für Bildung und Forschung (BMBF, project-ID 57155237, “BIOVERA”).

Literature cited

Ali M. 2013. Genetic architecture of species level differences in Begonia Section Gireoudia. Ph.D. Thesis, University of Edinburgh. [ Links ]

Boyette C, Hoagland R, Stetina K. 2015. Biological control of spreading dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola. Agronomy 5: 519–536. DOI: 10.3390/agronomy5040519 [ Links ]

Bremer B, Bremer K, Chase M. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121. DOI: 10.1111/j.1095-8339.2009.00996.x [ Links ]

Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology 20: 3646–3659. DOI: 10.1111/Gcb.12618 [ Links ]

Carvajal-Hernández CI, Krömer T. 2015. Riqueza y distribución de helechos y licófitos en el gradiente altitudinal del Cofre de Perote, Centro de Veracruz, Mexico. Botanical Sciences 93: 601–614. DOI: 10.17129/botsci.165 [ Links ]

Carvajal-Hernández CI, Krömer T, Vázquez-Torres M. 2014. Riqueza y composición florística de pteridobiontes en bosque mesófilo de montaña y ambientes asociados en el centro de Veracruz, México. Revista Mexicana de Biodiversidad 85: 491–501. DOI: 10.7550/rmb.41292 [ Links ]

Castañeda-Zárate M, Viccon-Esquivel J, Ramos-Castro SE, Solano-Gómez R. 2012. Registros nuevos de Orchidaceae para Veracruz, México. Revista Mexicana de Biodiversidad 83: 281–284. [ Links ]

Castillo-Campos G. 2011. Diversidad de Ambientes. In: Cruz-Angón A, ed. La biodiversidad en Veracruz estudio de estado. México: Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C., 159–283. [ Links ]

Castillo-Campos G, Dávila-Aranda P, Zavala-Hurtado J. 2007. La selva baja caducifolia en una corriente de lava volcánica en el centro de Veracruz: lista florística de la flora vascular. Boletín de la Sociedad Botánica de México 80: 77–104. [ Links ]

Castillo-Campos G, Halffter G, Moreno CE. 2008. Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape. Biodiversity and Conservation 17: 1701–1714. DOI: 10.1007/s10531-008-9375-7 [ Links ]

Castillo-Campos G, Travieso-Bello AC. 2006. La flora. In: Moreno-Casasola P, ed. Entornos Veracruzanos: La Costa de La Mancha. Xalapa: Instituto de Ecología, A.C., 171–204. [ Links ]

Chawla A, Rajkumar S, Singh KN, Lal B, Singh RD, Thukral AK. 2008. Plant species diversity along an altitudinal gradient of Bhabha Valley in western Himalaya. Journal of Mountain Science 5: 157–177. DOI: 10.1007/s11629-008-0079-y [ Links ]

Cházaro-Basáñez M-de-J. 1992. Exploraciones botánicas en Veracruz y estados circunvecinos I. Pisos altitudinales de vegetación en el centro de Veracruz y zonas limítrofes con Puebla. La Ciencia y el Hombre 10: 67–115. [ Links ]

Chiarucci A. 1994. Successional pathway of Mediterranean ultramafic vegetation in central Italy. Acta Botanica Croatica 53: 83–94. [ Links ]

Cicuzza D, Krömer T, Poulsen AD, Abrahamczyk S, Delhotal T, Piedra HM, Kessler M. 2013. A transcontinental comparison of the diversity and composition of tropical forest understory herb assemblages. Biodiversity and Conservation 22: 755–772. DOI: 10.1007/s10531-013-0447-y [ Links ]

Colwell R, Brehm G, Cardelús LC, Gilman AC, Longino JT. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258–261. DOI: 10.1126/science.1162547 [ Links ]

Cruz-Angón A Ed. 2011. La biodiversidad en Veracruz: Estudio de estado. Ciudad de México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C. [ Links ]

CONABIO. 2016. Sistema de información sobre especies invasoras en México. <http://www.biodiversidad.gob.mx/invasoras > (accessed October 13, 2016). [ Links ]

Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310. DOI: 10.1126/science.199.4335.1302 [ Links ]

Costa FRC. 2004. Structure and composition of the ground-herb community in a terra-firme Central Amazonian forest. Acta Amazonica 34: 53–59. DOI: 10.1590/S0044-59672004000100007 [ Links ]

Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121–1134. DOI: 10.1111/j.1461-0248.2004.00671.x [ Links ]

Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM. 2001. Climate change and forest disturbances. BioScience 51: 723. DOI: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 [ Links ]

de-Castro WAC, Almeida RV, Leite MB, Marrs RH, Silva-Matos DM. 2016. Invasion strategies of the white ginger lily Hedychium coronarium J. König (Zingiberaceae) under different competitive and environmental conditions. Environmental and Experimental Botany 127: 55–62. DOI: 10.1016/j.envexpbot.2016.03.010 [ Links ]

DeClerck FAJ, Chazdon R, Holl KD, Milder JC, Finegan B, Martinez-Salinas A, Imbach P, Canet L, Ramos Z. 2010. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biological Conservation 143: 2301–2313. DOI: 10.1016/j.biocon.2010.03.026 [ Links ]

Ellis EA, Martínez M. 2010. Vegetación y uso de suelo. In: Florescano E, Ortíz J, eds. Atlas del patrimonio natural, histórico y cultural de Veracruz. Xalapa, Veracruz: Comisión del Estado de Veracruz para la Conmemoración de la Independencia Nacional y la Revolución Mexicana, 203–226. [ Links ]

Encina-Domínguez JA, Zárate-Lupercio A, Valdes-Reyna J, Villarreal-Quintanilla J. 2007. Caracterización ecológica y diversidad de los bosques de encino de la sierra de Zapalinamé, Coahuila, México. Boletín de la Sociedad Botánica de México 81: 51–63. [ Links ]

Espejo-Serna A. 2012. El endemismo en las liliopsida mexicanas. Acta Botanica Mexicana 100: 195–258. [ Links ]

FAO. 2014. State of the World’s Forests 2014. Food and Agriculture Organization of the United Nations. [ Links ]

Firn J, Moore JL, MacDougall AS, Borer ET, Seabloom EW, HilleRisLambers J, Harpole WS, Cleland EE, Brown CS, Knops JMH, Prober SM, Pyke DA, Farrell KA, Bakker JD, O’Halloran LR, Adler PB, Collins SL, D’Antonio CM, Crawley MJ, Wolkovich EM, La Pierre KJ, Melbourne BA, Hautier Y, Morgan JW, Leakey ADB, Kay A, McCulley R, Davies KF, Stevens CJ, Chu C-J, Holl KD, Klein JA, Fay PA, Hagenah N, Kirkman KP, Buckley YM. 2011. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters 14: 274–281. DOI: 10.1111/j.1461-0248.2010.01584.x [ Links ]

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309: 570–574. DOI: 10.1126/science.1111772 [ Links ]

Franzese J, Ghermandi L. 2014. Early competition between the exotic herb Rumex acetosella and two native tussock grasses with different palatability and water stress tolerance. Journal of Arid Environments 106: 58–62. DOI: 10.1016/j.jaridenv.2014.03.004 [ Links ]

García-Franco JG, Castillo-Campos G, Mehltreter K, Martínez ML, Vázquez G. 2008. Composición florística de un bosque mesófilo del centro de Veracruz, México. Boletín de la Sociedad Botánica de México 83: 37–52. [ Links ]

Givnish TJ. 1995. Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In: Gartner BL, ed. Plant stems: Physiology and functional morphology. Academic Press, 3–49. [ Links ]

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812–818. DOI: 10.1126/science.1185383 [ Links ]

Gómez-Pompa A, Castillo-Campos G. 2010. La vegetación de Veracruz. In: Gómez-Pompa A, Krömer T, Castro-Cortés R, eds. Atlas de la flora de Veracruz: un patrimonio natural en peligro. Universidad Veracruzana. Gobiertno del Estado de Veracruz, 57–76. [ Links ]

Gómez-Pompa A, Krömer T, Castro-Cortés R. 2010. Atlas de la flora de Veracruz: un patrimonio natural en peligro. Universidad Veracruzana. Gobierno del Estado de Veracruz. [ Links ]

Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist.111: 1169–1194. [ Links ]

Halffter G. 2005. Towards a culture of biodiversity conservation. Acta Zoológica Mexicana 21: 133–153. [ Links ]

Hawkins B, Albuquerque FaS, Araújo MB, Beck J, Bini LM, Cabrero-Sañudo FJ, Castro-Parga I, Diniz-Filho JA, Ferrer-Castan D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno JC, Olalla-Tárraga MA, Pausas JG, Qi H, Williams P. 2007. A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88: 1877–1888. DOI: 10.1890/06-1444.1 [ Links ]

Hemp A. 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184: 27–42. DOI: 10.1007/s11258-005-9049-4 [ Links ]

Hernández T, Valles B, Castillo E. 1990. Evaluación de gramíneas y leguminosas forrajeras en Veracruz, México. Pasturas Tropicales 12: 29–33. [ Links ]

Ibarra-Manríquez G, Sinaca-Colin S. 1987. Listado Florístico de México VII, de la Estación de Biología Tropical “Los Tuxtlas”. Mexico City: Instituto de Biología, UNAM. [ Links ]

Kessler M. 2001. Maximum plant-community endemism at intermediate intensities of anthropogenic disturbance in Bolivian montane forests. Conservation Biology 15: 634–641. DOI: 10.1046/j.1523-1739.2001.015003634.x [ Links ]

Kessler M. 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29: 1159–1165. DOI: 10.1046/j.1365-2699.2002.00773.x [ Links ]

Kessler M, Bach K. 1999. Using indicator families for vegetation classification in species-rich Neotropical forests. Phytocoenologia 29: 485–502. [ Links ]

Köster N, Friedrich K, Nieder J, Barthlott W. 2009. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology 23: 911–919. DOI: 10.1111/j.1523-1739.2008.01164.x [ Links ]

Krömer T, Acebey A, Kluge J, Kessler M. 2013. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora 208: 197–210. DOI: 10.1016/j.flora.2013.03.003 [ Links ]

Krömer T, Gradstein SR. 2003. Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24: 190–195. DOI: 10.2307/41760132 [ Links ]

Lauer W. 1973. Zusammenhänge zwischen Klima und Vegetation am Ostabfall der mexikanischen Meseta. Erdkunde 27: 192-213 [ Links ]

Lavorel S, Grigulis K, Lamarque P, Colace M-P, Garden D, Girel J, Pellet G, Douzet R. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99: 135–147. DOI: 10.1111/j.1365-2745.2010.01753.x [ Links ]

Lindenmayer DB, Franklin JF, Fischer J. 2006. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation 131: 433–445. DOI: 10.1016/j.biocon.2006.02.019 [ Links ]

Lira-Noriega A, Guevara S, Laborde J, Sánchez-Ríos G. 2007. Composición florística en potreros de Los Tuxtlas, Veracruz, México. Acta Botanica Mexicana 87: 59–87. [ Links ]

Lot A, Chiang-Cabrera F. 1986. Manual de Herbario: Administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos. Consejo Nacional de la Flora de México. [ Links ]

Löwenberg-Neto P. 2014. Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa 3802: 300. DOI: 10.11646/zootaxa.3802.2.12 [ Links ]

Magrach A, Rodríguez-Pérez J, Campbell M, Laurance WF. 2014. Edge effects shape the spatial distribution of lianas and epiphytic ferns in Australian tropical rain forest fragments. Applied Vegetation Science 17: 754–764. DOI: 10.1111/avsc.12104 [ Links ]

Magurran AE. 2004. Measuring Biological Diversity. Oxford, UK: Blackwell Publishing Ltd. [ Links ]

Martinez-Camilo R, Pérez-Farrera MÁ, Martínez-Meléndez N. 2012. Listado de plantas endemicas y en riesgo de la reserva de la biosfera El Triunfo, Chiapas, México. Botanical Sciences 90: 263–285. DOI: 10.17129/botsci.390 [ Links ]

Mathieu G, Vergara-Rodríguez D, Krömer T, Karger DN. 2015. Peperomia (Piperaceae) novelties from Veracruz state, Mexico. Phytotaxa 205: 268–276. DOI: 10.11646/phytotaxa.205.4.6 [ Links ]

Meekins JF, McCarthy B. 2001. Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecological Applications 11: 1336–1348. [ Links ]

Mejía-Saulés T, Castillo-Campos G, Avendaño-Reyes S. 2002. New reports of Poaceae in the rocky substratum of municipality of Perote, Veracruz, Mexico. Rhodora 104: 304–308. [ Links ]

Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M. 2013. On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution 28: 461–468. DOI: 10.1016/j.tree.2013.01.001 [ Links ]

Miranda F, Hernández-Xolocotzi E. 1963. Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México 28: 29–162. [ Links ]

Moreno NP. 1984. Glosario botánico ilustrado. Xalapa, Veracruz: Instituto Nacional de Investigaciones sobre Recursos Bióticos. [ Links ]

Moreno-Molina I, Beutelspacher CR. 2014. Situación actual en Chiapas de Oeceoclades maculata (Lindl.) Lindl. (1833), Orquídea terrestre invasora. Lacandonia 8: 39–46. [ Links ]

Myers N, Mittermeier RA, Mittermeier CG, Da-Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. DOI: 10.1038/35002501 [ Links ]

Narave-Flores H. 1985. La vegetación del cofre de Perote, Veracruz, Mexico. Biotica 10: 35–64. [ Links ]

Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De-Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520: 45–50. DOI: 10.1038/nature14324 [ Links ]

Novelo-Retana A. 1978. La vegetación de la estación biológica El Morro de la Mancha, Veracruz. Biótica 3: 9–23. [ Links ]

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2016. vegan: Community ecology package. <https://cran.r-project.org/package=vegan > (accessed May 3, 2016). [ Links ]

Olguín EJ. 2011. La biodiversidad del estado y algunas de sus amenazas. In: Cruz-Angón A, ed. La biodiversidad en Veracruz estudio de estado I. Veracruz: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 349–397. [ Links ]

Palacios-Wassenaar O, Castillo-Campos G, Vázquez-Torres SM, Del-Amo-Rodríguez S. 2014. Flora vascular de la selva mediana subcaducifolia del centro de Veracruz, México. Revista Mexicana de Biodiversidad 85: 125–142. DOI: 10.7550/rmb.34663 [ Links ]

Parry M, Canziani O, Palutikof J, van-der-Linden P, Hanson C. 2007. Climate change 2007: impacts, adaptation and vulnerability. Report of the IPCC, Cambridge University Press. [ Links ]

Pons TL, Poorter H. 2014. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. Frontiers in Plant Science 5: 12. DOI: 10.3389/fpls.2014.00012 [ Links ]

Poulsen AD. 1996. Species richness and density of ground herbs within a plot of lowland rainforest in north-west Borneo. Journal of Tropical Ecology 12: 177–190. [ Links ]

Poulsen AD, Balslev H. 1991. Abundance and cover of ground herbs in an Amazonian rain forest. Journal of Vegetation Science 2: 315–322. DOI: 10.2307/3235922 [ Links ]

Poulsen AD, Tuomisto H, Balslev H. 2006. Edaphic and Floristic Variation within a 1-ha Plot of Lowland Amazonian Rain Forest. Biotropica 38: 468–478. [ Links ]

Power PJ, Stanley T, Cowan C, Roberts JR. 2014. Native plant recovery in study plots after fennel (Foeniculum vulgare) control on Santa Cruz Island. Monographs of the Western North American Naturalist 7: 465–476. DOI: 10.3398/042.007.0136 [ Links ]

R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.r-project.org/ > (accessed January 20, 2016). [ Links ]

Rahbek C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200–205. DOI: 10.1111/j.1600-0587.1995.tb00341.x [ Links ]

Ramos L, Anaya AL, de-Pascual JN. 1983. Evaluation of allelopathic potential of dominant herbaceous species in a coffee plantation. Journal of Chemical Ecology 9: 1079–1097. DOI: 10.1007/BF00982213 [ Links ]

Rzedowski J. 1991. Diversidad y orígenes de la flora fanerogámica de México. Acta Botanica Mexicana 14: 3–21. DOI: 10.21829/abm14.1991.611 [ Links ]

Rzedowski J. 1993. Diversity and origins of the phanerogamic flora of Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J, eds. Biological diversity of Mexico: origins and distribution. Oxford University Press, 129–144. [ Links ]

Rzedowski J. 2006. Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. <http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf > (accessed May 3, 2016). [ Links ]

Salazar G. 1999. Novelties in Mexican Orchidaceae, mainly from the Uxpanapa-Chimalapa region, Veracruz and Oaxaca. Anales del Instituto de Biología, Universidad Nacional Autónoma de México. Serie Botánica 70: 1–12. [ Links ]

Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Krömer T, Kluge J. 2015. Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecology & Diversity 8: 13–24. DOI: 10.1080/17550874.2013.843036 [ Links ]

Schultz R, Dibble E. 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14. DOI: 10.1007/s10750-011-0978-8 [ Links ]

SEMARNAT. 2010. Norma Oficial Mexicana. Protección ambiental-Especies nativas de México de flora y fauna silvestres. Categorias de riesgo y especificaciones para su inclusión, exclusión o cambio. Mexico: Diario Oficial. DOI: 10.1007/s13398-014-0173-7.2 [ Links ]

SMN. 2016. Servicio Meteorológico Nacional. Normales climatológicas. <http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=164&tmpl=component > (accessed March 8, 2016). [ Links ]

Sosa V, Platas T. 1998. Extinction and persistence of rare orchids in Veracruz, Mexico. Conservation Biology 12: 451–455. DOI: 10.1111/j.1523-1739.1998.96306.x [ Links ]

Torres-Cantú G. 2013. Lista florística de la Barranca de Monte Obscuro, municipio de Emiliano Zapata, Veracruz, México. MSc. Thesis, Colegio de Postgraduados. [ Links ]

van-Wesenbeeck BK, van-Mourik T, Duivenvoorden JF, Cleef AM. 2003. Strong efects of a plantation with Pinus patula on Andean paramo vegetation: a case study from Colombia. Biological Conservation 114: 207–218. DOI: 10.1016/S0006-3207(03)00025-9 [ Links ]

Vázquez JA, Givnish TJ. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology 86: 999–1020. DOI: 10.1046/j.1365-2745.1998.00325.x [ Links ]

Vazquez J, Cuevas R, Cochrane T, Iltis H, Santana M, Guzmán HL. 1995. Flora de Manantlán: plantas vasculares de la Reserva de la Biósfera Sierra de Manantlán Jalisco-Colima, México. Botanical Research Institute of Texas, Fort Worth. [ Links ]

Villaseñor JL. 2010. El bosque húmedo de montaña en México y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad-Universidad Nacional Autónoma de México. [ Links ]

Villaseñor JL, Delgadillo C, Ortíz E. 2006. Biodiversity hotspots from a multigroup perspective: Mosses and Senecios in the Transmexican Volcanic Belt. Biodiversity and Conservation 15: 4045–4058. DOI: 10.1007/s10531-005-3056-6 [ Links ]

Villaseñor JL, Maeda P, Colín-López JJ, Ortíz E. 2005. Estimación de la riqueza de especies de Asteraceae mediante extrapolación a partir de datos de presencia-ausencia. Boletín de la Sociedad Botánica de México 76: 5–18. [ Links ]

Villaseñor JL, Ortíz E. 2012. La familia asteraceae en la flora del bajío y de regiones adyacentes. Acta Botanica Mexicana 100: 259–292. [ Links ]

Villaseñor JL, Ortíz E. 2014. Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad 85: 134–142. DOI: 10.7550/rmb.31987 [ Links ]

Warren SD, Holbrook SW, Dale DA, Whelan NL, Elyn M, Grimm W, Jentsch A. 2007. Biodiversity and the heterogeneous disturbance regime on military training lands. Restoration Ecology 15: 606–612. DOI: 10.1111/j.1526-100X.2007.00272.x [ Links ]

Whittaker RH. 1975. Communities and ecosystems. New York, MacMillan. [ Links ]

Willinghöfer S, Cicuzza D, Kessler M. 2012. Elevational diversity of terrestrial rainforest herbs: when the whole is less than the sum of its parts. Plant Ecology 213: 407–418. DOI: 10.1007/s11258-011-9986-z [ Links ]

Wolf J. 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80: 928–960. DOI: 10.2307/2399938 [ Links ]

Wright SJ. 2005. Tropical forests in a changing environment. Trends in Ecology and Evolution 20: 553–560. DOI: 10.1016/j.tree.2005.07.009 [ Links ]

Wright SJ, Muller-Landau HC. 2006. The future of tropical forest species. Biotropica 38: 287–301. DOI: 10.1111/j.1744-7429.2006.00154.x [ Links ]

Zambrano J, Coates R, Howe HF. 2014. Effects of forest fragmentation on the recruitment success of the tropical tree Poulsenia armata at Los Tuxtlas, Veracruz, Mexico. Journal of Tropical Ecology 30: 209–218. DOI: 10.1017/S0266467414000108 [ Links ]

Zamora-Crescencio P, Castillo-Campos G. 1997. Vegetación y flora del municipio de Tlalnelhuayocan, Veracruz. Textos Universitarios. Universidad Veracruzana. [ Links ]

Appendix

Species of herbaceous angiosperms recorded along gradients of elevation and forest disturbance in central Veracruz, Mexico.</p> <p>Collector: Jorge Gómez Díaz (JGD); Herbaria: MEXU = Instituto de Biología, UNAM; XAL = Instituto de Ecología, A.C., XALU = Facultad de Biología, Universidad Veracruzana, and CIIDIR = Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN. Data corresponding to minimum (min) and maximum (max) observed elevational distribution range, number of plots (N) in which the species was recorded from a total of 135 plots, and conservation/distribution status: T = threatened, P = protected, V = endemic to Veracruz, Mx = endemic to Mexico, Mx1 = Megamexico 1, Mx2 = Megamexico 2, E = exotic and R = ruderal. Nomenclature follows Tropicos.org <http://www.tropicos.org> (accessed on 24 Mar 2016) and The International Plant Names Index <http://www.ipni.org> (accessed on 06 Mar 2017). 

Subclass/Family/Species (voucher, herbarium) min max N Status
LILIIDAE
Amaryllidaceae
Hypoxis sp. 1 (JGD 212, MEXU; XAL) 1,500 1,500 1
Hypoxis sp. 2 (JGD 260, XALU) 3,100 3,100 2
Araceae
Anthurium andicola Liebm. (JGD 329, MEXU) 2,100 2,100 2 Mx2
Anthurium podophyllum (Schltdl. & Cham.) Kunth (JGD 462, MEXU) 50 50 2 T, Mx
Anthurium scandens (Aubl.) Engl. (JGD 175, MEXU) 1,500 1,500 3
Anthurium schlechtendalii Kunth (JGD 319, XAL) 650 1,000 17
Anthurium sp. (JGD 369, XALU) 1,000 1,000 1
Monstera acuminata K. Koch (JGD 444, MEXU) 650 650 3
Monstera deliciosa Liebm. (JGD 170, MEXU) 1,500 1,500 6
Philodendron radiatum Schott (JGD 315, MEXU; XAL) 650 650 13
Spathiphyllum cochlearispathum Engl. (JGD 432, MEXU; XAL; XALU) 650 650 2 Mx2
Syngonium macrophyllum Engl. (JGD 321, MEXU) 50 50 1
Syngonium podophyllum Schott (JGD 312, MEXU) 50 650 16
Syngonium sagittatum G.S. Bunting (JGD 174, MEXU; XAL) 1,000 1,500 23 Mx
Arecaceae
Chamaedorea elegans Mart. (JGD 336, XALU) 650 1,000 17 Mx2
Chamaedorea oblongata Mart. (JGD 452, XALU) 650 650 1
Chamaedorea tepejilote Liebm. in Mart. (JGD 184, MEXU; XALU) 1,000 2,100 30
Asparagaceae
Maianthemum paniculatum (M. Martens & Galeotti) La Frankie (JGD 381, MEXU; XAL; XALU) 2,100 2,100 6
Maianthemum sp. (JGD 451, XALU) 2,500 2,500 5
Bromeliaceae
Aechmea bracteata Mez (JGD 316, MEXU; XAL) 650 650 3
Bromelia cf. pinguin L. (JGD 314, MEXU) 50 50 4
Cf. Pitcairnia sp. 1 (JGD 268, MEXU) 3,100 3,100 5
Cf. Pitcairnia sp. 2 (JGD 276, MEXU) 2,100 2,500 5
Cf. Pitcairnia sp. 3 (JGD 328, MEXU) 650 650 1
Greigia van-hyningii L.B. Sm. (JGD 330, MEXU) 2,100 3,100 22 Mx
Commelinaceae
Callisia fragrans (Lindl.) Woodson (JGD 387, XALU) 650 650 3 Mx
Commelina diffusa Burm. f. (JGD 450, XALU) 650 650 1 E, R
Commelina erecta L. (JGD 454, XALU) 650 650 1 R
Gibasis geniculata (Jacq.) Rohweder (JGD 196, MEXU; XAL; XALU) 1,500 1,500 11
Gibasis linearis (Benth.) Rohweder (JGD 320, XAL) 50 50 1 Mx
Tradescantia zanonia (L.) Sw. (JGD 383, MEXU; XAL) 2,100 2,100 5
Tripogandra disgrega (Kunth) Woodson (JGD 243, MEXU; XAL) 1,000 2,100 8 Mx2
Tripogandra serrulata (Vahl) Handlos (JGD 302, XAL) 2,100 2,100 12
Tripogandra sp. (JGD 443, MEXU) 650 650 1
Cyclanthaceae
Asplundia sp. (JGD 318, MEXU) 650 650 1
Cyperaceae
Carex chordalis Liebm. (JGD 286A, CIIDIR) 2,100 2,500 2
Carex cortesii Liebm. (JGD 247, XAL; CIIDIR) 1,500 2,500 11 Mx2
Carex melanosperma Liebm. (JGD 162, MEXU; XAL; CIIDIR) 2,500 2,500 3 Mx2
Carex sect. longicaules (JGD 286B, CIIDIR) 2,100 2,100 1
Carex thurberi Dewey ex Torr. (JGD 323, XAL; CIIDIR) 1,500 1,500 7
Cyperus articulatus L. (JGD 241, MEXU; XAL; CIIDIR) 50 50 1 R
Cyperus ligularis L. (JGD 286, XAL; CIIDIR) 2,100 3,100 12
Cyperus manimae Kunth (JGD 185, MEXU) 3,100 3,100 2 R
Cyperus seslerioides Kunth (JGD 155, CIIDIR) 2,500 2,500 1 R
Cyperus surinamensis Rottb. (JGD 201, MEXU; CIIDIR) 1,500 1,500 1
Cyperus virens Boeckeler var. minarum (Boeckeler) Denton 1,500 1,500 1 R
Eleocharis geniculata (L.) Roem. & Schult. (JGD 188, MEXU) 650 650 1 E
Eleocharis montana Roem. & Schult. (JGD 322, XAL; CIIDIR) 650 650 1
Kyllinga pumila Michx. (JGD 166, MEXU; CIIDIR) 1,500 1,500 5
Rhynchospora radicans H. Pfeiff. (JGD 169&460, MEXU; XAL; CIIDIR) 1,500 2,100 17 R
Rhynchospora schiedeana Hemsl. (JGD 303, XAL; CIIDIR) 2,100 2,100 3
Scleria lithosperma (L.) Sw. (JGD 457, CIIDIR) 650 650 3
Uncinia hamata (Sw.) Urb. (JGD 458, XAL; CIIDIR) 2,100 2,500 13
Heliconiaceae
Heliconia adflexa Standl. (JGD 186, MEXU) 1,500 1,500 1 Mx2
Heliconia schiedeana Klotzsch (JGD 240, XALU) 1,000 1,500 6 Mx2
Iridaceae
Sisyrinchium scabrum Cham. & Schltdl. (JGD 326, MEXU) 2,500 2,500 1
Juncaceae
Luzula sp. (JGD 190, MEXU) 2,500 2,500 4
Orchidaceae
Beloglottis mexicana Garay & Hamer (JGD 372, MEXU) 1,000 1,000 1 Mx2
Calanthe calanthoides (A. Rich. & Galeotti) Hamer & Garay (JGD 394, MEXU) 2,500 2,500 7
Calanthe sp. (JGD 466, MEXU) 2,100 2,100 1
Corallorhiza maculata (Raf.) Raf. (JGD 295, MEXU) 3,500 3,500 1
Cyclopogon elatus (Sw.) Schltr. (JGD 406, MEXU) 2,500 2,500 1
Cyclopogon sp. 1 (JGD 337, MEXU) 650 1,000 5
Cyclopogon sp. 2 (JGD 373, MEXU) 650 650 1
Cyrtopodium macrobulbon (La Llave & Lex.) G.A. Romero & Carnevali (JGD 374, MEXU) 650 650 5 Mx2
Epidendrum radicans Pav. ex Lindl. (JGD 244, MEXU) 1,500 1,500 1
Goodyera sp. 1 (JGD 391, MEXU) 2,100 2,100 1
Goodyera sp. 2 (JGD 428, MEXU; XAL) 3,100 3,100 1
Govenia superba (La Llave & Lex.) Lindl. (JGD 442, MEXU) 2,500 2,500 2
Govenia sp. 1 (JGD 463, MEXU) 2,100 2,100 1
Govenia sp. 2 (JGD 282, MEXU) 3,100 3,100 3
Govenia sp. 3 (JGD 472, MEXU) 650 650 1
Habenaria floribunda Lindl. (JGD 471, MEXU) 1,500 1,500 2 Mx2
Habenaria novemfida Lindl. (JGD 377, MEXU) 1,500 1,500 1 Mx2
Malaxis excavata Kuntze (JGD 390, MEXU) 2,100 2,100 1
Malaxis histionantha (Link, Klotzsch & Otto) Garay & Dunst. (JGD 371, MEXU; XAL) 1,000 1,000 6
Malaxis soulei L.O. Williams (JGD 427, MEXU) 3,100 3,100 1
Oeceoclades maculata (Lindl.) Lindl. (JGD 332, MEXU; XAL) 50 1,000 7 E
Pelexia funckiana (A. Rich. & Galeotti) Schltr. (JGD 198, MEXU) 1,500 1,500 10
Prescottia stachyodes (Sw.) Lindl. (JGD 221, MEXU) 1,500 1,500 5
Psilochilus macrophyllus Ames (JGD 200, MEXU) 1,500 1,500 1
Schiedeella sp. (JGD 464, MEXU) 2,100 2,100 2
Spiranthinae (JGD 465, MEXU) 2,100 2,100 2
Vanilla insignis Ames (JGD 429, MEXU) 650 1,000 2 Mx2
Poaceae
Aegopogon cenchroides Humb. & Bonpl. ex Willd. (JGD 199, XAL) 1,500 2,500 3
Agrostis tolucensis Kunth (JGD 296, XAL) 3,500 3,500 1
Andropogon sp. (JGD 310, XAL) 50 50 1
Aristida sp. (JGD 311, XAL) 50 50 1
Bouteloua gracilis (Kunth) Lag. ex Griffiths (JGD 301, XAL) 2,100 2,500 6
Brachypodium mexicanum Link (JGD 258, XAL) 3,100 3,100 1
Brachypodium sp. (JGD 298, XAL) 2,100 2,500 8
Briza minor L. (JGD 299, XAL) 2,500 2,500 1 E
Bromus exaltatus Bernh. (JGD 300, XAL) 2,500 2,500 3
Chusquea glauca L.G. Clark (JGD 362, MEXU) 2,100 2,100 6 Mx
Chusquea sp. (JGD 468, MEXU) 2,500 2,500 2
Dichanthelium dichotomum (L.) Gould (JGD 160, MEXU) 1,500 1,500 14
Eragrostis sp. (JGD 306, XAL) 1,000 1,000 1
Festuca amplissima Rupr. (JGD 279, XAL) 3,100 3,100 1
Festuca rosei Piper (JGD 269, XAL) 3,100 3,100 11 Mx1
Festuca sp. (JGD 305, XAL) 1,000 1,500 3
Guadua sp. (JGD 307, XAL) 650 650 2
Hordeum sp. (JGD 234, MEXU; XAL) 1,000 1,500 1
Lasiacis sp. 1 (JGD 441, XAL) 650 650 1
Lasiacis sp. 2 (JGD 161, MEXU) 1,500 1,500 6
Lasiacis sp. 3 (JGD 168, MEXU) 1,500 1,500 2
Melinis sp. (JGD 308, XAL) 650 650 2
Muhlenbergia macroura Hitchc. (JGD 297, XAL) 3,500 3,500 10 R, Mx2
Muhlenbergia sp. (JGD 309, XAL) 650 650 2
Oplismenus sp. (JGD 439, XAL) 650 650 1
Oryza latifolia Desv. (JGD 440, XAL) 650 650 1
Otatea acuminata (Munro) C.E. Calderón & Soderstr. (JGD 470, MEXU) 650 650 1
Panicum sp. (JGD 469, MEXU) 650 650 1
Paspalum sp. (JGD 362, XALU) 650 650 1
Pennisetum sp. (JGD 324, XAL) 650 650 1
Phyllostachys aurea Riviere & C. Riviere. (JGD 214, XAL) 1,500 1,500 2
Schizachyrium condensatum Nees (JGD 304, XAL) 650 1,000 17
Stipa ichu (Ruiz & Pav.) Kunth (JGD 467, MEXU) 3,500 3,500 10 R
Trisetum spicatum (L.) K. Richt. (JGD 254, XAL) 3,100 3,100 14
Zeugites americanus Willd. (JGD 178, MEXU; XAL) 1,500 1,500 2
Cf. Zeugites sp. (JGD 286C, XAL) 2,100 2,100 1
Zingiberaceae
Hedychium coronarium J. Koenig (JGD 331, XALU) 50 50 2 E, R
MAGNOLIIDAE
Acanthaceae
Aphelandra scabra (Vahl) Sm. (JGD 449, XALU) 650 650 2 R
Pseuderanthemum alatum Radlk. (JGD 453, XALU) 650 650 4
Ruellia sp.(JGD 368, MEXU; XAL; XALU) 1,000 1,000 5
Cf. Ruellia sp. (JGD 405, XALU) 650 650 1
Amaranthaceae
Iresine diffusa Humb. & Bonpl. ex Willd. (JGD 233, MEXU; XALU) 1,500 1,500 4 R
Iresine sp. (JGD 433, MEXU; XAL) 2,500 3,100 3
Apiaceae
Eryngium columnare Hemsl. (JGD 228, XALU) 2,500 2,500 1 Mx
Eryngium proteiflorum F. Delaroche (JGD 267, XALU) 3,100 3,500 5 Mx
Foeniculum vulgare Mill. (JGD 287, MEXU; XALU) 3,100 3,100 2 E, R
Sanicula liberta Cham. & Schltdl. (JGD 211, MEXU; XAL; XALU) 1,500 1,500 5
Araliaceae
Hydrocotyle mexicana Schltdl. & Cham. (JGD 422, XALU) 2,500 2,500 4
Hydrocotyle umbellata L. (JGD 213, XALU) 1,500 1,500 3
Asteraceae
Achillea millefolium L. (JGD 289, XALU) 2,500 3,100 4 E, R
Ageratina chazaroana B.L. Turner (JGD 401, MEXU) 2,500 2,500 2 Mx
Ageratina pazcuarensis (Kunth) R.M. King & H. Rob. (JGD 255, MEXU) 2,500 2,500 1 Mx1
Ageratina pichinchensis (Kunth) R.M. King & H. Rob. (JGD 403, MEXU) 2,500 2,500 2
Ageratina sp. (JGD 434, XALU) 2,500 2,500 1
Artemisia ludoviciana Nutt. (JGD 274, XALU) 3,100 3,100 1 R
Bidens sp. (JGD 163, MEXU) 2,500 2,500 1
Cirsium conspicuum Sch. Bip. (JGD 351, MEXU; XALU) 2,500 2,500 1 Mx
Cirsium ehrenbergii Sch. Bip. (JGD 352, MEXU) 3,100 3,100 11 Mx
Cirsium nivale Sch. Bip. (JGD 253, XALU) 3,500 3,500 3 Mx
Conyza canadensis (L.) Cronquist (JGD 435; XALU) 650 650 5 R
Conyza coronopifolia Kunth (JGD 227, XALU) 1,500 2,500 6 R
Elephantopus mollis Kunth (JGD 205, MEXU; XALU) 1,500 1,500 5
Hymenoxys integrifolia (Kunth) Bierner (JGD 273, 293 & 361, MEXU; XALU) 2,500 3,500 14
Laennecia gnaphalioides Cass. (JGD 355, XALU) 2,500 2,500 4
Pseudognaphalium liebmannii (Klatt) Anderb. (JGD 270, XALU) 3,100 3,100 8
Roldana angulifolia (DC.) H. Rob. & Brettell. (JGD 396, XALU) 2,500 2,500 4 Mx
Roldana aschenborniana (S. Schauer) H. Rob. & Brettell (JGD 208, MEXU; XALU) 1,500 1,500 4
Sabazia humilis Cass. (JGD 395, XALU) 2,500 2,500 4 Mx, R
Sabazia sarmentosa Less. (JGD 285, XALU) 3,100 3,100 1
Senecio callosus Sch. Bip. (JGD 283& 359, MEXU; XAL; XALU) 2,500 3,500 16
Senecio cinerarioides Kunth (JGD 436, MEXU; XALU) 3,500 3,500 2 Mx
Senecio deppeanus Hemsl. (JGD 206, MEXU; XALU) 1,500 1,500 1
Senecio roseus Sch. Bip. (JGD 330A, MEXU) 3,500 3,500 1 Mx
Senecio sp. (JGD 411, XALU) 2,500 2,500 1
Sigesbeckia jorullensis Kunth (JGD 398, XALU) 2,500 3,100 6 R
Trixis inula Crantz (JGD 446, XALU) 650 650 3
Verbesina robinsonii (Klatt) Fernald ex B.L. Rob. & Greenm. (JGD 445, MEXU; XALU) 3,100 3,100 2 Mx
Cf. Verbesina sp. 1 (JGD 171, MEXU) 1,500 1,500 1
Cf. Verbesina sp. 2 (JGD 173, MEXU; XALU) 2,100 2,100 1
Begoniaceae
Begonia fusca Liebm. (JGD 181, MEXU) 2,100 2,100 1
Begonia heracleifolia Schltdl. & Cham. (JGD 325, MEXU) 650 650 1
Begonia manicata Brongn. (JGD 376, XALU) 1,000 1,000 1
Begonia multistaminea Burt-Utley (JGD 187, MEXU) 1,500 1,500 1 V
Begonia nelumbonifolia Schltdl. & Cham. (JGD 386, MEXU; XAL; XALU) 2,100 2,100 2
Begonia oaxacana A. DC. (JGD 191, MEXU; XALU) 1,500 2,500 6
Boraginaceae
Hackelia mexicana I.M. Johnst. (JGD 288 MEXU; XAL; XALU) 3,100 3,100 1
Macromeria sp. (JGD 400, XALU) 2,500 2,500 2
Phacelia platycarpa Spreng. (JGD 294, XALU) 3,100 3,100 4 R
Morpho unidentified 1 (JGD 456, MEXU; XAL; XALU) 3,100 3,100 2
Morpho unidentified 2 (JGD 262, XALU) 2,500 2,500 1
Brassicaceae
Pennellia longifolia (Benth.) Rollins (JGD 409, XALU) 2,500 2,500 3
Campanulaceae
Centropogon grandidentatus (Schltdl.) Zahlbr. (JGD 249, XALU) 2,500 2,500 10
Morpho unidentified (JGD 278, MEXU) 3,100 3,100 2
Capparaceae
Morpho unidentified (JGD 437, MEXU) 3,100 3,100 3
Caryophyllaceae
Arenaria lanuginosa (Michx.) Rohrb. (JGD 420, XALU) 1,000 1,000 1 R
Arenaria lycopodioides Willd. ex D.F.K. Schltdl. (JGD 257, XALU) 3,100 3,100 8 R
Arenaria oresbia Greenm. (JGD 417, XALU) 2,500 3,100 2 Mx
Arenaria reptans Hemsl. (JGD 423, XALU) 2,500 2,500 14 R
Cerastium arvense L. subsp. molle (Vill.) Arcang. (JGD 265, XALU) 3,100 3,100 1 E, R
Drymaria cordata (L.) Willd. ex Schult. (JGD 384, XAL) 2,100 2,500 3 R
Morpho unidentified (JGD 424, XALU) 3,100 3,100 2
Crassulaceae
Echeveria mucronata Schltdl. (JGD 272, XALU) 3,100 3,100 5 Mx
Echeveria rosea Lindl. (JGD 407, XALU) 2,500 2,500 2 Mx
Sedum obcordatum R.T. Clausen (JGD 291, XALU) 3,100 3,100 1 V
Cytinaceae
Bdallophyton americanum (R. Br.) Eichler ex Solms. (JGD 358, XALU) 50 50 1
Ericaceae
Chimaphila umbellata (L.) Nutt. (JGD 290, MEXU; XAL; XALU) 3,100 3,100 4
Monotropa hypopitys L. (JGD 410, XALU) 3,500 3,500 1 P
Monotropa uniflora L. (JGD 421, MEXU; XAL, XALU) 2,500 2,500 3
Pernettya ciliata Small (JGD 431, XALU) 3,500 3,500 2
Euphorbiaceae
Acalypha arvensis Poepp. (JGD 366, XALU) 650 650 1 R
Euphorbia cyathophora Murray (JGD 447, XALU) 1,000 1,000 1 R
Euphorbia dentata Michx. (JGD 207, MEXU; XAL; XALU) 1,500 1,500 3 R
Fabaceae
Lupinus mexicanus Cerv. (JGD 399, XALU) 3,500 3,500 7 Mx
Lupinus montanus Kunth (JGD 354, XALU) 3,500 3,500 1 Mx2
Trifolium repens L. (JGD 292, XALU) 2,500 3,100 17 E, R
Gentianaceae
Halenia brevicornis (Kunth) G. Don (JGD 402, XALU) 2,500 2,500 2
Geraniaceae
Geranium seemannii Peyr. (JGD 263, XALU) 3,100 3,100 2 R
Gesneriaceae
Achimenes erecta (Lam.) H.P. Fuchs (JGD 339, XALU) 650 650 1
Gunneraceae
Morpho unidentified (JGD 397, XALU) 2,500 2,500 2
Lamiaceae
Asterohyptis stellulata Epling (JGD 338, XALU) 650 650 1 Mx
Marrubium vulgare L. (JGD 176, MEXU) 2,500 2,500 4 E, R
Prunella vulgaris L. (JGD 426, XALU) 2,500 2,500 1 E, R
Salvia carnea Kunth. (JGD 280, XALU) 3,100 3,100 9 R
Salvia coccinea Buc’hoz ex Etl. (JGD 412, XALU) 2,500 2,500 3
Salvia hispanica L. (JGD 364, MEXU; XAL; XALU) 1,000 1,000 2
Salvia iodantha Fernald (JGD 413, XALU) 2,500 2,500 6 Mx
Salvia mexicana L. (JGD 375, XALU) 1,000 1,000 4 Mx, R
Salvia microphylla Kunth (JGD 225, XALU) 1,500 1,500 1
Salvia polystachya Cav. (JGD 414, XALU) 2,500 2,500 2
Salvia tiliifolia Vahl (JGD 385, MEXU; XAL; XALU) 2,100 2,100 1 R
Scutellaria racemosa Pers. (JGD 367, XALU) 1,000 1,000 7
Morpho unidentified (JGD 183, MEXU) 1,500 1,500 1
Linaceae
Linum sp. (JGD 197, MEXU). 1,500 1,500 1
Lythraceae
Cuphea aequipetala Cav. (JGD 416, XALU) 2,500 2,500 1 R
Cuphea calaminthifolia Schltdl. (JGD 425, MEXU; XAL; XALU) 2,500 2,500 1 Mx
Cuphea salicifolia Cham & Schltdl. (JGD 455, XALU) 650 650 4 Mx
Morpho unidentified (JGD 218, XALU) 1,500 1,500 1
Malvaceae
Morpho unidentified (JGD 229, MEXU) 1,500 1,500 1
Moraceae
Dorstenia contrajerva L. (JGD 340, XALU) 650 1,000 11
Orobanchaceae
Castilleja tenuiflora Benth. (JGD 177, MEXU) 3,100 3,100 1 R
Conopholis alpina Liebm. (JGD 408, XALU) 2,500 2,500 3
Oxalidaceae
Biophytum dendroides DC. (JGD 215, XAL) 1,000 1,500 2
Phytolaccaceae
Petiveria alliacea L. (JGD 333, MEXU; XAL; XALU) 50 50 1 R
Piperaceae
Peperomia angustata Kunth. (JGD 392, MEXU) 2,500 2,500 1
Peperomia arboricola C. DC. (JGD 393, MEXU) 2,100 2,500 4 Mx2
Peperomia cobana C. DC. Ex Donn.Sm. (JGD 461, MEXU) 1,500 1,500 1 Mx2
Peperomia deppeana Schltdl. & Cham. (JGD 231, MEXU) 2,500 2,500 1
Peperomia donaguiana C. DC. (JGD 189, MEXU; XAL) 1,500 2,500 9 Mx2
Peperomia glabella (Sw.) A. Dietr. (JGD 378, MEXU) 2,100 2,100 7
Peperomia aff. granulosa (JGD 438, MEXU) 650 650 2
Peperomia obtusifolia (L.) A. Dietr. (JGD 242& 473, MEXU; XAL) 650 1,500 13
Peperomia peltilimba C. DC. Ex Trel. (JGD 245, MEXU) 1,500 1,500 1 Mx2
Peperomia subblanda C. DC. (JGD 380, MEXU; XAL) 650 2,100 8
Plantaginaceae
Digitalis purpurea L. (JGD 419, XALU) 2,500 2,500 1 E, R
Penstemon gentianoides Poir. (JGD 430, MEXU; XAL; XALU) 3,500 3,500 14
Polemoniaceae
Morpho unidentified (JGD 334, XALU) 50 50 1
Polygalaceae
Morpho unidentified (JGD 370, XALU) 1,000 1,000 2
Polygonaceae
Rumex acetosella L. (JGD 277, XALU) 3,100 3,100 2 E, R
Morpho unidentified (JGD 379, MEXU) 650 650 4
Portulacaceae
Morpho unidentified (JGD 335, MEXU) 650 650 3
Ranunculaceae
Ranunculus multicaulis D. Don ex G. Don (JGD 261, XALU) 3,100 3,100 2 Mx
Rosaceae
Lachemilla orbiculata (Ruiz & Pav.) Rydb. (JGD 357, XALU) 2,500 2,500 6
Lachemilla procumbens Rydb. (JGD 259, XAL) 3,100 3,100 12 R
Lachemilla vulcanica Rydb. (JGD 415, MEXU; XAL; XALU) 3,500 3,500 15
Rubiaceae
Bouvardia laevis M. Martens & Galeotti (JGD 251, MEXU; XAL; XALU) 2,500 2,500 2
Coccocypselum hirsutum Bartl. (JGD 167, MEXU; XALU) 1,500 1,500 10
Crusea coccinea DC. (JGD 350, XALU) 2,500 2,500 2
Deppea grandiflora Schltdl. (JGD 271, XAL) 2,500 3,100 3
Didymaea alsinoides (Schltdl. & Cham.) Standl. (JGD 388, XALU) 2,100 2,500 4
Galium aschenbornii S. Schauer (JGD 256, XALU) 2,500 3,100 18
Hedyotis sharpii (Terrell) G.L. Nesom (JGD 264, XALU) 3,100 3,500 4 Mx
Relbunium hypocarpium (L.) Hemsl. (JGD 474, MEXU) 2,500 2,500 2
Solanaceae
Cestrum dumetorum Schltdl. (JGD 448, XALU) 1,000 1,000 1
Jaltomata procumbens (Cav.) J.L. Gentry (JGD 209, XALU) 1,500 2,500 8 R
Physalis campanula Standl. & Steyerm. (JGD 180, MEXU) 2,100 2,500 3 Mx2
Solanum aligerum Schltdl. (JGD 418, XALU) 2,500 2,500 3
Solanum demissum Lindl. (JGD 281, XALU) 3,100 3,100 1
Solanum laxum Spreng. (JGD 404, XALU) 2,500 2,500 2
Solanum tuberosum L. (JGD 284, XALU) 3,100 3,100 1 E
Valerianaceae
Valeriana sorbifolia Kunth (JGD 165, MEXU) 2,500 2,500 1

Received: July 11, 2016; Accepted: November 08, 2016

* Corresponding author: Jorge A. Gómez-Díaz, e-mail: jgomezd@gwdg.de

Author Contributions. Jorge A. Gómez-Díaz & César I. Carvajal-Hernández conducted fieldwork. Jorge A. Gómez-Díaz analyzed data and wrote the paper. All authors conceived, designed the research and reviewed drafts of the paper.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License